
Chain of Code:
Reasoning with a Language Model-
Augmented Code Emulator

1

Chengshu Li, Jacky Liang, Andy Zeng, Xinyun Chen, Karol Hausman,
Dorsa Sadigh, Sergey Levine, Li Fei-Fei, Fei Xia†, Brian Ichter†

chengshu@stanford.edu, xiafei@google.com, brian@physicalintelligence.company

ICML 2024 Oral

Large Language Models
General reasoning capabilities

2
Figure adopted from Bommasani, Rishi, et al. "On the opportunities and risks of foundation models." arXiv preprint arXiv:2108.07258 (2021).

LLM code-driven reasoning
Precise computation

3
Results from ChatGPT 4o, July 2024

LLM code-driven reasoning
Compositionality

4

Self-define new functions Leverage existing libraries

Results from ChatGPT 4o, July 2024

LLM code-driven reasoning
Limitations

5

Only applies to algorithmic / mathematical tasks

How many times do you detect sarcasm in the
paragraph?

“Oh, isn't it delightful how AI advances so fast? One
minute, you're deep in your Ph.D. studies, the next,
everything you know is outdated. With ICML spewing
out 3000 new papers a year, it's like trying to drink from
a firehose. What should I do…?”

num_sarcasm = 0
for sentence in paragraph:
 num_sarcasm += detect_sarcasm(sentence)
return num_sarcasm

def detect_sarcasm(sentence):

 🤷

LLM code-driven reasoning
Ideals

6

Only applies to algorithmic / mathematical tasks

num_sarcasm = 0
for sentence in paragraph:
 num_sarcasm += detect_sarcasm(sentence)
return num_sarcasm

def detect_sarcasm(sentence):

 🤷

>>> detect_sarcasm(“Oh, isn't it delightful how AI advances so fast?”)
True
>>> detect_sarcasm(“What should I do…?”)
False

How many times do you detect sarcasm in the
paragraph?

“Oh, isn't it delightful how AI advances so fast? One
minute, you're deep in your Ph.D. studies, the next,
everything you know is outdated. With ICML spewing
out 3000 new papers a year, it's like trying to drink from
a firehose. What should I do…?”

Related Work

7

Blue highlight indicates LM generation.

[1] Wei, Jason, et al. "Chain-of-thought prompting elicits reasoning in large language models." Advances in neural information processing systems 35 (2022): 24824-24837.

[2] Chen, Wenhu, et al. "Program of Thoughts Prompting: Disentangling Computation from Reasoning for Numerical Reasoning Tasks". Transactions on Machine Learning Research (2023).

[3] Nye, Maxwell, et al. "Show your work: Scratchpads for intermediate computation with language models." arXiv preprint arXiv:2112.00114 (2021).

Chain of Thought [1] Program of Thoughts [2] ScratchPad [3]

Red highlight indicates LM generated code being executed by an interpreter
Purple highlight indicates an LMulator (LM code emulator) simulating the code via a program state in green.

Key Insight
Chain of Code = Think in Code + LMulators

Think in Code

Code provides a useful syntactic structure to
reason through complex problems in a rigorous
and scalable way.

• Variables

• Control statements (e.g. if/else, for/while)

• Algorithms (e.g. search, sorting)

• Subproblem decomposition

Key Insight
Chain of Code = Think in Code + LMulators

LMulators

Language model code emulators (LMulators) can
simulate code execution when the code
interpreter fails to execute.

• Maintain and update program state directly

• Handle semantic subproblems (e.g.
commonsense, linguistic, etc)

Key Insight
Chain of Code = Think in Code + LMulators

Think in Code LMulatorsChain of Code

Motivating Example

Blue highlight indicates LM generation.

Red highlight indicates LM generated code being executed by an interpreter.

Purple highlight indicates an LMulator (LM code emulator) simulating the code via a program state in green.

11

Motivating Example

12

Blue highlight indicates LM generation.

Red highlight indicates LM generated code being executed by an interpreter.

Purple highlight indicates an LMulator (LM code emulator) simulating the code via a program state in green.

Method

Blue highlight indicates LM generation.

Red highlight indicates LM generated code being executed by an interpreter.

Purple highlight indicates an LMulator (LM code emulator) simulating the code via a program state in green.

13

Experimental Evaluation
Dataset: BIG-Bench Hard [1]

• Subset of the 23 most challenging tasks from BIG-Bench [2]

• Across diverse problem domains

14

Commonsense Logic Arithmetic Geometry Language
[1] Suzgun, Mirac, et al. "Challenging big-bench tasks and whether chain-of-thought can solve them.” Findings of the Association for Computational Linguistics (2023).

[2] Srivastava, Aarohi, et al. "Beyond the imitation game: Quantifying and extrapolating the capabilities of language models." Transactions on Machine Learning Research (2022).

Images on this slide are generated by DALL·E

How well does CoC perform across a variety of tasks?
Achieved sizable improvements over baselines and a new SOTA

Chain of Code achieves 84%, a
gain of 12% over Chain of Thought
and a new state of the art.

15

0

25

50

75

100

Human (avg.) Direct CoT CoC

12%

How well does CoC perform across a variety of tasks?
Outperforms humans for a vast majority of the tasks

Chain of Code outperforms the average human raters in 18 out of 23 tasks.

16

Direct Chain of Thought Chain of Code

Which types of problems does CoC perform best?
Compare performance on the NLP and Algorithmic subset

Chain of Code performs on par with Chain of Thought for the NLP subset, and
outperforms even the best human raters for the algorithmic subset.

17

0

25

50

75

100

All NLP Alg

Human (avg.) Human (best) Direct CoT CoC

How does each aspect of CoC affect performance?
Interweaving execution (full method) achieves the best results

18

Similar to Program of Thoughts [1] Similar to ScratchPad [2]

[1] Chen, Wenhu, et al. "Program of Thoughts Prompting: Disentangling Computation from Reasoning for Numerical Reasoning Tasks". Transactions on Machine Learning Research (2023).

[2] Nye, Maxwell, et al. "Show your work: Scratchpads for intermediate computation with language models." arXiv preprint arXiv:2112.00114 (2021).

How does CoC scale with model size?
Unlike CoT, CoC brings benefits even for smaller-sized models

19

Can CoC be applied beyond language reasoning tasks?
Robotics applications

Chain of Code is well fit for solving robotics tasks because

• They require both semantic and algorithmic reasoning.

• They involve interfacing with other APIs through code (e.g., control or
perception APIs) and with users through natural language.

20

Can CoC be applied beyond language reasoning tasks?
Robotics applications

We evaluated Chain of Code on seven different tabletop robot manipulation
tasks and observed very promising results!

• A prompt with a single example that informs the expected format

• Our method shows strong generalization capability

21

Generalize to New Objects
Sort the objects on the table into the compost bin and the recycle bin.

4X speed
22

Generalize to New Languages
Prepare ⻄红柿炒蛋 (stir-fried tomato and eggs) in the pot.

23

4X speed

Generalize to New Task Domains
My steak is too bland. Can you help?

24

4X speed

Additional Results and Analysis
Come to our poster #2809!

Qualitative Results

Cross-task PromptingRobustness

Instruction-tuned Models

Robot Experiment Details

Chain of Code:
Reasoning with a Language Model-Augmented Code Emulator

26

chain-of-code.github.io

Poster at Hall C 4-9 #2809 
Wed 11:30 a.m. - 1 p.m.

Think in Code LMulatorsChain of Code

Direct Chain of Thought Chain of Code

