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Summary
• Caveat: federated learning under arbitrary data and

system heterogeneity is not PAC-learnable (Probably
Approximately Correct) in the worst case.

• Solution: using server-side auxiliary dataset as a control
knob to revive PAC learnability of FL.

• A baseline algorithm, named as SAFARI, is proposed by
designed coordination between server and clients.

Federated Learning
Federated Learning achieves the best of both worlds: learn-
ing and preserving privacy.
• Collaboration from many clients.
• Keep training data local → data privacy protection.

Google Federated Learning Demo
https://ai.googleblog.com/2017/04/federated-learning-collaborative.html

However, federated learning introduces two challenges:
• data heterogeneity: Non-IID datasets.
• system heterogeneity: unpredictable/uncontrollable clients
→ Fact: incomplete client participation (ICP). Some
clients may never participate in the FL training.
→ Question: what if Federated Learning with ICP?
→ Solution: not PAC-learnable → adding auxiliary dataset
in server’s side → sufficient condition for PAC learnability

FL with incomplete client participation
• Federated learning with ICP is not PAC-learnable.

There exists a client participation process F , a distribution P , and a system capacity
α = m

M , such that
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• Under mild conditions, the PAC-learnable of SA-FL is revived.
(α, β)-positively-related: there exist constants α ≥ 0 and β ≥ 0 such that

|εP (h) − εQ(h)| ≤ α[εQ(h)]β, ∀h ∈ H.

With probability at least 1 − δ for any δ ∈ (0, 1), it holds that
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where dH denotes the finite VC dimension for hypotheses class H.
✓ (α, β)-positively-related of P and Q → Generalization error: ˜O
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P is target distribution, D is the shifted distribution due to ICP, (Q = P + D)

• With further conditions, FL is strictly better than centralized learning.
If R̂P (ĥ∗

Q) ≤ R̂P (h∗
Q) and εP (h∗

Q) = O(A(nT , δ)), then with probability at least 1 − δ for
any δ ∈ (0, 1), it holds that εP (ĥ∗

Q) = ˜O
(dH/nT )

1
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, A(nT , δ) = dH
nT

log(nT

dH
+ 1

nT
log(1

δ)).
• Diagram of distribution for domain adaptation and federated learning.
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SAFARI algorithm
• Update steps.

• With Prob. p: xt+1 = xt + η
 1
|St|

∑
i∈St

∆i
t

 , ∆i
t = −

∑K−1
k=0 ∇Fi(xi

t,k, ξi
t,k) ⋆ client update option

• Otherwise: xt+1 = xt − ηs∇F (xt, ξt) ⋆ server update option
• Convergence Guarantees. Under mild conditions, the convergence rate is

O(1/
√

mKR), where m is the clients’ number, K is the local update steps, and R is the
number of communication rounds.

Experiments

Non-IID Index (p)

10 5 2 1

T
e

s
t 

A
c
c
u

ra
c
y

0.5

0.6

0.7

0.8

0.9

1

Incomplete Client Participation Index: 0

Incomplete Client Participation Index: 2

Incomplete Client Participation Index: 4

Figure 1:Test Accuracy of FedAvg
on MNIST with incomplete client
participation.
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Figure 2:Test Accuracy of Fe-
dAvg on CIFAR-10 with incom-
plete client participation.

Table 1:Test accuracy improvement (%) with auxiliary dataset.

Server Non-IID Index (p)
Datasize 10 5 2 1

50 - - - 12.32
100 - - 5.24 16.48
500 - - 9.40 27.55
1000 - - 10.08 28.78

Conclusion
• Auxiliary dataset in server’s side help revive the learnability

of federated learning with incomplete client participation.
• A new algorithm, SAFARI (server-assisted federated

averaging), is proposed with the same linear speedup
convergence guarantees as classic FL with ideal client
participation.
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