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Traditional GNNs limited expressivity

SO RO

Limited expressivity:
* Distinguishing non-isomorphic graphs bounded by the Weisfeiler & Lehman test

* Blind to substructures |1]

[1] Chen et al. Can Graph Neural Networks Count Substructures?, NeurlPS 2020
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Approaches to increase expressivity

Higher-order GNNs

() Complexity

©) Theory 2]
Expressivity |”|

@ Generalization |3

[2] Zhang et. al. A Quantitative Framework for GNN Expressiveness. ICLR 2024 [3] Campi et. al. Expressivity of Graph Neural Networks Through the Lens of Adversarial Robustness. CoRR 2023
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Design choices for fragment-
biased GNNs

1. How should a graph be fragmented?

2. How to use fragment information in a model?



Design choices for fragment-
biased GNNs

2. How to use fragment information in a model?



How should a graph be fragmented?

Two conflicting goals

Vocabula
v Fragmentation /
Scheme

1. Fragmentation should include all important substructures.

) (X

2. Fragmentation should facilitate generalization across diverse graphs.

© [ J

Niklas Kemper Fragment Biases for Molecular GNNs



Our RingsPaths Fragmentation

Fragment the complete molecule using only small building blocks

1. Minimal Cycle Basis

2. Maximally long uninterrupted paths

= Fragment complete graph using only two types of substructures

Niklas Kemper Fragment Biases for Molecular GNNs



Design choices for fragment-
biased GNNs

1. How should a graph be fragmented?

B. How to incorporate fragment information into the model?



One Hot Encoding

Similar Fragments — Different Encodings

()& A

e Supports only a fixed number of fragments
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Ordinal Encoding

Similar Fragments — Similar Encodings
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* Supports infinitely many fragment types

* Transfer knowledge between similar fragments
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Design choices for fragment-
biased GNNs

1. How should a graph be fragmented?

A. How to encode fragment information?



Approaches to incorporate fragment information
Difficult to compare expressivity directly

Node Features Fragment Representation Higher-level Graph

O~ O §W gCr\f'sfdJ
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* Does higher-level abstraction come with an increase in expressivity?
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New Measures of expressivity

Expressivity increases with higher-level abstraction

No Fragmentation Node Features Fragment Representation Higher-level Graph

O 00 OO W 0”‘}03

WL test < NF-WL test < FR-WL test < HLG-WL test

Theorem 4.6 Theorem 4.7 Theorem 4.8

Expressivity strictly increases

= Enables comparison of existing fragment-biased GNNs
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Design choices for fragment-
biased GNNs

1. How should a graph be fragmented?

2. How to use fragment information in a model?

A. How to encode fragment information?
B. How to incorporate fragment information into the model?



FragNet

Overview of our model

LLAVERNSY

9 RingsPaths Fragmentation

9 Ordinal Encoding X/ \/mvéf
T /\mF—w

9 Higher-level Graph
K/

me_ ¢

Niklas Kemper Fragment Biases for Molecular GNNs



Empirical Evaluation

1. EXpressivity
2. Benchmarks

3. Generalization



EXxpressivity

FragNet can count chemically important substructures

Fragment Q o

Counts 5629 3904
Accuracy | 0986 0.99
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How should a graph be fragmented?
Two conflicting goals

1. Fragmentation should ireluae enable to learn all important

substructures.
L (O X

2. Fragmentation should facilitate generalization across diverse graph

structures. o
~
o fJ
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Empirical Performance
FragNet is SOTA among (fragment-biased) GNNs
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* FragNet best (fragment-biased) GNN

 Comparable performance to state-of-the-art transformer GRIT [4| on Peptides-struct
& ZINC-full

[4] Ma et al. Graph Inductive Biases in Transformers without Message Passing ICML 2023
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https://proceedings.mlr.press/v202/ma23c.html

Generalization: Unseen Fragments

Ordinal Encoding helps to generalize to fragments not in the training set

T ek

Model training test
Q OX Q O (MAE |) (MAE J)
GRIT 0.02 0.61

Ours 0.08 0.34

Niklas Kemper Fragment Biases for Molecular GNNs



Generalization

RingsPaths + Ordinal Encoding + Higher-level graph = improved generalization

Rare Fragments Unseen Fragments Different Distribution

. O

X

Distance from training distribution
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FragNet

A robust and highly expressive fragment-biased GNN

Paper & Code

@ Complexity
© Theory

@ Expressivity
@ Generalization

@ SOTA performance for GNNs
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