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Traditional GNNs limited expressivity

Limited expressivity:


• Distinguishing non-isomorphic graphs bounded by the Weisfeiler & Lehman test


• Blind to substructures [1]
[1] Chen et al. Can Graph Neural Networks Count Substructures?, NeurIPS 2020 
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Approaches to increase expressivity

Higher-order GNNs Fragment-biased GNNs

Theory [2]
Expressivity [2]
Generalization [3]

Complexity
Theory
Expressivity
Generalization

Complexity
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[2] Zhang et. al. A Quantitative Framework for GNN Expressiveness. ICLR 2024 [3] Campi et. al. Expressivity of Graph Neural Networks Through the Lens of Adversarial Robustness. CoRR 2023



Design choices for fragment-
biased GNNs

1. How should a graph be fragmented? 

2. How to use fragment information in a model?
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How should a graph be fragmented?
Two conflicting goals

1. Fragmentation should include all important substructures. 
 

2. Fragmentation should facilitate generalization across diverse graphs.  
 

Vocabulary
Fragmentation


Scheme

…
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Our RingsPaths Fragmentation
Fragment the complete molecule using only small building blocks

1. Minimal Cycle Basis


2. Maximally long uninterrupted paths


➡ Fragment complete graph using only two types of substructures
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Design choices for fragment-
biased GNNs

1. How should a graph be fragmented? 

2. How to use fragment information in a model?
A. How to encode fragment information? 
B. How to incorporate fragment information into the model?
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One Hot Encoding
Similar Fragments — Different Encodings

• Supports only a fixed number of fragments
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Ordinal Encoding
Similar Fragments — Similar Encodings

• Supports infinitely many fragment types


• Transfer knowledge between similar fragments
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Approaches to incorporate fragment information
Difficult to compare expressivity directly

Node Features Fragment Representation Higher-level Graph

• Does higher-level abstraction come with an increase in expressivity?
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New Measures of expressivity
Expressivity increases with higher-level abstraction

Node Features Fragment Representation Higher-level GraphNo Fragmentation

WL test NF-WL test FR-WL test HLG-WL test

Expressivity strictly increases

➡ Enables comparison of existing fragment-biased GNNs

< < <
Theorem 4.6 Theorem 4.7 Theorem 4.8 
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FragNet
Overview of our model

RingsPaths Fragmentation

Ordinal Encoding

Higher-level Graph
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Empirical Evaluation

1. Expressivity 

2. Benchmarks 

3. Generalization 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Expressivity
FragNet can count chemically important substructures
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How should a graph be fragmented?
Two conflicting goals

1. Fragmentation should include enable to learn all important 
substructures. 
 

2. Fragmentation should facilitate generalization across diverse graph 
structures.  
 

18



Fragment Biases for Molecular GNNsNiklas Kemper

Empirical Performance
FragNet is SOTA among (fragment-biased) GNNs

• FragNet best (fragment-biased) GNN


• Comparable performance to state-of-the-art transformer GRIT [4] on Peptides-struct 
& ZINC-full

ZINC Peptides
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[4] Ma et al. Graph Inductive Biases in Transformers without Message Passing ICML 2023

https://proceedings.mlr.press/v202/ma23c.html
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Ordinal Encoding helps to generalize to fragments not in the training set
Generalization: Unseen Fragments

Training Test
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Generalization
RingsPaths + Ordinal Encoding + Higher-level graph = improved generalization

Distance from training distribution

Rare Fragments Unseen Fragments Different Distribution

Training
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FragNet
A robust and highly expressive fragment-biased GNN

Complexity

Theory

Expressivity

Generalization

SOTA performance for GNNs
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