Expressivity and Generalization: Fragment-Biases for Molecular GNNs

Tom Wollschläger *, Niklas Kemper *, Leon Hetzel, Johanna Sommer, Stephan Günnemann

Data Analytics and Machine Learning Group Technical University of Munich

*equal contribution

Traditional GNNs limited expressivity

Limited expressivity:

- Distinguishing non-isomorphic graphs bounded by the Weisfeiler & Lehman test \bullet
- Blind to substructures [1] lacksquare

[1] Chen et al. Can Graph Neural Networks Count Substructures?, NeurIPS 2020

Approaches to increase expressivity

[2] Zhang et. al. A Quantitative Framework for GNN Expressiveness. ICLR 2024 [3] Campi et. al. Expressivity of Graph Neural Networks Through the Lens of Adversarial Robustness. CoRR 2023

1. How should a graph be fragmented? 2. How to use fragment information in a model?

How should a graph be fragmented?
How to use fragment information in a model?

How should a graph be fragmented? **Two conflicting goals**

1. Fragmentation should include all *important* substructures.

2. Fragmentation should facilitate generalization across diverse graphs.

Our RingsPaths Fragmentation Fragment the complete molecule using only small building blocks

- Minimal Cycle Basis
- Maximally long uninterrupted paths 2.

Fragment complete graph using only two types of substructures

Niklas Kemper

1. How should a graph be fragmented?

2. How to use fragment information in a model?

How to encode fragment information? Α. How to incorporate fragment information into the model? Β.

One Hot Encoding Similar Fragments — Different Encodings

• Supports only a fixed number of fragments

Ordinal Encoding Similar Fragments — Similar Encodings

- Supports infinitely many fragment types \bullet
- Transfer knowledge between similar fragments

1. How should a graph be fragmented?

2. How to use fragment information in a model?

How to encode fragment information? Α. How to incorporate fragment information into the model?

Approaches to incorporate fragment information Difficult to compare expressivity directly

Node Features

Does higher-level abstraction come with an increase in expressivity?

Higher-level Graph

New Measures of expressivity Expressivity increases with higher-level abstraction

Niklas Kemper

1. How should a graph be fragmented?

2. How to use fragment information in a model?

How to encode fragment information? Α. How to incorporate fragment information into the model? Β.

FragNet **Overview of our model**

- \Rightarrow **Ordinal Encoding**
- Higher-level Graph

Empirical Evaluation

1. Expressivity

2. Benchmarks

3. Generalization

Expressivity FragNet can count chemically important substructures

Niklas Kemper

How should a graph be fragmented? Two conflicting goals

1. Fragmentation should include enable to learn all important substructures.

2. Fragmentation should facilitate generalization across diverse graph structures.

(: :)

Empirical Performance FragNet is SOTA among (fragment-biased) GNNs

ZINC

- FragNet best (fragment-biased) GNN
- Comparable performance to state-of-the-art transformer GRIT [4] on Peptides-struct & ZINC-full

[4] Ma et al. Graph Inductive Biases in Transformers without Message Passing ICML 2023

Niklas Kemper

Ordinal Encoding helps to generalize to fragments not in the training set

Model	ZINC 10k	
	training (MAE ↓)	test (MAE ↓)
GRIT	0.02	0.61
Ours	0.08	0.34

Generalization **RingsPaths + Ordinal Encoding + Higher-level graph = improved generalization**

Niklas Kemper

Fragment Biases for Molecular GNNs

Distance from training distribution

21

FragNet A robust and highly expressive fragment-biased GNN

Paper & Code

References

[1] Chen et al. Can Graph Neural Networks Count Substructures?, NeurIPS 2020

[2] Zhang, B., Gai, J., Du, Y., Ye, Q., He, D., and Wang, L. Beyond Weisfeiler-Lehman: A Quantitative Framework for GNN Expressiveness. *ICLR 2024*

[3] Campi, F., Gosch, L., Wollschläger, T., Scholten, Y., and Günnemann, S. Expressivity of Graph Neural Networks Through the Lens of Adversarial Robustness. CoRR 2023

[4] Ma et al. Graph Inductive Biases in Transformers without Message Passing ICML 2023

[5] Degen et al. On the art of compiling and using 'drug-like' chemical fragment spaces, ChemMedChem 2008

[6] Bodnar et al. Weisfeiler and Lehman Go Cellular: CW Networks, NeurIPS 2021

[7] Bouritsas et al. Improving Graph Neural Network Expressivity via Subgraph Isomorphism Counting, IEEE Transactions on Pattern Analysis and Machine Intelligence 2021

[8] Zhu, J., Wu, K., Wang, B., Xia, Y., Xie, S., Meng, Q., Wu, L., Qin, T., Zhou, W., Li, H., and Liu, T.-Y. \$\mathcal{O}\$-GNN: incorporating ring priors into molecular modeling. September 2022.

[9] Fey et al., Hierarchical Inter-Message Passing for Learning on Molecular Graphs, GRL+ Workhop at ICML 2020

