
MACHINE LEARNING OPPORTUNITIES
FOR NEXT GEN PARTICLE PHYSICS

1

JAVIER DUARTE
ICML
JULY 24, 2024

BIG QUESTIONS
▸ What is our universe made of?

▸ What are the smallest building blocks of nature?

▸ How do they interact with each other?

▸ Is our universe stable?

2

THE STANDARD MODEL Image: https://www.quantamagazine.org/a-new-map-
of-the-standard-model-of-particle-physics-20201022/

▸ But there has to be more to it! SM does not answer all our questions

▸ Higgs is a centerpiece: Mechanism by which particles acquire mass

▸ How do we study these microscopic building blocks?

3

https://www.quantamagazine.org/a-new-map-of-the-standard-model-of-particle-physics-20201022/
https://www.quantamagazine.org/a-new-map-of-the-standard-model-of-particle-physics-20201022/
https://www.quantamagazine.org/a-new-map-of-the-standard-model-of-particle-physics-20201022/

▸ High energies ⟷ short
length & time scales

▸ Collisions at the highest
energy possible today let
us recreate conditions
0.1 ns after the Big Bang!

4

Image: https://particleadventure.org/history-universe

WHY HIGH ENERGY?

https://particleadventure.org/history-universe.html

THE LARGE HADRON COLLIDER

proton-proton collider @ 13 TeV center-of-mass energy
4 interaction points

40 million collisions / second
Higgs boson produced 1/10 billion collisions (every 4 minutes)

analyze ~1000 collisions / second

p p

~10 cm

5CMS

▸ Specialized components to measure different particles ▸ 100 million channels

COMPACT MUON SOLENOID 6

Collision event

Proton beams

Collision point

Jet

Outgoing particles:
tracks

electromagnetic interaction energy
nuclear interaction energy

…

LHC RAW DATA TO “PARTICLE" CLOUDS 7

Higgs boson?

OUTLINE
▸ Machine learning has changed the

way we do particle physics
▸ It is an essential and versatile tool

that we use to improve existing
approaches

▸ It enables fundamentally new
approaches

▸ Highlight a few active areas of R&D,
with public datasets and
opportunities to collaborate!

8

Machine learning
in

particle physics

Represen-
tations/

Architectures

Jet imagesEvent
images

Sequences

Trees

Graphs

Sets (point
clouds) Equivariant

models

Physics-
inspired

Classification

Param-
etrized

classifiers

TargetsJet tagging

BSM
physics

Particle
identification

Cosmology,
astro-, and
cosmic-ray

physics

Neutrino
detectors

Direct dark
matter

detectors

Learning
strategies

Un-
supervised

Weak/semi-
supervised

Hyper-
parameter

opti-
mization

Reinforce-
ment

learning Quantum
machine
learning

Feature
ranking

Attention

Regular-
ization

Optimal
transport

Fast
inference

Hardware-
aware

learning

Deployment

Firmware/
software

Knowledge
distillation

Regression

Pileup

Calibration

Recasting

Matrix
elements

Parton
distribution
functions

Lattice
guage
theory

Function
approx-
imation

Symbolic
regression

Decorrelation
methods

Adversarial
training

Quantile
regression

Generative
modeling
/ density

estimation
Diffusion
models

Mixture
models

Phase
space

generation

Gaussian
processesGenerative

adversarial
networks

Anomaly
detection

Normalizing
flows

Auto-
encoders

Simulation-
based

inference

Parameter
estimation

Unfolding

Domain
adaptation

BSM
physics

Diff-
erentiable
simulation

Uncertainty
quantification

Inter-
pretability

Estimation

Mitigation

Uncertainty-
aware

learning

Snowmass CompF03 Report, arXiv:2209.07559

https://arxiv.org/abs/2209.07559

ULTRAFAST ML
MULTIMODAL ML
PHYSICS-AWARE ML
GENERATIVE ML
OUTLOOK

LHC EVENT PROCESSING 10

1 ns 1 μs 1 s1 ms

Compute
Latency

FPGAs CPUs CPUs

High-Level
Trigger

O(1) kHz
O(1) MB/evt

40 MHz
L1 Trigger

O(100) kHz

Offline

Challenges:
Each collision produces O(103) particles
The detectors have O(108) sensors
Extreme data rates of O(100 TB/s)

ASICs

Exabyte-scale
datasets

GPUsGPUs

FPGAs

SCIENTIFIC ML CHALLENGES 11

11

WHAT MAKES THIS HARD?
▸ Reconstruct all events and reject 98% of them in O(10) μs
▸ Algorithms have to be <1 μs and process new events every 25 ns

▸ Latency necessitates all FPGA design

▸Algorithms have to fit on <1 FPGA

▸How can we satisfy these constraints?

Event 1 L1 TRIGGER ALGORITHMS

Latency ~ 10 μs

Programmable
interconnects

PASS

L1 TRIGGER ALGORITHMS

L1 TRIGGER ALGORITHMS

Event 2

Event 3

…

FAIL

FAIL

Initiation interval = 25 ns

12

▸ Codesign: intrinsic development
loop between ML design, training,
and implementation

▸ Pruning

▸ Maintain high performance while
removing redundant operations

▸ Quantization

▸ Reduce precision from 32-bit
floating point to 16-bit, 8-bit, …

▸ Parallelization

▸ Balance parallelization (how fast)
with resources needed (how costly)

CODESIGN 13

https://arxiv.org/abs/1804.06913

QUANTIZATION-AWARE TRAINING: RESULTS
▸ Small NN benchmark

correctly identifies particle
“jets” 70-80% of the time

▸ Full performance with 6 bits
instead of 14 bits

▸ Much smaller fraction of
resources

14Nat. Mach. Intell. 3, 675 (2021)

Xilinx VU9P

A
u
to
m
a
tic

h
etero

g
en

eo
u
s
q
u
a
n
tiza

tio
n
o
f
d
eep

n
eu

ra
l
n
etw

o
rk

s
fo
r
low

-la
ten

cy
in
feren

ce
o
n
th

e
ed

g
e
fo
r
p
a
rticle

d
etecto

rs

C
lau

d
ion

or
N
.
C
o
elh

o
Jr.

P
a
lo

A
lto

N
e
tw

o
r
k
s
(
C
a
lifo

r
n
ia
,
U
S
A
)

A
k
i
K
u
u
sela,

S
h
an

L
i,

an
d

H
ao

Z
h
u
an

g
G
o
o
g
le

L
L
C

(
C
a
lifo

r
n
ia
,
U
S
A
)

T
h
ea

A
arrestad

, ⇤
V
lad

im
ir

L
on

car, †
M
au

rizio
P
ierin

i,
A
d
rian

A
lan

P
ol,

an
d
S
ion

i
S
u
m
m
ers

E
u
r
o
p
e
a
n

O
r
g
a
n
iz
a
tio

n
fo
r
N
u
c
le
a
r
R
e
s
e
a
r
c
h
(
C
E
R
N
)
(
G
e
n
e
v
a
,
S
w
itz

e
r
la
n
d
)

Jen
n
ifer

N
gad

iu
b
a

C
a
lifo

r
n
ia

I
n
s
titu

te
o
f
T
e
c
h
n
o
lo
g
y
(
C
a
lte

c
h
)
(
C
a
lifo

r
n
ia
,U

S
A
)

(D
ated

:
Ju

n
e
22,

2021)

A
lth

ou
gh

th
e
q
u
est

for
m
ore

accu
rate

solu
tion

s
is

p
u
sh
in
g
d
eep

learn
in
g
research

tow
ard

s
larger

an
d
m
ore

com
p
lex

algorith
m
s,

ed
ge

d
ev
ices

d
em

an
d
e�

cien
t
in
feren

ce
an

d
th
erefore

red
u
ction

in
m
o
d
el

size,
laten

cy
an

d
en

ergy
con

su
m
p
tion

.
O
n
e
tech

n
iq
u
e
to

lim
it

m
o
d
el

size
is

q
u
an

tization
,

w
h
ich

im
p
lies

u
sin

g
few

er
b
its

to
rep

resen
t
w
eigh

ts
an

d
b
iases.

S
u
ch

an
ap

p
roach

u
su
ally

resu
lts

in
a
d
eclin

e
in

p
erform

an
ce.

H
ere,

w
e
in
tro

d
u
ce

a
m
eth

o
d
for

d
esign

in
g
op

tim
ally

h
eterogen

eou
sly

q
u
an

tized
version

s
of

d
eep

n
eu

ral
n
etw

ork
m
o
d
els

for
m
in
im

u
m
-en

ergy,
h
igh

-accu
racy,

n
an

osecon
d

in
feren

ce
an

d
fu
lly

au
tom

ated
d
ep

loy
m
en
t
on

ch
ip
.
W

ith
a
p
er-layer,

p
er-p

aram
eter

ty
p
e
au

tom
atic

q
u
an

tization
p
ro
ced

u
re,

sam
p
lin

g
from

a
w
id
e
ran

ge
of

q
u
an

tizers,
m
o
d
el

en
ergy

con
su
m
p
tion

an
d

size
are

m
in
im

ized
w
h
ile

h
igh

accu
racy

is
m
ain

tain
ed

.
T
h
is
is
cru

cial
for

th
e
event

selection
p
ro
ced

u
re

in
p
roton

–p
roton

collision
s
at

th
e
C
E
R
N

L
arge

H
ad

ron
C
ollid

er,
w
h
ere

resou
rces

are
strictly

lim
ited

an
d
a
laten

cy
of

O
(1)

µ
s
is

req
u
ired

.
N
an

osecon
d
in
feren

ce
an

d
a
resou

rce
con

su
m
p
tion

red
u
ced

b
y

a
factor

of
50

w
h
en

im
p
lem

en
ted

on
fi
eld

-p
rogram

m
ab

le
gate

array
h
ard

w
are

are
ach

ieved
.

F
IG

.
I.
A
n
u
ltra-com

p
ressed

d
eep

n
eu

ral
n
etw

ork
for

p
article

id
en
tifi

cation
on

a
X
ilin

x
F
P
G
A
.

⇤
E
-
m
a
il:

t
h
e
a
.a
a
r
r
e
s
t
a
d
@
c
e
r
n
.c
h

†
A
ls
o
a
t
I
n
s
t
it
u
t
e
o
f
P
h
y
s
ic
s
B
e
lg
r
a
d
e
,
S
e
r
b
ia
.

arXiv:2006.10159v3 [physics.ins-det] 21 Jun 2021

https://arxiv.org/abs/2006.10159

PRUNING + QUANTIZATION-AWARE TRAINING
▸ Quantization-aware pruning (QAP): iterative

pruning further reduces hardware
complexity of a quantized model

▸ After QAP, reduction in bit operations
compared to the 32-bit, unpruned model

50 ×

15

Bit operations (BOPs) definition:
arXiv:1804.10969

Front. AI 4, 94 (2021)

https://arxiv.org/abs/1804.10969
https://arxiv.org/abs/2102.11289

▸ Register transfer-level (RTL)
code is “synthesized” into gates

FPGAs

EFFICIENCY

Control
Unit
(CU)

Registers

Arithmetic
Logic Unit

(ALU) + + + +

+ +
+

Silicon alternatives

FLEXIBILITY

CPUs GPUs
ASICs

!"#$%&'()*!"+$%&'(
$,-./*-."012*%344*05561!
7./8*%0!/*90112
SDFS069A − D2932, MARCH 1987 − REVISED OCTOBER 1993

2−2 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251−1443

logic diagram (positive logic)

11

12

B4

A4

15

14

B3

A3

2

3

B2

A2

6

5

B1

A1

C0 7

Σ1

Σ2

Σ3

Σ4

C4
9

10

13

1

4

Pin numbers shown are for the D, J, and N packages.

Adder

a

b

y

PROGRAMMING HARDWARE (FPGAS) 16

module adder( 
 input wire [4:0] a,  
 input wire [4:0] b,  
 output wire [4:0] y  
);  
 assign y = a + b;  
 
endmodule

Synthesis

▸ Say you want to program an “adder” function on an FPGA

For more: https://youtu.be/iHg0mmIg0UU

https://youtu.be/iHg0mmIg0UU

QConv2DBatchnorm

kernel〈3×3×3×32〉
bias〈32〉
gamma〈32〉
beta〈32〉
iteration = 306151
moving_mean〈32〉
moving_variance〈32〉

QActivation

quantized_relu

QConv2DBatchnorm

kernel〈3×3×32×32〉
bias〈32〉
gamma〈32〉
beta〈32〉
iteration = 306151
moving_mean〈32〉
moving_variance〈32〉

QActivation

quantized_relu

QConv2DBatchnorm

kernel〈3×3×32×32〉
bias〈32〉
gamma〈32〉
beta〈32〉
iteration = 306151
moving_mean〈32〉
moving_variance〈32〉

QActivation

quantized_relu

Flatten

QDense

kernel〈2048×10〉
bias〈10〉

Activation

Softmax

input_1

softmax

PROGRAMMING HARDWARE (FPGAS) 17

High-Level Synthesis

▸ What if instead we specify an AI model (e.g., in QONNX)

https://github.com/fastmachinelearning/qonnx

▸ hls4ml for scientists or ML experts to translate ML algorithms into RTL firmware

Compressed
model

Keras
TensorFlow

PyTorch
…

Tune configuration
latency, throughput,

power, resource usage

HLS
project

HLS
conversion

FPGA flow

ASIC flow

Model

Machine learning model
optimization, compression

hls 4 ml

hls4ml

HLS 4 ML
Compressed

model

Keras
TensorFlow

PyTorch
…

Tune configuration
latency, throughput,

power, resource usage

HLS
project

HLS
conversion

FPGA flow

ASIC flow

Model

Machine learning model
optimization, compression

hls 4 ml

hls4ml

HLS 4 ML

DESIGN EXPLORATION WITH HLS4ML JINST 13, P07027 (2018) 18

Compressed
model

Keras
TensorFlow

PyTorch
…

Tune configuration
latency, throughput,

power, resource usage

HLS
project

HLS
conversion

FPGA flow

ASIC flow

Model

Machine learning model
optimization, compression

hls 4 ml

hls4ml

HLS 4 ML

https://fastmachinelearning.org/hls4ml/
https://arxiv.org/abs/1804.06913

6

AUTOENCODERS FOR ANOMALY DETECT ION

Using Autoencoders for anomaly detection
Encode input in smaller dimensional space
Train on typical LHC background
Anomalous data will have higher loss
Calculating the loss requires to store the input until the
output is computed

3.2 Baseline performance

The models described in the previous section are trained with floating point precision on an NVIDIA RTX2080 GPU.
We refer to these models as baseline (B). Figures 4 and 5 shows the distribution of the anomaly-detection scores
considered in this paper (IO AD for the AE models, Rz and DKL(ADs for the VAE models). For completeness, results
obtained from the IO AD score of the VAE models are also shown.

Figure 4: Distribution of four anomaly detection scores (IO AD for AE and VAE models, Rzand DKLADs for the VAE
models) for the DNN model, for the SM cocktail and the four new physics benchmark models.

The model performance is assessed using the four new physics benchmark models. The receiver operating characteristic
(ROC) curves in Fig. 6 show the dependence of the true positive rate (TPR) as a function of the false positive rate (FPR),
computing by changing the lower threshold applied on the different anomaly scores. We further quantify the anomaly
detection performance quoting the area under the ROC curve (AUC) and the TPR corresponding to to a working point
of SM false positive rate "SM = 10

�5 (see Table 1), which corresponds to the average of ⇡ 1000 SM events accepted
every month [1].

7

Encoder De
co

de
r

Latent
space

7

VARIAT IONAL AUTOENCODERS FOR ANOMALY DETECT ION

Sample

Encoder De
co

de
rμ

σ

z

Using Variational Autoencoders for anomaly detection
The latent space is sampled from Encoder output
Can be used to generate new samples
Inference can be done only on the latent space
No need to store input and deployment of Encoder is enough
(e.g. saves resources and latency in comparison to AE)

APPLICATION: ANOMALY DETECTION AT 40 MHZ
▸ Challenge: if new physics has an unexpected signature that doesn’t align with

existing triggers, precious signal events will be discarded

▸ Can we use unsupervised algorithms to detect non-SM-like anomalies?

▸ Autoencoders (AEs): compress input to a smaller dimensional latent space then
decompress and calculate difference

▸ Variational autoencoders (VAEs): model the latent space as a probability
distribution; possible to detect anomalies purely with latent space variables

Nat. Mach. Intell. 4, 154 (2022)
19Data challenge: mpp-hep.github.io/ADC2021

5

term [57] usually adopted for VAEs

DKL(~µ,~�) = �
1

2

X

i

�
log(�2

i)� �2
i � µ2

i + 1
�
, (2)

and � is a hyperparameter defined in the range [0, 1] [58].

Both models are trained for 100 epochs with a batch size
of 1024, using early stopping if there is no improvement in
the loss observed after ten epochs. All models are trained
with floating point precision on an NVIDIA RTX2080
GPU. We refer to these as the baseline floating-point
(BF) models.

IV. ANOMALY DETECTION SCORES

An autoencoder is optimized to retain the minimal set
of information needed to reconstruct a accurate estimate
of the input. During inference, an autoencoder might have
problems generalizing to features it was not exposed to
during training. Selecting events where the autoencoder
output is far from the given input is often seen as an
e↵ective AD algorithm. For this purpose, one could use
a metric that measures the distance between the input
and the output. The simplest solution is to use the same
metric that defines the training loss function. In our case,
we use the MSE between the input and the output. We
refer to this strategy as input-output (IO) AD.

In the case of a VAE deployed in the L1T, one cannot
simply exploit an IO AD strategy since this would require
sampling random numbers on the FPGA. The trigger
decision would not be deterministic, something usually
tolerated only for service triggers, and not for triggers
serving physics studies. Moreover, one would have to store
random numbers on the FPGA, which would consume
resources and increase the latency. To deal with this
problem, we consider an alternative strategy by defining
an AD score based on the ~µ and ~� values returned by
the encoder (see Eq. (1)). In particular, we consider two
options: the KL divergence term entering the VAE loss
(see Eq. (2)) and the z-score of the origin ~0 in the latent
space with respect to a Gaussian distribution centered at
~µ with standard deviation ~� [10]:

Rz =
X

i

µ2
i

�2
i

. (3)

These two AD scores have several benefits we take advan-
tage of: Gaussian sampling is avoided; we save significant
resources and latency by not evaluating the decoder; and
we do not need to bu↵er the input data for computation
of the MSE. During the model optimization, we tune
� so that we obtain (on the benchmark signal models)
comparable performance for the DKL AD score and the
IO AD score of the VAE.

V. PERFORMANCE AT FLOATING-POINT
PRECISION

The model performance is assessed using the four new
physics benchmark models. The anomaly-detection scores
considered in this paper are IO AD for the AE models,
Rz and DKL ADs for the VAE models. For completeness,
results obtained from the IO AD score of the VAE models
are also shown. The receiver operating characteristic
(ROC) curves in Figures II and III show the true positive
rate (TPR) as a function of the false positive rate (FPR),
computed by changing the lower threshold applied on the
di↵erent anomaly scores. We further quantify the AD
performance quoting the area under the ROC curve (AUC)
and the TPR corresponding to a FPR working point of
10�5 (see Table I), which on this dataset corresponds to
the reduction of the background rate to approximately
1000 events per month.

From the ROC curves, we conclude that DKL can be
used as an anomaly metric for both the DNN and CNN
VAE. This has the potential to significantly reduce the
inference latency and on-chip resource consumption as
only half of the network (the encoder) needs to be evalu-
ated and that there no longer is a need to bu↵er the input
in order to compute an MSE loss. The Rz metric per-
forms worse and is therefore not included in the following
studies.

VI. MODEL COMPRESSION

We adopt di↵erent strategies for model compression.
First of all, we compress the BF model by pruning the
dense and convolutional layers by 50% of their connec-
tions, following the same procedure as Ref. [19]. Pruning
is enforced using the polynomial decay implemented in
TensorFlow pruning API, a Keras-based [59] inter-
face consisting of a simple drop-in replacement of Keras
layers. A sparsity of 50% is targeted, meaning only 50%
of the weights are retained in the pruned layers and the
remaining ones are set to zero. The pruning is set to start
from the fifth epoch of the training to ensure the model
is closer to a stable minimum before removing weights
deemed unimportant. By pruning the BF model layers
to a target sparsity of 50%, the number of floating-point
operations required when evaluating the model, can be
significantly reduced. We refer to the resulting model
as the baseline pruned (BP) model. For the VAE, only
the encoder is pruned, since only that will be deployed
on FPGA. The BP models are taken as a reference to
evaluate the resource saving of the following compression
strategies, including QAT and PTQ.
Furthermore, we perform a QAT of each model de-

scribed in Section III, implementing them in the QKeras
library [23]. The bit precision is scanned between 2 and
16 with a 2-bit step. When quantizing a model, we also
impose a pruning of the dense (convolutional) layers by
50%, as done for the DNN (CNN) BP models. The results

Key observation: Can build an anomaly
score from the latent space of VAE directly!
No need to run decoder!

https://doi.org/10.1038/s42256-022-00441-3
https://mpp-hep.github.io/ADC2021

ANOMALY DETECTION @ LEVEL-1 TRIGGER CMS-DP-2023-079
CMS-DP-2024-XXX 20

▸ AXOL1TL anomaly detection algorithm
for the trigger based on a
variational autoencoder

▸ Selects unique events relative to existing
triggers

▸ Preference for high multiplicity events

Selected by AXOL1TL,
but not other L1

https://cds.cern.ch/record/2876546?ln=en
https://twiki.cern.ch/twiki/bin/view/CMS/AXOL1TL2024

▸ Though hls4ml developed for particle physics,
has seen widespread use for
▸ Self-driving cars [arXiv:2205.07690]
▸ Fusion devices [arXiv:2312.00128]
▸ Steering particle beams [arXiv:2011.07371,

arXiv:2311.05716]
▸ Data compression at the edge [arXiv:2105.01683]

FAST ML APPLICATIONS BEYOND HEP 21

Figure 1: An downsampled image from the Cityscapes dataset (left) and the corresponding semantic segmentation target
(right), in which the pixels belong to one of the classes {background (blue), road (teal), car (yellow), person (red)}.

3 Baseline model

The architecture we use is inspired by a fully convolutional residual network called Efficient Neural Network (ENet) [16].
This network was designed for low latency and minimal resource usage. It is designed as a sequence of blocks,
summarized in Table 1. The initial block, shown in the left figure in Fig. 2, encodes the input into a 32⇥120⇥76 tensor,
which is then processed by a set of sequential blocks of bottlenecks. The first three blocks constitute the downsampling
encoder, where each block consists of a series of layers as summarized in the left diagram in Fig. 3. The final two
blocks provide an upsampling decoder, as illustrated in the right diagram in Fig. 3. The final block is shown in the right
diagram of Fig. 2.

Layer Type Output resolution
Initial downsample f0 ⇥ 120⇥ 76

3⇥ bottleneck 1 downsample f1 ⇥ 60⇥ 38

3⇥ bottleneck 2 downsample f2 ⇥ 30⇥ 19

3⇥ bottleneck 3 f3 ⇥ 30⇥ 19

3⇥ bottleneck 4 upsample f4 ⇥ 60⇥ 38

3⇥ bottleneck 5 upsample f5 ⇥ 120⇥ 76

Final upsample 4⇥ 240⇥ 152

Table 1: Model architecture parametrized by the number of filters in the bottlenecks fi, with i = 1, ..., 5.

Some differences from the original architecture in [16] is that we do not use asymmetric, dilated, or strided convolutions.
To further reduce the resource usage, we use three bottlenecks per block instead of five, and we merge convolutional
layers with batch normalization layers by rescaling convolutional filter weights with batch normalization parameters
(implemented through a QConv2DBatchnorm layer [19]). When we use quantization-aware training, this allows us to
directly quantize the merged weights during the forward pass, rather than quantizing the batch normalization parameters
and the convolutional filters separately. This merging of layers saves resources on the FPGA, since only the merged
weights are used. Performing the merging already during training, ensures that the weights used during training and
during inference are quantized the same way. The baseline ENet model is obtained fixing the six f hyperparameters
of Table 1 to (32, 64, 64, 64, 128, 48). This choice results in an architecture with 1.1 · 106 parameters, yielding a
mIoU=63.2% and an accuracy of 91.5%.

4 Model compression

We consider two compression techniques for the model at hand: filter-wise homogeneous pruning, obtained by reducing
the number of filters on all the convolutional layers; and quantization, i.e., reducing the number of bits allocated for the
numerical representation of the network components and the output of each layer computation.

In addition, we use the AutoQKeras library [12], distributed with QKeras, to optimize the numerical representation of
each component at training time as a hyperparameter. This is done using a mathematical model of the inference power
consumption as a constraint in the loss function.

3

3

CNN

Overhead view
of tokamak

coaxial

Present Implementation (this paper)

Future Implementation

control coils (x40) Control coil
amplifiers (x40)

Breakout
board DACs (x5)

control request (x5)

Host PC

RS422

FIG. 2: Data flow in the camera-and-FPGA-based active feedback control system. The portion of the implementation detailed
in this paper is within the solid box. Control signals will be applied to plasmas in upcoming run campaigns.

ber’s FPGA and subsequently write the computed control re-
quest over the frame grabber’s RS422 I/O pins. In placing the
computation and output request generation on the acquisition
card, we avoid the overhead associated with multiple PCIe
hops, latency associated with standard processors, and the cost
associated with developing a highly-custom solution. Cur-
rently, CustomLogic only supports the use of a single frame
grabber card and one of the two available CXP-6 connection
banks on the Coaxlink Octo card. This restricts us to using
only one of the two available cameras in this real-time system
and limits the maximum achievable frame rate compared to
the passive diagnostic setup.

Figure 2 shows the data flow of the camera-based control
system on HBT-EP. We use a single camera (Camera 1) which
captures a cross-sectional view of the plasma. The captured
frames are streamed in real time to the frame grabber card,
which processes the optical data, passes the images through
the neural network model and generates new control requests.
Currently, we measure these output control requests and other
auxiliary signals as digital pulses on an oscilloscope to verify
the timing and latency of the system. The digital control re-
quests can then be sent to digital-to-analog converters (DACs)
which connect to amplifiers for generating the target mode
shape on the radial field saddle coils22. Closed-loop control
experiments have not yet been conducted, though the design
is ready for upcoming run campaigns.

B. Design considerations

The real-time control system is subject to two major de-
sign constraints: the system latency and the available FPGA
resources.

Firstly, MHD modes on HBT-EP typically rotate at frequen-
cies around 10 kHz which corresponds to a period of 100 µs.
In order to suppress these modes, the control system needs
to achieve a total input-to-out latency several times smaller
than a rotation period and a sampling interval (i.e., the initi-
ation interval, the frequency at which the system can process
a new input) at a similar level, if not faster. Currently, the
fastest implementation of the GPU-based control system on
HBT-EP has achieved latencies around 16 µs and sampling

intervals between 4–6 µs26,27. This system, however, is sig-
nificantly less computationally challenging compared to our
camera setup as it takes in one or two orders of magnitude less
input data with 40–80 magnetic sensor channels compared to
1,024–8,192 pixels (depending on the actual image resolu-
tions) and uses a single matrix multiplication as opposed to a
neural network to perform mode tracking. These distinctions
make achieving similar levels of latency and sampling inter-
vals considerably more challenging for a high-speed camera
and FPGA-based control system and have been our primary
considerations during our design and optimization phases.

Secondly, the total resource capacity of our frame grab-
ber card’s FPGA is relatively small compared to modern
FPGA-based data center and accelerator cards used in high-
throughput applications. This FPGA consists of just over
200,000 look-up tables (LUTs) and 1,700 digital signal pro-
cessing (DSP) blocks, the two elements primarily used for
matrix-vector multiplication arithmetic and logic, and 540
block random-access memories (BRAMs). Approximately
25% of the LUTs, 10% of the DSPs, and 35% of the BRAM
resources are dedicated to implementing the CoaXPress pro-
tocol and other proprietary frame grabber firmware. In addi-
tion, the manufacturer’s reference design also defines a clock
constraint of 250 MHz which becomes difficult to meet with
larger designs relative to the chip area. These constraints fur-
ther restrict our model size and potential for latency optimiza-
tion.

Given these two major constraints, our goal in terms of
the hardware co-design is to find a solution that achieves a
suitable trade-off between the model’s prediction performance
and its latency while fitting within the resource constraints of
the frame grabber FPGA. The model development, optimiza-
tion and synthesis process using hls4ml is described in the
following section.

III. NEURAL NETWORK MODEL CO-DESIGN

A. Training dataset

The CNN models are developed using a dataset collected
from a previous run campaign16. This dataset consists of cam-

ML-based Real-Time Control at the Edge: An
Approach Using hls4ml

R. Shi #, S. Ogrenci #, J.M. Arnold, J.R. Berlioz, P. Hanlet, K.J. Hazelwood,
M.A. Ibrahim, H. Liu #, V.P. Nagaslaev, A. Narayanan 1, D.J. Nicklaus, J. Mitrevski, G. Pradhan,

A.L. Saewert, B.A. Schupbach, K. Seiya, M. Thieme #, R.M. Thurman-Keup, N.V. Tran
Northwestern University, Evanston, IL USA

Fermi National Accelerator Laboratory, Batavia, IL USA
1 also at Northern Illinois University, DeKalb, IL USA

Abstract—This study focuses on implementing a real-time

control system for a particle accelerator facility that performs

high energy physics experiments. A critical operating parameter

in this facility is beam loss, which is the fraction of particles

deviating from the accelerated proton beam into a cascade of

secondary particles. Accelerators employ a large number of

sensors to monitor beam loss. The data from these sensors

is monitored by human operators who predict the relative

contribution of different sub-systems to the beam loss. Using

this information, they engage control interventions. In this paper,

we present a controller to track this phenomenon in real-time

using edge-Machine Learning (ML) and support control with low

latency and high accuracy. We implemented this system on an

Intel Arria 10 SoC. Optimizations at the algorithm, high-level

synthesis, and interface levels to improve latency and resource

usage are presented. Our design implements a neural network,

which can predict the main source of beam loss (between two

possible causes) at speeds up to 575 frames per second (fps)

(average latency of 1.74ms). The practical deployed system is

required to operate at 320 fps, with a 3ms latency requirement,

which has been met by our design successfully.

I. INTRODUCTION

Real-time edge applications in experimental sciences are
growing at an exponential rate, from high energy physics to
astronomy, from material science to medical sciences. The
main driver behind this trend is the advances in instrumen-
tation across these domains. Scientific discovery using the
data generated from the latest generation of instrumentation
can only be supported by intelligent and adaptable computing
systems. Real-time edge-ML computing is emerging as a
promising solution to support experimental instrumentation
with large scale sensing and data processing needs.

High energy physics is one of the science domains at the
forefront of developments in edge-ML hardware. A large and
vibrant community of physicists, engineers, and computer
scientists created the FastML initiative [1]. A significant
body of work on both ASIC and FPGA-based edge-ML is
already formed, addressing many problems ranging from pre-
processing detector data in particle accelerators [2], [3], [4]
to other high energy physics experiments [5]. The domain of
edge-ML hardware is growing in many other fields [5], [6].

Majority of the early work focused on deploying low latency
edge-ML hardware for data processing. Real-time control is

a relatively new direction. Yet, there is a strong motivation
to integrate low latency and small form factor systems into
experiment control, where real-time response can improve both
the reliability and overall quality of the ongoing experiment. In
this paper, we address a control problem where an integrated
FPGA SoC-based system is demonstrated to meet both the
latency and quality requirements of a mission critical control
task in a particle accelerator facility.

Fig. 1: Illustration of the accelerator tunnel that utilizes
the beam loss de-blending system. There are 260 monitors
distributed alongside the tunnel. They monitor the beam loss
in real time.

Existing work on ML applications target different platforms
such as CPUs, GPUs, ASICs, and FPGAs. Each has its own
advantages. CPUs need the least development effort and they
are suitable for low-cost applications with relaxed latency
requirements. GPUs provide better balance between the de-
velopment effort, scalability, and cost. However, they are only
efficient when large batches of data is available for parallel
processing. ASICs generally outperform other solutions in
latency but are very expensive due to their long development
cycle and fabrication costs with low flexibility for changing
models post-deployment. FPGAs are suitable for low latency
designs in µs to ms range and offer significant flexibility with
their reconfigurable properties, as well as generally the best
energy efficiency per inference.

The control application we are targeting is required to meet

ar
X

iv
:2

31
1.

05
71

6v
1

 [c
s.A

R
]

9
N

ov
 2

02
3

6

Fig. 5. Encoder RTL Schematics, the basic structure of the convolution and
dense layers can be seen at the schematic level on the left and zoomed in
images are provided for the output and MAC portions on the right

Digital Implementation in a Radiation Environment

The digital design consists of three major functional blocks:
(i) A converter which is a classical module designed with
HLS; (ii) An encoder, which uses hls4ml; (iii) and an
I2C peripheral which uses a SystemVerilog RTL code. The
converter is used for normalizing the 48 (22 b) inputs to 48
(8 b). An encoder is used for data classification and further
compression to 16 (9 b) outputs. To have a flexible and
reconfigurable algorithm, all the parameters (13,728 b) can be
setup via the I2C interface on-chip. The programming of the
I2C peripheral takes less than 50µs corresponding to a total
of 1,716 I2C clock cycles, utilizing an 8 b input bus. Once
the weights are setup, the algorithm adds a total latency of 2
bunch crossing (BX) cycles to the trigger path—one cycle to
convert and another cycle to encode resulting in total inference
latency of 50 ns and a new input accepted every 25 ns.

Integrated Converter, Encoder and I
2
C peripheral: An

integrated approach to the development is needed in order
to avoid routing congestion of connecting the weights to the
appropriate layers across the encoder. The floor-plan of the
digital implementation occupying 2.4 mm⇥1.5 mm is shown
in Fig 6. The converter logic is located near the data input at
the top of the design, majority of the area is occupied by the
encoder, interleaved with the distributed I2C network.

Design Considerations for Total Ionizing Dose Perfor-

mance: Apart from all requirements considered above, our
design must guarantee on-detector circuit reliability in the
high radiation environment of HL-LHC [21, 22]. The cir-
cuitry should withstand total ionizing dose of approximately
200 Mrad over the lifetime of the experiment along with
high SEE rates [23–25]. Since previous measurement results
have indicated that the average time delay of all cells from
the 65 nm LP process library increases after 200 Mrad ir-

Fig. 6. Design floor-plan with an integrated converter, encoder and I2C
peripheral occupying a total area of 3.6 mm2. The converter is highlighted in
grey, the I2C peripheral in white and the rest of the area is occupied by the
encoder.

radiation [26], minimum size cells are avoided. Normal Vt
standard cell technology library is used. The implementation
uses concurrent multi-mode multi-corner static timing analysis
for ensuring performance. The foundry worst case libraries are
a good stand-in for modelling radiation damage. All weights
are stored in registers and no SRAMs or DICE cells [27] are
used.

Fig. 7. Triple modular redundancy scheme used for the encoder and converter.
Each register is triplicated and a majority voter determines the output.

Fig. 8. Full module triplication is used for the I2C peripheral. All combina-
tional logic within the module is triplicated, which is used by three majority
voters to form the inputs to triplicated registers. Feedback from the output of
the registers enables autocorrection and protects against accumulating errors
due to single event upsets over time.

https://fastmachinelearning.org/hls4ml/
https://arxiv.org/abs/2205.07690
https://arxiv.org/abs/2312.00128
https://arxiv.org/abs/2011.07371
https://arxiv.org/abs/2311.05716
https://arxiv.org/abs/2105.01683

NSF INSTITUTE: A3D3 22

▸ Tightly coupled organization of domain scientists, computer scientists, and
engineers that unite three core components which are essential to achieve real-
time AI to transform science: AI techniques, Computing Hardware, Scientific
Applications

▸ Check the a3d3.ai for events and more information!
PHY-2117997

https://a3d3.ai/
https://www.nsf.gov/awardsearch/showAward?AWD_ID=2117997

ULTRAFAST ML
MULTIMODAL ML
PHYSICS-AWARE ML
GENERATIVE ML
OUTLOOK

MULTILAYERED DETECTORS, E.G. CMS

Current and future
multilayered
detectors…

Require complex
pattern recognition

24

25PARTICLE-FLOW RECONSTRUCTION
▸ Particles interact with detector, leaving energy deposits and tracks
▸ Combination of multimodal information from complementary detectors to

produce particle-level interpretation of the event based on complex, hand-
tuned heuristics

photon

µ

neutral 
hadron

µ

HCAL 
clusters

ECAL
clusters

Detector

Particle Flow

arXiv:1706.04965

photon

µ

neutral 
hadron

µ

HCAL 
clusters

ECAL
clusters

Detector

Particle Flow

https://arxiv.org/abs/1706.04965

PARTICLE-FLOW AS A MACHINE-LEARNING TASK 26

▸ Can we instead formulate PF as an ML task (naturally “tunable” through re-
training and portable to new hardware)?

▸ Learn a “set-to-set” function , where and f: X → Y {tracks, energy clusters} ∈ X
{particles} ∈ Y

{tracks, energy clusters} ∈ X {particles} ∈ Y

f

OPEN DATASET FOR ML RECONSTRUCTION STUDIES

Tracks and calorimeter clusters

Track
ECAL or HCAL cluster

Particles

Hit-based  
ML particle-flow
reconstruction

Cluster-based  

ML partic
le-flow  

reconstru
ction

Calorimeter
clustering

Charged particle

tracking

Raw ECAL hit
Raw HCAL hit
Raw tracker hit
Raw Muon chamber hit

Raw detector hits

Raw tracker hit
Raw ECAL hit
Raw HCAL hit
Raw Muon chamber hit

Track
Raw ECAL hit
Raw HCAL hit
Raw Muon chamber hit

Tracks and calorimeter hits

Charged hadron
Photon
Neutral hadron
Electron
Muon

~300-500 / event

~100-300 / event

~10k / event
27

doi:10.5281/zenodo.8260741
https://www.coe-raise.eu/od-pfr

▸ 2.5 TB, 6 million events total

~100k / event

https://doi.org/10.5281/zenodo.8260741
https://www.coe-raise.eu/od-pfr

GRAPH NEURAL NETWORK APPROACH 28

Event as input set
X = {xi}

Output set Y′ = {y′ i}

Graph
building

Event as graph
X = {xi}, A = Aij

ℱ(X |w) = A

Message
passing

Transformed inputs
H = {hi}

𝒢(X, A |w) = H

Elementwise
decoding

𝒟(xi, hi |w) = y′ i

Trainable neural networks:

 Track, Calorimeter cluster, Encoded element
 Target (predicted) particle, No target (predicted) particle

hi ∈ ℝNhidden

ℱ, 𝒢, 𝒟

Target set Y = {yi}

Elementwise loss
classification & regression

L(yi, y′ i)

▸ Convert input set to a
locally, sparsely
connected graph

▸ Message-passing NN to
transform features

▸ Decode transformed
inputs elementwise

▸ (During training)
Compare to target set,
optimize weights

Eur. Phys. J. C 81, 381 (2021)

https://arxiv.org/abs/2101.08578

LOCALITY-SENSITIVE HASHING

Locality-sensitive hashing reduces graph-building complexity

T. Neylon, https://unboxresearch.com/
articles/lsh_post1.html 29

5 random hash functions, where
darkest blue = 5 hash collisions,
lightest blue = 3 hash collisions

https://unboxresearch.com/articles/lsh_post1.html
https://unboxresearch.com/articles/lsh_post1.html
https://unboxresearch.com/articles/lsh_post1.html

HYPERPARAMETER OPTIMIZATION ON HPC

JURECA Supercomputer at Jülich Supercomputing Centre

30

▸ Hyperparameter
optimization
requires large
compute

Voyager Supercomputer at
San Diego Supercomputer Center

Comm. Phys. 7, 124 (2024)

https://doi.org/10.1038/s42005-024-01599-5

MLPF

baseline

IMPACT OF TUNING 31

0 25 50 75 100 125 1500.00

0.05

0.10

0.15

0.20

0.25

0.30

0 25 50 75 100 125 1500.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

GNN
GNN-HPO
TF
TF-HPO

GNN
GNN-HPO
TF
TF-HPO

0 25 50 75 100 125 1500.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

GNN
GNN-HPO
TF
TF-HPO

To
ta

l v
al

id
at

io
n

lo
ss

 (a
.u

.)

Training epochs Training epochs Training epochs

Je
t r

es
po

ns
e

IQ
R

M
ET

 re
sp

on
se

 IQ
Ra b c

tuning

tuning

▸ Tuning improves particle-level performance dramatically
▸ Though we optimize a particle-level loss, also achieve better energy resolution

Comm. Phys. 7, 124 (2024)

https://doi.org/10.1038/s42005-024-01599-5

25 50 75 100 125 150 175 200
particles per event

0

1

2

3

4

5

Ti
m

e
pe

r e
ve

nt
 [s

]

baseline PF

linear scaling

0 2000 4000 6000 8000 10000
Input elements per event

0.00

0.02

0.04

0.06

0.08

0.10

Ti
m

e
pe

r e
ve

nt
 [s

]

B=1
B=2
B=4
B=8
B=16

SCALING
▸ Baseline algorithm runs only on CPU, scales ~quadratically, runs in seconds
▸ ML model scales linearly, runs in milliseconds on a consumer 8 GB GPU

32Comm. Phys. 7, 124 (2024)

https://doi.org/10.1038/s42005-024-01599-5

33VARIETY OF APPROACHES
4

�+

�0 � �� �0 � �� �0 � ��

�+
�+

Fig. 2: A 3-D display the energy deposits of a p+ and p0 ! gg , in the LG calorimeters (left), of the p0 only (middle) and
of the same p0 only shower as captured by a HG calorimeter layer of 32⇥ 32 granularity where the deposits from the two
photons are resolved (right). The p+ track and its extrapolation to the calorimeters are also displayed.

Finally, a track is formed by smearing the p+ momen-
tum by a resolution s(p), given by s(p)

p
= 5⇥10�4⇥ p [GeV],

and keeping the original p+ momentum direction unchanged.
The chosen momentum resolution of p+ emulates the track
resolution of the ATLAS tracking system and track recon-
struction algorithms [20]. The smearing of the track direc-
tion is neglected as it is expected to have sub-dominant ef-
fects to the results presented in this document.

Table 2: Transverse segmentations for both the HG and LG
layouts (the total transverse dimension is 125⇥125 cm

2) of
the ECAL and HCAL individual layers and the correspond-
ing simulated electronic noise per cell for the HG detector
are shown. The noise for the LG detector is appropriately
scaled up by a conversion factor (cf) while transiting from
HG to LG detector.

Detector Layer Res. (HG) Res. (LG) Noise [MeV] (cf)
ECAL1 64⇥64 32⇥32 13 (4)
ECAL2 32⇥32 8⇥8 34 (16)
ECAL3 32⇥32 8⇥8 17 (16)
HCAL1 16⇥16 8⇥8 14 (4)
HCAL2 16⇥16 8⇥8 8 (4)
HCAL3 8⇥8 8⇥8 14 (1)

4 Deep neural network models

The target of the NN models is to regress the per-cell neu-
tral energy fraction using deep learning methods to yield an
accurate image of the neutral energy deposits. Two main ap-
proaches were investigated depending on the granularity of
the target detector: a standard scenario where the granularity
of the inputs and output images is unchanged, and a super-
resolution scenario where the target detector features higher
granularity layers compared to the input detector. For both,
various state of the art NN architectures were implemented
and compared.

For the standard scenario, the loss function is designed to
regress the neutral energy fraction of each cell in the event,
with a larger weight assigned to more energetic cells, to re-
duce the effect of noise and simultaneously enrich the per-
formance of high energetic cells originating from the pions.
The same loss function is used to train the different models
and defined on an event-basis as follows:

Levent =
1

Etot

Â
c

Ec(f
c

t
� f

c

d
)2

where Etot is the total energy collected by the six calorimeter
layers, Ec is the total energy of a given cell indexed by c, f

c

t

and f
c

d
represent the target and predicted energy fractions.

Eur. Phys. J. C 81, 107 (2021)

Noname manuscript No.
(will be inserted by the editor)

Towards a Computer Vision Particle Flow ?

Francesco Armando Di Belloa,3, Sanmay Gangulyb,1, Eilam Gross1, Marumi Kado3,4,
Michael Pitt2, Lorenzo Santi 3, Jonathan Shlomi1

1Weizmann Institute of Science, Rehovot 76100, Israel
2CERN, CH 1211, Geneva 23, Switzerland
3Università di Roma Sapienza, Piazza Aldo Moro, 2, 00185 Roma, Italy e INFN, Italy
4Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405, Orsay, France

the date of receipt and acceptance should be inserted later

Abstract In High Energy Physics experiments Particle Flow
(PFlow) algorithms are designed to provide an optimal re-
construction of the nature and kinematic properties of the
particles produced within the detector acceptance during col-
lisions. At the heart of PFlow algorithms is the ability to
distinguish the calorimeter energy deposits of neutral par-
ticles from those of charged particles, using the comple-
mentary measurements of charged particle tracking devices,
to provide a superior measurement of the particle content
and kinematics. In this paper, a computer vision approach
to this fundamental aspect of PFlow algorithms, based on
calorimeter images, is proposed. A comparative study of the
state of the art deep learning techniques is performed. A
significantly improved reconstruction of the neutral particle
calorimeter energy deposits is obtained in a context of large
overlaps with the deposits from charged particles. Calorime-
ter images with augmented finer granularity are also ob-
tained using super-resolution techniques.

1 Introduction

General-purpose high energy collider experiments are de-
signed to measure both charged particle trajectories and
calorimeter clustered energy deposits. The charged particle
tracks in a magnetic field and the topology of energy de-
posits in calorimeters provide most of the information nec-
essary to reconstruct, identify and measure the energy of the
particles that constitute the event, which for the most part are
charged and neutral hadrons, photons, electrons, muons, and
neutrinos. The latter escaping detection and are measured by
the imbalance in momentum in electron-positron collision
events or transverse momentum in hadron collision events.
?Contact addresses
ae-mail: Francesco.Armando.DiBello@roma1.infn.it
be-mail: sanmay.ganguly@weizmann.ac.il

Other particles created during a high energy collision, hav-
ing too short lifetimes to be directly detected in the experi-
ment, need to be reconstructed from their decay products.

The goal of Particle Flow (PFlow) algorithms is to make
optimal use of these complementary measurements to re-
construct the particle content and its energy response for
the entire event. A precise reconstruction of the entire event
is essential for the measurement of those particles, such as
neutrinos, escaping detection, as well as the reconstruction
of jets of particles originating from the fragmentation and
hadronization of hard scattering partons. One challenging
aspect of PFlow algorithms is to disentangle particles of dif-
ferent nature when they are close to one another and possibly
overlap. The reconstruction performance in general and the
performance of PFlow algorithms, in particular, will criti-
cally depend on the detector design specifications, as for in-
stance, the size and magnetic field intensity of the tracking
volume, the granularity of the calorimeters, and their energy
resolution. The first PFlow algorithm was designed by the
CELLO collaboration at PETRA [1], where an optimal re-
construction of the event "Energy Flow " was measured by
subtracting the expected energy loss from charged particles
in the calorimeter, to estimate the "neutral energy" and its
spatial distribution. This algorithm, developed in e

+
e
� col-

lisions, was aimed at a precise measurement of the hadronic
activity for the measurement of aS. Since then, PFlow algo-
rithms relying on the parametrization of the expected charged
energy deposits in calorimeters have been further developed
at e

+
e
� [2] and pp [3, 4] collider experiments. The suc-

cess of these algorithms has been such that future e
+

e
� col-

lider experiment projects are taking PFlow algorithms into
account in the design of the projected detectors [5–9].

In this paper, we explore the capabilities of computer vi-
sion algorithms, along with graph and deep set Neural Net-
works (NN), to provide solutions to this complex question
in a context of two overlapping particles, a charged and a

ar
X

iv
:2

00
3.

08
86

3v
3

 [p
hy

sic
s.d

at
a-

an
]

3
Fe

b
20

21

Eur. Phys. J. C 83, 596 (2023)

2

Fig. 1: A depiction of a single-jet event from the test dataset in both the COCOA calorimeter layers (left) and as an input
graph in h �f space (right). On the left, the actual geometry of the calorimeter cells is shown, while on the right, they are
represented by spheres with sizes proportional to their energy divided by noise threshold (up to a maximum value). Lines
represent tracks and their projected locations in h and f in each calorimeter layer. Connections between calorimeter cells
are the edges formed during graph construction (inter-layer edges and track-cell edges are not shown). The markers at the
bottom right indicate the h �f coordinates of the truth particles.

and variable cardinality of the input set. Graph neural net-
works (GNN) have therefore emerged as an architecture of
choice in recent particle reconstruction models, as they have
in other particle physics tasks [3].

In a collision event, the true set of particles T upstream
to the detector sensitive volume gives rise to a set of detector-
level hits D. So the input set comprising the detector record
is sampled from p(D|T). Then global particle-flow recon-
struction is the set-to-set task where the input set of detector-
level hits D is transformed into a typically much smaller out-
put set R comprising NR predicted particles. The predictions
of a successful reconstruction algorithm R(D) will correctly
model the cardinality NT of T and the properties (class, mo-
mentum, and angular coordinates) of its members. Several
ML approaches have been proposed in the literature to pre-
dict R(D).

In [4] the object condensation (OC) approach was pro-
posed, which clusters nodes or pixels in latent space to form
candidate objects, in our case, particles. Recently, OC has
been used to predict clusters in CMS data [5, 6], where the
authors focused on reconstruction efficiency and energy re-

gression of showers from single particles embedded in pileup.
We implement OC with modifications as explained in sec-
tion 3.4 for the purpose of establishing a performance base-
line for an ML-based particle reconstruction.

The reduction in size from input to output set is han-
dled in the MLPF [7] approach by assigning input nodes to
particle classes in the output set or else to a dedicated “ne-
glect class”. This approach was also recently successfully
tested using CMS data [8, 9], where the model predictions
were trained to match the output candidates from a standard
particle-flow algorithm. For predicting true particles, MLPF
is limited to cases where one or more clusters can be as-
sociated to each particle. It would therefore be required to
define a fractional target definition in order to efficiently re-
construct particles that do not contribute a dominant fraction
of energy in any single cluster (for example, a significant
percentage of low-pT photons).

In this paper, we contribute to the exploration of GNN-
based particle reconstruction by proposing two new algo-
rithms and comparing their performance alongside a modi-
fied OC implementation as a baseline and a parameterized

Noname manuscript No.

(will be inserted by the editor)

Reconstructing particles in jets using set transformer and hypergraph

prediction networks

Francesco Armando Di Bello
1,a

, Etienne Dreyer
2,b

, Sanmay Ganguly
3
, Eilam Gross

2
,

Lukas Heinrich
4
, Anna Ivina

2
, Marumi Kado

5,6
, Nilotpal Kakati

2,c
, Lorenzo Santi

6
,

Jonathan Shlomi
2
, Matteo Tusoni

6

1 INFN and University of Genova
2Weizmann Institute of Science
3ICEPP, University of Tokyo
4Technical University of Munich
5Max Planck Institute for Physics
6INFN and Sapienza University of Rome
Received: date / Accepted: date

Abstract The task of reconstructing particles from low-level
detector response data to predict the set of final state parti-
cles in collision events represents a set-to-set prediction task
requiring the use of multiple features and their correlations
in the input data. We deploy three separate set-to-set neural
network architectures to reconstruct particles in events con-
taining a single jet in a fully-simulated calorimeter. Perfor-
mance is evaluated in terms of particle reconstruction qual-
ity, properties regression, and jet-level metrics. The results
demonstrate that such a high-dimensional end-to-end ap-
proach succeeds in surpassing basic parametric approaches
in disentangling individual neutral particles inside of jets
and optimizing the use of complementary detector infor-
mation. In particular, the performance comparison favors a
novel architecture based on learning hypergraph structure,
HGPflow, which benefits from a physically-interpretable ap-
proach to particle reconstruction.

1 Introduction

Testing theories in high energy physics rely on the ability
to reconstruct high energy particle collision events using in-
formation recorded by particle detectors. General-purpose
detectors enable this primarily through two sources of infor-
mation: charged particle trajectories (tracks) measured in an
inner tracking region and energy deposited by particle show-
ers in a surrounding array of calorimeter cells.

Currently, experiments at the CERN Large Hadron Col-
lider (LHC) employ parameterized “particle-flow” algorithms,
which combine track and calorimeter information in a com-
plementary way while avoiding double counting.
ae-mail: francescoarmando.dibello@unige.it
be-mail: etienne.dreyer@weizmann.ac.il
ce-mail: nilotpal.kakati@weizmann.ac.il

The performance of particle-flow algorithms is limited
to an extent by detector design specifications, such as the
precision and size of the inner tracking system, the magnetic
field strength in the tracking volume, the granularity of the
calorimeters, and their energy resolution. However, a num-
ber of intrinsic factors complicate the task of particle recon-
struction in the LHC environment: the busy and often colli-
mated signatures resulting from proton collisions, the pres-
ence of multiple simultaneous scattering events (pileup), and
finally, the extensive and irregular array of sensitive ele-
ments required for granularity and angular coverage.

There are two main approaches to particle-flow algo-
rithms. The approach used by the ATLAS collaboration [1]
involves subtracting the expected shower profile for each
track in an event from the calorimeter deposits to infer the
energy contributed by nearby neutral particles. The CMS
collaboration, on the other hand, employs a global particle-
flow algorithm where final state particles of different types
are reconstructed simultaneously [2]. Global particle-flow
algorithms allow a high physics analysis flexibility and elim-
inate the need for overlap-removal algorithms while better
exploiting the strengths of each sub-detector system.

In this paper, we approach the global particle-flow paradigm
using machine learning (ML) models operating on graph
data. As in other applications to particle physics, ML brings
the advantage of replacing parameterized cuts (for example,
in energy subtraction schemes) with fully differentiable de-
cision boundaries in the full space of relevant features in
data. The expressiveness of ML models also opens new pos-
sibilities, such as reconstructing individual neutral particles
inside of jets. Similarly, the choice to represent input data as
graphs is motivated by several advantages: graphs more nat-
urally capture the spatial correlations encoded in irregular
detector geometry and also are well-suited for the sparsity

ar
X

iv
:2

21
2.

01
32

8v
3

 [h
ep

-e
x]

 2
 A

ug
 2

02
3

https://arxiv.org/abs/2003.08863
https://arxiv.org/abs/2212.01328

ULTRAFAST ML
MULTIMODAL ML
PHYSICS-AWARE ML
GENERATIVE ML
OUTLOOK

TRACKING (CONNECTING THE DOTS)
▸ Particle tracking is a classic

pattern recognition task
▸ From a set of hits sampled

sparsely in 3D, reconstruct the
helical trajectories of particles

▸ Traditional algorithms scale
worse than in the number of
hits

▸ How about GNNs and
transformers?

N2

N

35

TRACKML DATASET 36kaggle.com/c/trackml-particle-identification

▸ More realistic public TrackML dataset used for 2018 Kaggle competition has
O(100k) hits and O(10k) tracks per event

▸ attention or graph building is too slow!O(N2)

https://www.kaggle.com/c/trackml-particle-identification

LSH-BASED EFFICIENT POINT TRANSFORMER (HEPT)

▸ HEPT: an efficient point transformer based on OR & AND LSH
▸ No graph construction; only regular computations
▸ Assign hash codes using OR & AND E2LSH; physics-aware local

inductive bias: nearby hits in detector share 1D hash codes

▸ Sort items based on hash codes; block-diagonal attention

Key idea: HEPT projects point clouds
to 1D sequences using physics-

aware local inductive bias

arXiv:2402.12535 37

https://arxiv.org/abs/2402.12535

▸ Tracking as a representation learning task: learn close embeddings for hits
originating from the same particle

▸ HEPT achieves SOTA performance and achieves
over 100x speedup on GPUs compared
to GNNs on Tracking-60k (60k hits/event)

EMPIRICAL RESULTS arXiv:2402.12535 38

https://arxiv.org/abs/2402.12535

HEAR MORE TOMORROW!
▸ Oral Session: Thursday 10:45, Lehar 1-4
▸ Poster Session: Thursday 11:30, Hall C 4-9 #407
▸ Paper: arXiv:2402.12535

▸ GitHub: https://github.com/Graph-COM/HEPT

Siqi Miao1 Mia Liu3 Javier Duarte4 Pan Li1Zhiyuan Lu2

39arXiv:2402.12535

https://arxiv.org/abs/2402.1253
https://github.com/Graph-COM/HEPT
https://arxiv.org/abs/2402.12535

HOW DO WE ENFORCE SYMMETRY? 40

▸ Lorentz symmetry: physics is the
same no matter which reference
frame we consider

▸ Lorentz-invariant networks:
▸ Boosting all particles into a

new reference frame should
give the same result

▸ Lorentz-equivariant networks:
▸ Boosting all particles into a

new reference frame should
give an output that
transforms the same way

Boosted heavy objects

Search for new heavy particles

! Decays into high-pT Top/W/Z/Higgs

! Boosted decays

! Reconstruction of hadronic decays in a single jet

Example: top quark

resolved boosted

Dennis Schwarz ICHEP 2020 2

40

80

120

160

ℎ𝐿−1

ℎ0

𝑥𝐿−1

Lorentz Group Equivariant Block (LGEB)

Minkowski Norm &
Inner Product

Sum PoolingMLP

⊗

𝜙𝑥

𝜙𝑒

𝜙ℎ

ℎ𝑙 𝑥𝑙

ℎ𝑙+1 𝑥𝑙+1

⊕ ⊕

ℎ𝐿

Scalars 4-momentum

LorentzNet

× 𝑳 − 𝟏

Embedding

LGEB

𝑥0
LGEB

Average Pooling

Decoding

Softmax

probability

Dropout

Figure 1. (left): The structure of the Lorentz Group Equivariant Block (LGEB). (right): The
network architecture of the LorentzNet.

Lorentz Group Equivariant Block. We use hl = (hl1, h
l
2, · · · , hlN) to denote the node

embedding scalars, and xl = (xl1, x
l
2, · · · , xlN) to denote the coordinate embedding vectors in

the l-th LGEB layer. When l = 0, x0i equals the input of the 4-momenta vi and h0i equals the
embedded input of the scalar variables si. LGEB aims to learn deeper embeddings hl+1, xl+1

via current hl, xl. Motivated by Equation (3.1), the message passing of LorentzNet is written
as follows. We use mij to denote the edge message between particle i and j, and it encodes
the scalar information of the particle i and j, i.e.,

ml
ij = �e

⇣
hli, h

l
j , (kxli � xljk2), (hxli, xlji)

⌘
, (3.2)

where �e(·) is a neural network and (·) = sgn(·) log(| · | + 1) in Equation (3.2) is to
normalize large numbers from broad distributions for ease of optimization. Except for the
embedding of the scalar features hli and hlj , according to Proposition 3.1, the input of the
neural network contains the Minkowski dot product hxi, xji. The kxli�xljk2 is also included
because the interaction between particles relies on this term and we include it as a prior
feature for ease of learning.

According to Equation (3.1), we design Minkowski dot product attention as

xl+1
i = xli + c

X

j2[N]

�x(m
l
ij) · xlj (3.3)

where �x(·) 2 R is a scalar function modeled by neural networks. To ensure the equiv-
ariance, we can not arbitrarily apply the normalization trick to control the scale of xl+1

i .
Therefore, the hyperparameter c is introduced to control the scale of xl+1

i to avoid the scale
exploding. This step captures the interactions of the i-th particle with other particles via
the ensemble of the 4-momenta of all particles. Unlike most of the symmetry-preserving
neural networks such as LGN and EGNN [56] (for E(n) equivariance)1 which only apply

1
The relation with EGNN is discussed in the Appendix B.

– 6 –

40

80

120

160

ℎ𝐿−1

ℎ0

𝑥𝐿−1

Lorentz Group Equivariant Block (LGEB)

Minkowski Norm &
Inner Product

Sum PoolingMLP

⊗

𝜙𝑥

𝜙𝑒

𝜙ℎ

ℎ𝑙 𝑥𝑙

ℎ𝑙+1 𝑥𝑙+1

⊕ ⊕

ℎ𝐿

Scalars 4-momentum

LorentzNet

× 𝑳 − 𝟏

Embedding

LGEB

𝑥0
LGEB

Average Pooling

Decoding

Softmax

probability

Dropout

Figure 1. (left): The structure of the Lorentz Group Equivariant Block (LGEB). (right): The
network architecture of the LorentzNet.

Lorentz Group Equivariant Block. We use hl = (hl1, h
l
2, · · · , hlN) to denote the node

embedding scalars, and xl = (xl1, x
l
2, · · · , xlN) to denote the coordinate embedding vectors in

the l-th LGEB layer. When l = 0, x0i equals the input of the 4-momenta vi and h0i equals the
embedded input of the scalar variables si. LGEB aims to learn deeper embeddings hl+1, xl+1

via current hl, xl. Motivated by Equation (3.1), the message passing of LorentzNet is written
as follows. We use mij to denote the edge message between particle i and j, and it encodes
the scalar information of the particle i and j, i.e.,

ml
ij = �e

⇣
hli, h

l
j , (kxli � xljk2), (hxli, xlji)

⌘
, (3.2)

where �e(·) is a neural network and (·) = sgn(·) log(| · | + 1) in Equation (3.2) is to
normalize large numbers from broad distributions for ease of optimization. Except for the
embedding of the scalar features hli and hlj , according to Proposition 3.1, the input of the
neural network contains the Minkowski dot product hxi, xji. The kxli�xljk2 is also included
because the interaction between particles relies on this term and we include it as a prior
feature for ease of learning.

According to Equation (3.1), we design Minkowski dot product attention as

xl+1
i = xli + c

X

j2[N]

�x(m
l
ij) · xlj (3.3)

where �x(·) 2 R is a scalar function modeled by neural networks. To ensure the equiv-
ariance, we can not arbitrarily apply the normalization trick to control the scale of xl+1

i .
Therefore, the hyperparameter c is introduced to control the scale of xl+1

i to avoid the scale
exploding. This step captures the interactions of the i-th particle with other particles via
the ensemble of the 4-momenta of all particles. Unlike most of the symmetry-preserving
neural networks such as LGN and EGNN [56] (for E(n) equivariance)1 which only apply

1
The relation with EGNN is discussed in the Appendix B.

– 6 –

Boosted heavy objects

Search for new heavy particles

! Decays into high-pT Top/W/Z/Higgs

! Boosted decays

! Reconstruction of hadronic decays in a single jet

Example: top quark

resolved boosted

Dennis Schwarz ICHEP 2020 2

Lorentz
boost

arXiv:2201.08187

arXiv:2201.08187

If we perform Lorentz boost along the x-spatial axis, then the Lorentz transformation
between these two frames is the matrix

Q =

0

BBB@

� ��� 0 0

��� � 0 0

0 0 1 0

0 0 0 1

1

CCCA
.

Lorentz group equivariance. Let Tg : V ! V and Sg : U ! U be group actions of
g 2 G on sets V and U , respectively. We say a function � : V ! U is equivariant to group
G if

�(Tg(v)) = Sg(�(v)) (2.1)

holds for all v 2 V and g 2 G. In this work, we only consider the case that the type of
the output is a scalar or vector. Therefore, we explore the following equivariance on a set
of particles V 2 RN⇥4. Let Q be the Lorentz transformation, the Lorentz equivariance of
�(·) means:

Q�(v) =�(Qv), for �(v) 2 R4; (2.2)
�(v) =�(Qv), for �(v) 2 R. (2.3)

Note that when the output is a scalar, the group equivariance equals the group invariance.

2.3 Graph Neural Network for Particle Cloud

A jet can be denoted as a graph when we regard the constituent particles as nodes. For the
particle with index i, we use its 4-momentum vector vi = (Ei, pix, p

i
y, p

i
z) as the coordinate

of node i in Minkowski space. We use si = (si1, s
i
2, · · · , si↵) to denote the scalars, such as

mass, charge and particle identity information, etc, which compose the node attributes.
Now fi = vi � si contains essential features for tagging. The graph can be denoted as
G = (V,E) where V is the set of nodes and E is the set of edges. The edges characterize
the message passing between two particles, hence the interaction of two individual sets of
particle-wise features. If there is no such interaction, there will be no edge between the two
corresponding nodes. Here, we regard the graph as a fully connected graph as we do not
assume that we have any prior on the interactions among these particles.

Graph neural networks are natural to learn representations for graph-structured data
[62]. Given a graph G = (V,E), assuming L steps in total, the l-th message passing step
on the graph can be described as [63]:

ml+1
i =

X

j2N (i)

Ml(h
l
i, h

l
j , eij); (2.4)

hl+1
i = Ul(h

l
i,m

l+1
i); (2.5)

where h0i = fi is the input feature, eij is the edge feature, N (i) is the set of neighbors of
the node i, and Ml, Ul are neural networks. For a classification problem, the output ŷ can
be obtained by applying the softmax function after decoding {hLi ; i 2 [N]}.

– 4 –

https://arxiv.org/abs/2201.08187
https://arxiv.org/abs/2201.08187

ℎ𝐿−1

ℎ0

𝑥𝐿−1

Lorentz Group Equivariant Block (LGEB)

Minkowski Norm &
Inner Product

Sum PoolingMLP

⊗

𝜙𝑥

𝜙𝑒

𝜙ℎ

ℎ𝑙 𝑥𝑙

ℎ𝑙+1 𝑥𝑙+1

⊕ ⊕

ℎ𝐿

Scalars 4-momentum

LorentzNet

× 𝑳 − 𝟏

Embedding

LGEB

𝑥0
LGEB

Average Pooling

Decoding

Softmax

probability

Dropout

Figure 1. (left): The structure of the Lorentz Group Equivariant Block (LGEB). (right): The
network architecture of the LorentzNet.

Lorentz Group Equivariant Block. We use hl = (hl1, h
l
2, · · · , hlN) to denote the node

embedding scalars, and xl = (xl1, x
l
2, · · · , xlN) to denote the coordinate embedding vectors in

the l-th LGEB layer. When l = 0, x0i equals the input of the 4-momenta vi and h0i equals the
embedded input of the scalar variables si. LGEB aims to learn deeper embeddings hl+1, xl+1

via current hl, xl. Motivated by Equation (3.1), the message passing of LorentzNet is written
as follows. We use mij to denote the edge message between particle i and j, and it encodes
the scalar information of the particle i and j, i.e.,

ml
ij = �e

⇣
hli, h

l
j , (kxli � xljk2), (hxli, xlji)

⌘
, (3.2)

where �e(·) is a neural network and (·) = sgn(·) log(| · | + 1) in Equation (3.2) is to
normalize large numbers from broad distributions for ease of optimization. Except for the
embedding of the scalar features hli and hlj , according to Proposition 3.1, the input of the
neural network contains the Minkowski dot product hxi, xji. The kxli�xljk2 is also included
because the interaction between particles relies on this term and we include it as a prior
feature for ease of learning.

According to Equation (3.1), we design Minkowski dot product attention as

xl+1
i = xli + c

X

j2[N]

�x(m
l
ij) · xlj (3.3)

where �x(·) 2 R is a scalar function modeled by neural networks. To ensure the equiv-
ariance, we can not arbitrarily apply the normalization trick to control the scale of xl+1

i .
Therefore, the hyperparameter c is introduced to control the scale of xl+1

i to avoid the scale
exploding. This step captures the interactions of the i-th particle with other particles via
the ensemble of the 4-momenta of all particles. Unlike most of the symmetry-preserving
neural networks such as LGN and EGNN [56] (for E(n) equivariance)1 which only apply

1
The relation with EGNN is discussed in the Appendix B.

– 6 –

MANY APPROACHES 41

▸ Lorentz Group Network [arXiv:2006.04780]:
nonlinearity is tensor product followed by
Clebsch-Gordan (CG) decomposition

▸ LorentzNet [arXiv:2201.08187] uses structured message passing based on
Lorentz scalars and vectors

▸ PELICAN [arXiv:2307.16506] builds invariants
and covariants based on pairs of inputs

THE PELICAN ARCHITECTURE

▸ PELICAN is a network architecture that…

▸ is permutation- and Lorentz-equivariant,

▸ acts on collections of four-momenta, (c.f. point clouds)

▸ and can predict Lorentz-invariants, e.g. tagging…

▸ or Lorentz-covariants, e.g. regression!pμ

3

iterations

THE PELICAN ARCHITECTURE: LORENTZ EQUIVARIANCE

▸ Lorentz equivariance is achieved by constructing functions
of inner products of the four-momenta.

Invariants

Covariants

Ik (p1 , …, pN) = Ik ({dij}i,j) , dij ≡ pμ
i pj, μ

Fμ = ∑
k

Ik (p1 , …, pN) pμ
k

Lorentz-invariant

Lorentz-covariant

4

(output for PELICAN’s “scalar form”)

(output for PELICAN’s “vector form”)

Lorentz Group Equivariant Neural Network for Particle Physics

In
...

Out

Figure 1. An elementary flow chart of LGN with Lorentz-invariant outputs. Win is the linear input layer. It is followed by iterated CG layers
LCG defined in (25) alternated with perceptrons MLPinv acting only on Lorentz invariants. The output layer projects onto invariants using
Pinv, sums over particles for permutation invariance, and applies a linear layer. Win, MLPinv and Pinv act on each particle separately, but
have the same values of parameters across all particles.

When a particle decay event produces hundreds of observed
particles, generating all relevant Lorentz invariants (and even
more so equivariants) up to a fixed polynomial degree quickly
becomes an intimidating task that begs for a procedural solu-
tion. This is exactly the goal of our architecture.

5. Clebsch-Gordan product
The main nonlinearity in our equivariant architecture is the
tensor product followed by a decomposition into irreducibles.
This decomposition is known as the Clebsch-Gordan (CG)
decomposition, and its coefficients in a certain canonical basis
are called CG coefficients. We introduce the notation for the
coefficients and a final formula for the CG coefficients of the
Lorentz group here, but leave the details and derivations to
the Supplementary Material. A reference for this material as
regards SU(2) and the Lorentz group is [21].

Rotation group Let Rl1 and Rl2 be irreps of SU(2) of half-
integer weights (spins) l1 and l2, respectively. Their product
Rl1 ⌦Rl2 decomposes via an isomorphism into a direct sumL

l R̃l, where R̃l are also copies of irreps of SU(2) and l

ranges from |l1�l2| to l1+l2 with unit step. This isomorphism
is called the Clebsch-Gordan map

B :
l1+l2M

l=|l1�l2|

R̃l ! Rl1 ⌦Rl2 . (14)

Since SU(2) is compact, its finite-dimensional representations
can be assumed to be unitary with respect to the Euclidean
norms on Cn (the resulting representation matrices are called
Wigner D-matrices), therefore we can always choose B so that
it is orthogonal.

For an arbitrary representation of SU(2) we define the canoni-

cal basis in it by el,m where l ranges over the weights of the
irreps contained in the representation, and for each l, the index
m ranges over �l,�l + 1, . . . , l. Therefore the product space
Rl1 ⌦Rl2 has a basis induced from the respective canonical
bases of the factors,

el1,m1 ⌦ el2,m2 , m1 = �l1, . . . , l1, m2 = �l2, . . . , l2,

(15)
and the space

L
l R̃l naturally has the canonical basis

ẽl,m, l = |l1 � l2|, . . . , l1 + l2, m = �l, . . . , l. (16)

The CG coefficients B
l1,m1;l2,m2

l,m are defined as the compo-
nents of the CG map in these two bases:

B : ẽl,m 7!

X

m1,m2

B
l1,m1;l2,m2

l,m el1,m1 ⌦ el2,m2 . (17)

The summation is taken over all free indices occurring twice
(and we will often omit mentioning them) over the ranges
|m1| 6 l1, |m2| 6 l2, however Bl1,m1;l2,m2

l,m vanishes when-
ever m1 +m2 6= m (see e.g. [41, Ch. 4] for more on represen-
tation theory and CG coefficients of some classical groups).

Lorentz group The proper orthochronous Lorentz group
SO(1, 3)+ is isomorphic to the projective special complex
linear group PSL(2,C). The Clebsch-Gordan map in this
case is the isomorphism

H :
M

k,n

T̃
(k,n)

! T
(k1,n1) ⌦ T

(k2,n2), (18)

where the sum on the left is over

k = |k1 � k2|, |k1 � k2|+ 2, . . . , k1 + k2, (19)
n = |n1 � n2|, |n1 � n2|+ 2, . . . , n1 + n2. (20)

When an irrep T
(k,n) of SL(2,C) is viewed as a representation

of its subgroup SU(2), it decomposes into the direct sum of
irreps (with unit multiplicities) T (k,n) ⇠=

L(k+n)/2
l=|k�n|/2 Rl. This

way, T (k,n) admits a canonical basis

e
(k,n)
l,m , l = |k � n|/2, . . . , (k + n)/2; m = �l, . . . ,m.

(21)
In this basis, we define the CG coefficients for the Lorentz
group by

H : ẽ
(k,n)
l,m 7!

X
H

(k1,n1),l1,m1;(k2,n2),l2,m2

(k,n),l,m e
(k1,n1)
l1,m1

⌦e
(k2,n2)
l2,m2

.

(22)

The CG coefficients can be expressed in terms of the well
known coefficients for SU(2) introduced above:

H
(k1,n1),l1,m1;(k2,n2),l2,m2

(k,n),l,m =
X

m0
1,m

0
2

B

k
2 ,m

0
1+m0

2;
n
2 ,m�m0

1�m0
2

l,m B

k1
2 ,m0

1;
k2
2 ,m0

2
k
2 ,m

0
1+m0

2
B

n1
2 ,m1�m0

1;
n2
2 ,m2�m0

2
n
2 ,m�m0

1�m0
2

⇥

⇥B

k1
2 ,m0

1;
n1
2 ,m1�m0

1

l1,m1
B

k2
2 ,m0

2;
n2
2 ,m2�m0

2

l2,m2
, (23)

https://arxiv.org/abs/2006.04780
https://arxiv.org/abs/2201.08187
https://arxiv.org/abs/2307.16506

PERFORMANCE AND SCALING 42

▸ PELICAN traces Pareto optimal boundary of performance and model
complexity

arXiv:2307.16506
Figure 3: Performance of various ML architectures represented by the background rejection as a function of
the signal efficiency.

BIP(XGBoost)

BIP(MLP)

EFP LGN TopoDNN

PFN

LorentzNet

ParT

ParticleNet
ResNeXt

DisCo-FFS

PELICANIRC

100 1000 104 105 106 1070

500

1000

1500

2000

2500

Number of model parameters

Ba
ck

gr
ou

nd
re
je
ct
io
n
at
ϵ S
=
0.
3

PELICAN

Figure 4: Comparison of top-tagger background rejection performance for fixed signal efficiency (n(= 0.3)
as a function of the number of parameters in each model considered, combining data from table 1 and table 2.

of these three variants to other published architectures. We also compare PELICAN models of three different
widths and find that even a very small PELICAN model achieves state-of-the-art tagging performance.

5.1 Quark-gluon jet dataset

We use the public dataset introduced in ref. [24]. It consists of an equal number of jets produced either by
gluons or light quarks (D, 3, B). The non-neutrino products are clustered using F���J�� [55] with anti-:)
jet [56] radius ' = 0.4, and the jets are restricted to ?) 2 [500, 550] GeV and |H | < 2. There is no detector
simulation, and the particle ID is stored. We select the first 200k events for validation, the following 200k for
final testing, and the remaining 1.6M for training. The samples can be downloaded from [57].

– 13 –

https://arxiv.org/abs/2307.16506

LEARNING TO DISCOVER SYMMETRIES? arXiv:2302.00236 43

Generative Adversarial Symmetry Discovery

Figure 2. Structure of the proposed LieGAN model. The transformation generator learns a continuous Lie group acting on the data that
preserves the original joint distribution. For example, this figure shows a task of predicting future 3-body movement based on past
observations, where the generator could learn rotation symmetry.

optimize the following minimax objective:

min
�

max
D

L(�, D)

=Ex,y⇠pd,g⇠µ

h
logD(x, y) + log(1�D(�(x, y)))

i

=Ex,y⇠pd [logD(x, y)] + Ex,y⇠pg [log(1�D(x, y))](2)

where D is a standard GAN discriminator that outputs a
real value as the probability that (x, y) is a real sample,
pd is the density of the original data distribution and pg is
the generator-transformed distribution given according to
change-of-variable formula by

pg(x, y) =

Z

g
µ(g)pd(g

�1
x, g

�1
y)/(|⇢X (g)||⇢Y(g)|)dg

(3)

Under the ideal discriminator, the generator in the original
GAN formulation minimizes the JS divergence between
two distributions (Nowozin et al., 2016). In our setting, we
prove that our generator can achieve zero divergences with
the correct symmetry group under certain circumstances.
Theorem 1. The generator can achieve zero JS divergence

by learning a maximal subgroup G
⇤ ⇢ GL(n) with re-

spect to which y = f(x) is equivariant if pd(x) is dis-

tributed proportionally to the volume of inverse group ele-

ment transformation along each orbit of G
⇤
-action on X ,

that is, pd(gx0) / |⇢X (g
�1

)||⇢Y(g�1
)|.

The hypothesis of Theorem 1 is equivalent to saying that
pd(x) is uniform along each group action orbit when the
transformation is volume preserving, as in the case of rota-
tion. However, as this is often not satisfied in practice, there
is no guarantee that the generator can achieve zero diver-
gences with nonidentical transformations. Nevertheless, as
formalized in the following theorem, the generator can learn
a nontrivial symmetry under some weak assumptions.
Theorem 2. Under assumptions 1, 2 and 3, the GAN loss

function under the ideal discriminator L(�, D
⇤
) is lower

with a generator that learns a subspace of the true Lie

algebra g⇤ than a generator with an orthogonal Lie algebra

to g⇤. That is, if g1 \ g⇤ 6= {0}, g2 \ g⇤ = {0}, then

L(g1, D⇤
) < L(g2, D⇤

) = 0.

Theorem 2 ensures that a partially correct symmetry results
in lower loss function value than an incorrect symmetry. In
other words, optimizing (2) leads to symmetry discovery.

The related assumptions and proofs for Theorem 1 and 2
are deferred to Appendix A.1.

4.2. Parameterizing Distributions Over Lie Group

We use the theory of Lie groups to model continuous sets
of transformations. To parameterize a distribution on a Lie
group with c dimensions and k representation dimensions,
our model learns Lie algebra generators {Li 2 Rk⇥k}ci=1

and samples the coefficients wi 2 R for their linear combi-
nation from either a fixed or a learnable distribution. The
Lie algebra element is then mapped to a Lie group element
using the matrix exponential (Falorsi et al., 2019).

w ⇠ ��(w), g = exp

hX

i

wiLi

i
(4)

The coefficient distribution �� can be either fixed or updated,
depending on our focus of discovery. If we have little infor-
mation on the group, then by learning the Li and leaving
the coefficient distribution fixed, our model can still express
distributions over many different groups. On the other hand,
we may want to find a subgroup or a subset of some known
group. For example, the symmetry may be some discrete
subgroup of SO(2) for some tasks. In this case, we fix L

as the rotation generator and learn �� , revealing peaks at
certain values. Learning �� is also useful when the task is
not equivariant to the full group, but displays invariance for
a subset of transformations, for example, the case of MNIST
image classification, where the rotation by ⇡ will obscure
the boundary between “6” and “9” (Benton et al., 2020).
Generally, allowing for � to be learnable gives the model
more freedom to discover various symmetries.

4

Generative Adversarial Symmetry Discovery

(a) LieGAN (b) Ground truth

(c) Original data (d) Transformed data

Figure 4. Result on the synthetic discrete rotation invariant task.
(a-b): LieGAN discovers the correct rotation group and the correct
scale of transformations. (c-d): Data distribution on z = 1 plane.
The color indicates the output function value. LieGAN leaves the
overall data distribution unchanged while non-trivially rotating
individual data points in the highlighted sector.

angles. When acting on data, LieGAN leaves the overall
data distribution unchanged while non-trivially transforms
individual data points in the highlighted sector. LieGAN
discovers not only the rotation group but also the correct
scale of transformations, which demonstrates its ability to
learn a subgroup of an unknown group, which is yet another
generalization from discovering the continuous symmetry
of an entire Lie group.

Additional results on synthetic tasks can be found in Ap-
pendix C.2 and C.3. For this rotation invariant task, we
change the parameter k to show that LieGAN can capture
different discrete rotation groups. We also compare LieGAN
with the baseline, SymmetryGAN, to demonstrate its ad-
vantage. Besides, other synthetic functions are designed to
show that LieGAN can deal with various symmetry groups
and can even work well on complex values.

6.4. Top tagging

We are also interested in finding symmetry groups with more
complicated structures. For example, Lorentz group is an
important set of transformations in many physics problems.
It is a 6-dimensional Lie group with 4 connected compo-
nents. While our method cannot be readily generalized
to the problem of finding discrete generators, we can test
whether it is capable of extracting the identity component of
the Lorentz group, SO(1, 3)

+. We use Top Quark Tagging
Reference Dataset (Kasieczka et al., 2019) for discovering

Lorentz symmetry, where the task is to classify between top
quark jets and lighter quarks. There are 2M observations in
total, each consisting the four-momentum of up to 200 parti-
cle jets. The classification task is Lorentz invariant, because
a rotated or boosted input momentum should belong to the
same category.

In this task, we set the generator to have up to 7 channels,
which is slightly more than enough to capture the structure
of 6-dimensional SO(1, 3)

+. We use cosine similarity as
between-channel regularization function lchreg.

Figure 5. LieGAN discovers an approximate SO(1, 3)+ symmetry
in top tagging dataset, where channels 0, 1, 3 indicate boost along
x-, y- and z-axis and channels 2, 5, 6 correspond to SO(3) rota-
tion. Bottom-right: Computed invariant metric of the discovered
symmetry by solving Equation (10).

The discovery results are shown in Figure 5. The four
dimensions in the matrix correspond to the 4-momentum
(E/c, px, py, pz). LieGAN is successful in recovering the
SO(1, 3)

+ group. Its channels 2, 5, 6 correspond to SO(3)

rotation, and channels 0, 1, 3 indicate boost along x-, y- and
z-axis. In addition, the generator learns an additional Lie
algebra element that scales different input dimensions with
approximately the same amounts.

(a) Original (b) Transformed

Figure 6. The data distribution before and after the LieGAN trans-
formations. The overall distribution remains unchanged, while the
highlighted data points are non-trivially transformed.

Besides, figure 6 visualizes the distribution of the leading
jet component in each event before and after LieGAN trans-
formations. For better demonstration, four 2D marginal dis-

8

Boost along x Boost along y

Boost along z

Rotation about z

Rotation about x Rotation about y

▸ Symmetries are fundamental principles
in particle physics

▸ LieGAN learns a continuous Lie group that
preserves the original data distribution; can
discover symmetries present in the data!

▸ Discovers approximate SO(1, 3)+ symmetry in
particle physics dataset

https://arxiv.org/abs/2302.00236

ULTRAFAST ML
MULTIMODAL ML
PHYSICS-AWARE ML
GENERATIVE ML
OUTLOOK

2020 2022 2024 2026 2028 2030 2032 2034 2036
Year

0

10

20

30

40

50

ye
ar

s]
⋅

An
nu

al
 C

PU
 C

on
su

m
pt

io
n

 [M
H

S0
6

=55)µRun 3 (=88-140)µRun 4 (=165-200)µRun 5 (

2022 Computing Model - CPU

Conservative R&D
Aggressive R&D
Sustained budget model
(+10% +20% capacity/year)

ATLASPreliminary

FUTURE COMPUTING NEEDS

▸ Simulation is a key driver of CPU needs for the HL-LHC

▸ ML can be used to “short cut” simulation

45

New challenge: HL-LHC
2026: HL-LHC (High-Luminosity-LHC)

○ increased event rates (up to x10)
○ more complex events (up to μ=200, better detector)

Current algorithms of [at least] quadratic complexity:
O(N2), N=hits

5
μ (mu): the average number of visible pp interactions per bunch crossing

CERN-LHCC-2022-005

New challenge: HL-LHC
2026: HL-LHC (High-Luminosity-LHC)

○ increased event rates (up to x10)
○ more complex events (up to μ=200, better detector)

Current algorithms of [at least] quadratic complexity:
O(N2), N=hits

5
μ (mu): the average number of visible pp interactions per bunch crossing

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/UPGRADE/CERN-LHCC-2022-005/

JETNET: A BENCHMARK DATASET
▸ Public dataset for benchmarking generative models focusing on “particle

cloud” representations instead of image representations

▸ Similar idea to ShapeNet [arXiv:1512.03012]

▸ Consists of up to 150 particles per jet
with 3 features:

▸ Available on Zenodo
[doi:10.5281/zenodo.4834875]

▸ Part of [fair4hep.github.io]

(prel
T , ηrel, ϕrel)

ShapeNet [arXiv:1512.03012]

46NeurIPS 34, 23858 (2021)

https://arxiv.org/abs/1512.03012
https://doi.org/10.5281/zenodo.4834875
http://fair4hep.github.io
https://arxiv.org/abs/1512.03012
https://arxiv.org/abs/2106.11535

f e
f n

Initial Features

…

{

× T

Final Features

…

{

47

▸ Message-passing GAN can generate realistic particle jets
▸ Outperforms existing point cloud GANs

MESSAGE-PASSING GAN

),*0),*. ,*, ,*. ,*0
ǒnah

),*0

),*/

),*.

),*-

,*,

,*-

,*.

,*/

,*0

ƾn
ah

Na]h

),*0),*. ,*, ,*. ,*0
ǒnah

),*0

),*/

),*.

),*-

,*,

,*-

,*.

,*/

,*0

ƾn
ah

),*0),*. ,*, ,*. ,*0
ǒnah

),*0

),*/

),*.

),*-

,*,

,*-

,*.

,*/

,*0

ƾn
ah

),*0),*. ,*, ,*. ,*0
ǒnah

),*0

),*/

),*.

),*-

,*,

,*-

,*.

,*/

,*0

ƾn
ah

),*0),*. ,*, ,*. ,*0
ǒnah

),*0

),*.

,*,

,*.

,*0ƾn
ah

=ran]ca�Fap�Ei]ca

),*0),*. ,*, ,*. ,*0
ǒnah

),*0

),*/

),*.

),*-

,*,

,*-

,*.

,*/

,*0

ƾn
ah

IL

),*0),*. ,*, ,*. ,*0
ǒnah

),*0

),*/

),*.

),*-

,*,

,*-

,*.

,*/

,*0

ƾn
ah

),*0),*. ,*, ,*. ,*0
ǒnah

),*0

),*/

),*.

),*-

,*,

,*-

,*.

,*/

,*0

ƾn
ah

),*0),*. ,*, ,*. ,*0
ǒnah

),*0

),*/

),*.

),*-

,*,

,*-

,*.

,*/

,*0

ƾn
ah

),*0),*. ,*, ,*. ,*0
ǒnah

),*0

),*.

,*,

,*.

,*0ƾn
ah

=ran]ca�Fap�Ei]ca

),*0),*. ,*, ,*. ,*0
ǒnah

),*0

),*/

),*.

),*-

,*,

,*-

,*.

,*/

,*0

ƾn
ah

B?

),*0),*. ,*, ,*. ,*0
ǒnah

),*0

),*/

),*.

),*-

,*,

,*-

,*.

,*/

,*0

ƾn
ah

),*0),*. ,*, ,*. ,*0
ǒnah

),*0

),*/

),*.

),*-

,*,

,*-

,*.

,*/

,*0

ƾn
ah

),*0),*. ,*, ,*. ,*0
ǒnah

),*0

),*/

),*.

),*-

,*,

,*-

,*.

,*/

,*0

ƾn
ah

),*0),*. ,*, ,*. ,*0
ǒnah

),*0

),*.

,*,

,*.

,*0ƾn
ah

=ran]ca�Fap�Ei]ca

),*0),*. ,*, ,*. ,*0
ǒnah

),*0

),*/

),*.

),*-

,*,

,*-

,*.

,*/

,*0

ƾn
ah

Cn]ld?JJ

),*0),*. ,*, ,*. ,*0
ǒnah

),*0

),*/

),*.

),*-

,*,

,*-

,*.

,*/

,*0

ƾn
ah

),*0),*. ,*, ,*. ,*0
ǒnah

),*0

),*/

),*.

),*-

,*,

,*-

,*.

,*/

,*0

ƾn
ah

),*0),*. ,*, ,*. ,*0
ǒnah

),*0

),*/

),*.

),*-

,*,

,*-

,*.

,*/

,*0

ƾn
ah

),*0),*. ,*, ,*. ,*0
ǒnah

),*0

),*.

,*,

,*.

,*0ƾn
ah

=ran]ca�Fap�Ei]ca

),*0),*. ,*, ,*. ,*0
ǒnah

),*0

),*/

),*.

),*-

,*,

,*-

,*.

,*/

,*0

ƾn
ah

PnaaC=J

),*0),*. ,*, ,*. ,*0
ǒnah

),*0

),*/

),*.

),*-

,*,

,*-

,*.

,*/

,*0

ƾn
ah

),*0),*. ,*, ,*. ,*0
ǒnah

),*0

),*/

),*.

),*-

,*,

,*-

,*.

,*/

,*0

ƾn
ah

),*0),*. ,*, ,*. ,*0
ǒnah

),*0

),*/

),*.

),*-

,*,

,*-

,*.

,*/

,*0

ƾn
ah

),*0),*. ,*, ,*. ,*0
ǒnah

),*0

),*.

,*,

,*.

,*0ƾn
ah

=ran]ca�Fap�Ei]ca

),*0),*. ,*, ,*. ,*0
ǒnah

),*0

),*/

),*.

),*-

,*,

,*-

,*.

,*/

,*0

ƾn
ah

L?C=J

),*0),*. ,*, ,*. ,*0
ǒnah

),*0

),*/

),*.

),*-

,*,

,*-

,*.

,*/

,*0

ƾn
ah

),*0),*. ,*, ,*. ,*0
ǒnah

),*0

),*/

),*.

),*-

,*,

,*-

,*.

,*/

,*0

ƾn
ah

),*0),*. ,*, ,*. ,*0
ǒnah

),*0

),*/

),*.

),*-

,*,

,*-

,*.

,*/

,*0

ƾn
ah

),*0),*. ,*, ,*. ,*0
ǒnah

),*0

),*.

,*,

,*.

,*0ƾn
ah

=ran]ca�Fap�Ei]ca

,*,-

,*,.

,*,/

,*,0

,*,1

ln
ah P

,*,-

,*,.

,*,/

,*,0

,*,1

ln
ah P

,*,-

,*,.

,*,/

,*,0

,*,1

ln
ah P

,*,-

,*,.

,*,/

,*,0

,*,1

ln
ah P

,*,-

,*,.

,*,/

,*,0

,*,1

ln
ah P

,*,-

,*,.

,*,/

,*,0

,*,1

ln
ah P

),*0),*. ,*, ,*. ,*0
ǒnah

),*0

),*/

),*.

),*-

,*,

,*-

,*.

,*/

,*0

ƾn
ah

Na]h

),*0),*. ,*, ,*. ,*0
ǒnah

),*0

),*/

),*.

),*-

,*,

,*-

,*.

,*/

,*0

ƾn
ah

),*0),*. ,*, ,*. ,*0
ǒnah

),*0

),*/

),*.

),*-

,*,

,*-

,*.

,*/

,*0

ƾn
ah

),*0),*. ,*, ,*. ,*0
ǒnah

),*0

),*/

),*.

),*-

,*,

,*-

,*.

,*/

,*0

ƾn
ah

),*0),*. ,*, ,*. ,*0
ǒnah

),*0

),*.

,*,

,*.

,*0ƾn
ah

=ran]ca�Fap�Ei]ca

),*0),*. ,*, ,*. ,*0
ǒnah

),*0

),*/

),*.

),*-

,*,

,*-

,*.

,*/

,*0

ƾn
ah

IL

),*0),*. ,*, ,*. ,*0
ǒnah

),*0

),*/

),*.

),*-

,*,

,*-

,*.

,*/

,*0

ƾn
ah

),*0),*. ,*, ,*. ,*0
ǒnah

),*0

),*/

),*.

),*-

,*,

,*-

,*.

,*/

,*0

ƾn
ah

),*0),*. ,*, ,*. ,*0
ǒnah

),*0

),*/

),*.

),*-

,*,

,*-

,*.

,*/

,*0

ƾn
ah

),*0),*. ,*, ,*. ,*0
ǒnah

),*0

),*.

,*,

,*.

,*0ƾn
ah

=ran]ca�Fap�Ei]ca

),*0),*. ,*, ,*. ,*0
ǒnah

),*0

),*/

),*.

),*-

,*,

,*-

,*.

,*/

,*0

ƾn
ah

B?

),*0),*. ,*, ,*. ,*0
ǒnah

),*0

),*/

),*.

),*-

,*,

,*-

,*.

,*/

,*0

ƾn
ah

),*0),*. ,*, ,*. ,*0
ǒnah

),*0

),*/

),*.

),*-

,*,

,*-

,*.

,*/

,*0

ƾn
ah

),*0),*. ,*, ,*. ,*0
ǒnah

),*0

),*/

),*.

),*-

,*,

,*-

,*.

,*/

,*0

ƾn
ah

),*0),*. ,*, ,*. ,*0
ǒnah

),*0

),*.

,*,

,*.

,*0ƾn
ah

=ran]ca�Fap�Ei]ca

),*0),*. ,*, ,*. ,*0
ǒnah

),*0

),*/

),*.

),*-

,*,

,*-

,*.

,*/

,*0

ƾn
ah

Cn]ld?JJ

),*0),*. ,*, ,*. ,*0
ǒnah

),*0

),*/

),*.

),*-

,*,

,*-

,*.

,*/

,*0

ƾn
ah

),*0),*. ,*, ,*. ,*0
ǒnah

),*0

),*/

),*.

),*-

,*,

,*-

,*.

,*/

,*0

ƾn
ah

),*0),*. ,*, ,*. ,*0
ǒnah

),*0

),*/

),*.

),*-

,*,

,*-

,*.

,*/

,*0

ƾn
ah

),*0),*. ,*, ,*. ,*0
ǒnah

),*0

),*.

,*,

,*.

,*0ƾn
ah

=ran]ca�Fap�Ei]ca

),*0),*. ,*, ,*. ,*0
ǒnah

),*0

),*/

),*.

),*-

,*,

,*-

,*.

,*/

,*0

ƾn
ah

PnaaC=J

),*0),*. ,*, ,*. ,*0
ǒnah

),*0

),*/

),*.

),*-

,*,

,*-

,*.

,*/

,*0

ƾn
ah

),*0),*. ,*, ,*. ,*0
ǒnah

),*0

),*/

),*.

),*-

,*,

,*-

,*.

,*/

,*0

ƾn
ah

),*0),*. ,*, ,*. ,*0
ǒnah

),*0

),*/

),*.

),*-

,*,

,*-

,*.

,*/

,*0

ƾn
ah

),*0),*. ,*, ,*. ,*0
ǒnah

),*0

),*.

,*,

,*.

,*0ƾn
ah

=ran]ca�Fap�Ei]ca

),*0),*. ,*, ,*. ,*0
ǒnah

),*0

),*/

),*.

),*-

,*,

,*-

,*.

,*/

,*0

ƾn
ah

L?C=J

),*0),*. ,*, ,*. ,*0
ǒnah

),*0

),*/

),*.

),*-

,*,

,*-

,*.

,*/

,*0

ƾn
ah

),*0),*. ,*, ,*. ,*0
ǒnah

),*0

),*/

),*.

),*-

,*,

,*-

,*.

,*/

,*0

ƾn
ah

),*0),*. ,*, ,*. ,*0
ǒnah

),*0

),*/

),*.

),*-

,*,

,*-

,*.

,*/

,*0

ƾn
ah

),*0),*. ,*, ,*. ,*0
ǒnah

),*0

),*.

,*,

,*.

,*0ƾn
ah

=ran]ca�Fap�Ei]ca

,*,-

,*,.

,*,/

,*,0

,*,1

ln
ah P

,*,-

,*,.

,*,/

,*,0

,*,1

ln
ah P

,*,-

,*,.

,*,/

,*,0

,*,1

ln
ah P

,*,-

,*,.

,*,/

,*,0

,*,1

ln
ah P

,*,-

,*,.

,*,/

,*,0

,*,1

ln
ah P

,*,-

,*,.

,*,/

,*,0

,*,1

ln
ah P

NeurIPS 34, 23858 (2021)

https://arxiv.org/abs/2106.11535

48INDUCED GRAPH ATTENTION & METRICS
▸ Induced graph attention

particle transformer (iGAPT)
more efficient than MPGAN,
but how to compare them?

▸ Metrics developed to comprehensively
evaluate generative AI models in HEP
▸ Fréchet Physics Distance: Inspired by

Fréchet Inception Distance with physics-
based features

N x 3
particles

jet features

update z, O(N)

update X, O(N)

they are accessing similar information about the same set of
input features. However, for low values, the correlation is
weak between all metrics, indicating that these metrics are
complementary in understanding different aspects of the
model’s performance. As noted in Sec. IV B, the correlation
between FPD and FPND may improve if the former were to
use a subset of lower-level particle features as well.
Histograms of sample feature distributions and FPD,

KPD, WM
1 scores as well as the W1 distance between the

particle prel
T distributions from the best-performing

MPGAN, as provided by Ref. [17], and GAPT, based
on FPD, models are shown in Fig. 5 and Table III,
respectively. For completeness, Table III also shows

measurements of the inference time per jet for each model,
measured on an NVIDIA RTX A6000 GPU. It is extremely
difficult to either distinguish between the performance of
the two models or draw a conclusion for their viability as
alternative simulators based only on visual inspection of
the histograms or even the 1D W1 scores. However, FPD
and KPD provide crucial information in this regard, with
FPD more sensitive as expected from Sec. IV, clearly
indicating that MPGAN significantly outperforms GAPT,
but its samples remain discrepant from the true distribu-
tion. We note, however, that, despite the suboptimal
performance, GAPT provides the benefits of speed and
scalability.

TABLE III. Values and errors of the proposed metrics on MPGAN- and GAPT-generated samples, as well as on
separate samples from the true distribution. The best scores per metric out of MPGAN and GAPT are highlighted in
bold. The inference time per jet is shown as well for both models.

FPD × 103 KPD × 103 WM
1 × 103 Wprel

T
1p × 103

Inference time
(μs) per jet

Truth 0.08! 0.03 −0.006! 0.005 0.28! 0.05 0.44! 0.09
MPGAN 0.30! 0.06 −0.001! 0.004 0.54! 0.06 0.6! 0.2 41
GAPT 0.66! 0.09 0.001! 0.005 0.56! 0.08 0.51! 0.09 9

FIG. 4. Correlations between FPD and FPND, KPD, and WM
1 on 400 separate batches of 50 000 GAPT-generated jets.

FIG. 5. Low-level particle feature distributions (far left and center left) and high-level jet feature distributions (center right and far
right) for the real data (red), MPGAN-generated data (blue), and GAPT-generated data (yellow).

RAGHAV KANSAL et al. PHYS. REV. D 107, 076017 (2023)

076017-10

they are accessing similar information about the same set of
input features. However, for low values, the correlation is
weak between all metrics, indicating that these metrics are
complementary in understanding different aspects of the
model’s performance. As noted in Sec. IV B, the correlation
between FPD and FPND may improve if the former were to
use a subset of lower-level particle features as well.
Histograms of sample feature distributions and FPD,

KPD, WM
1 scores as well as the W1 distance between the

particle prel
T distributions from the best-performing

MPGAN, as provided by Ref. [17], and GAPT, based
on FPD, models are shown in Fig. 5 and Table III,
respectively. For completeness, Table III also shows

measurements of the inference time per jet for each model,
measured on an NVIDIA RTX A6000 GPU. It is extremely
difficult to either distinguish between the performance of
the two models or draw a conclusion for their viability as
alternative simulators based only on visual inspection of
the histograms or even the 1D W1 scores. However, FPD
and KPD provide crucial information in this regard, with
FPD more sensitive as expected from Sec. IV, clearly
indicating that MPGAN significantly outperforms GAPT,
but its samples remain discrepant from the true distribu-
tion. We note, however, that, despite the suboptimal
performance, GAPT provides the benefits of speed and
scalability.

TABLE III. Values and errors of the proposed metrics on MPGAN- and GAPT-generated samples, as well as on
separate samples from the true distribution. The best scores per metric out of MPGAN and GAPT are highlighted in
bold. The inference time per jet is shown as well for both models.

FPD × 103 KPD × 103 WM
1 × 103 Wprel

T
1p × 103

Inference time
(μs) per jet

Truth 0.08! 0.03 −0.006! 0.005 0.28! 0.05 0.44! 0.09
MPGAN 0.30! 0.06 −0.001! 0.004 0.54! 0.06 0.6! 0.2 41
GAPT 0.66! 0.09 0.001! 0.005 0.56! 0.08 0.51! 0.09 9

FIG. 4. Correlations between FPD and FPND, KPD, and WM
1 on 400 separate batches of 50 000 GAPT-generated jets.

FIG. 5. Low-level particle feature distributions (far left and center left) and high-level jet feature distributions (center right and far
right) for the real data (red), MPGAN-generated data (blue), and GAPT-generated data (yellow).

RAGHAV KANSAL et al. PHYS. REV. D 107, 076017 (2023)

076017-10

PRD 107, 076017 (2023)

http://doi.org/10.1103/PhysRevD.107.076017

IMPACT OF JETNET

2

FIG. 1. Average top quark initiated jet in the full simulation, after generation with the di↵usion model, and after distillation
resulting in 8 or a single time step used during sampling.

while also reducing the generation time to be competi-
tive with other fast generation methods. To this end, we
introduce our algorithm for Fast Point Cloud Generation
(FPCD), used to simulate point cloud data with varying
length much faster than a standard di↵usion implemen-
tation. Examples of generated point clouds using our
proposed algorithm are shown in Fig. 1, where we com-
pare the average energy deposition for top quark initiated
jets generated by the full simulation or by the generative
model. We accelerate the sampling time of the surrogate
model using a method called progressive distillation [40],
resulting in a generative model with high physics fidelity
and fast sampling times.

While this paper was being finalized, the authors
of Ref. [41] also proposed a di↵usion-based PCGM for
jet formation. The proposal in our paper di↵ers from
Ref. [41] in a few ways. First, our model does not con-
dition on the jet mass, but rather utilizes a separate dif-
fusion model to determine the jet kinematics. Next, it
is much faster (via progressive distillation) and is condi-
tioned on the particle type, thereby avoiding the training
of multiple di↵usion models for each type of jet. Finally,
we also provide results for more particle types (including
gluons and W and Z bosons in addition to light and top
quarks) in two di↵erent datasets with varying number
of particles to demonstrate that our model is capable of
generating outputs of varying sizes.

This paper is organized as follows. Section II intro-
duces score-based di↵usion models and describes how
they can be accelerated with progressive distillation. We
then detail our implementation of the di↵usion-based
generative model for parton showers in Sec. III. Numer-
ical results are presented in Sec. IV and the paper ends
with conclusions and outlook in Sec. V.

II. SCORE-BASED GENERATIVE MODELS

AND PROGRESSIVE DISTILLATION

The goal of a generative model is to be able to gener-
ate new observations from a noise distribution. Di↵usion

models became popular in recent years for their capac-
ity to generate realistic data, often surpassing standard
state-of-the-art generative models. In score-based meth-
ods [42], a di↵usion process is designed to slowly perturb
the data through the addition of noise, while a neural net-
work learns a time-dependent score function rx log pdata
for some high-dimensional distribution x 2 RD described
by the probability density pdata. The score function is
then used in a reverse-di↵usion process: starting from a
noisy distribution and proceeding to denoise the observa-
tion. The di↵usion model is described by latent variables
z = {zt|t 2 [0, 1]} with a time-dependent noise schedule
↵t,�t, such that the log signal-to-noise-ratio log[↵2

t /�
2
t],

decreases monotonically with time. During training, the
network learns to denoise zt ⇠ q(zt|x) = N (zt;↵tx,�2

t I)
towards the unperturbed data x ⇠ pdata, e↵ectively
learning an estimate x̂✓ ⇡ x by updating the trainable
parameters ✓ during training. Following Ref. [40], we
instead train a network to estimate a “velocity” param-
eter v ⌘ ↵t✏ � �tx, with ✏ ⇠ N (0, I) which is observed
to yield accurate results while also simplifying the distil-
lation method employed later. The loss function to be
minimized during optimization is then defined as:

L✓ = E✏,t kvt � v̂t,✓k2 , (1)

where t is sampled uniformly over the considered interval.
In this formulation, we can identify the estimate of the
score function as:

rz log p̂✓(zt) = zt �
↵t

�t
v̂✓(zt). (2)

In our implementation, we consider the variance-
preserving setting of di↵usion processes, where �2

t =
1�↵2

t . For the time-dependence, we use a cosine schedule
such that ↵t = cos(0.5⇡t).
The generation of new samples is then carried out us-

ing the DDIM sampler proposed in Ref. [43] that uses
an integration rule to solve the deterministic ordinary
di↵erential equation:

dzt = [f(zt, t)�
1

2
g2(t)rz log p̂✓(zt)]dt, (3)

▸Sparked significant R&D into equivariant models,
diffusion models, and more!

ULTRAFAST ML
MULTIMODAL ML
PHYSICS-AWARE ML
GENERATIVE ML
OUTLOOK

THE FUTURE OF PARTICLE PHYSICS
▸ We have been considering what should come

after the HL-LHC…

51

5 to 7.5 x nominal Lumi

13 TeV

integrated
luminosity

2 x nominal Lumi2 x nominal Luminominal Lumi
75% nominal Lumi

cryolimit
interaction
regions

inner triplet
radiation limit

LHC HL-LHC

Run 4 - 5...Run 2Run 1

DESIGN STUDY PROTOTYPES CONSTRUCTION INSTALLATION & COMM. PHYSICS

DEFINITION EXCAVATION

HL-LHC CIVIL ENGINEERING:

HL-LHC TECHNICAL EQUIPMENT:

Run 3

ATLAS - CMS
upgrade phase 1

ALICE - LHCb
upgrade

Diodes Consolidation
LIU Installation

Civil Eng. P1-P5

experiment
beam pipes

splice consolidation
button collimators

R2E project

13.6 TeV 13.6 - 14 TeV

7 TeV 8 TeV

LS1 EYETS EYETS LS3

ATLAS - CMS
HL upgrade

HL-LHC
installation

LS2

30 fb-1 190 fb-1 450 fb-1 3000 fb-1

4000 fb-1

BUILDINGS

20402027 20292028

pilot beam

ML TO OPTIMIZE DESIGN DETECTORS
▸ ML has the promise to help us optimize the design of future colliders and

detectors
▸ Need all aspects of simulation chain to be implemented with differentiable

programming [arXiv:2002.04632]
▸ Check out Differentiable Almost Everything Workshop

52

ferentiable code via the use of automatic di↵erentiation (AD) [76], an algorithmic way
to e�ciently evaluate derivatives of computer programs. When software is written in DP
frameworks, access to the dependence of predictions on inputs is enabled through gradients.

Forward pass

Backward pass

Simulation

 Inputs

Simulation

 Outputs

x1
x2
x3. . .
xn

y1
y2
y3. . .
ym

�yj

�xk

Figure 3: An illustration of di↵erentiable pro-
gramming for detector simulation.

These gradients are a significant addi-
tion to the information typically provided
by simulators and crucially can be used in
downstream modeling and inference tasks.
This approach is flexible and optimizable;
di↵erentiable HEP software and ML tools
can be mixed, for instance to use ML sur-
rogates of non-di↵erentiable computations,
and can be jointly optimized to improve
speed and prediction accuracy. When de-
veloped with DP, HEP simulation tools, and
the physics knowledge they encode, can be
used as physics prediction engines directly within ML pipelines for developing physics-
informed ML tools. An illustration of di↵erentiable programming is shown in Fig. 3. We
note that deep generative models are a type of di↵erentiable detector simulation, since gra-
dients are readily available for neural networks. More details on di↵erentiable programming
for detector simulation are given in Sec. 7.

4 ML-based Correction to Accelerate Geant4 Calorimeter

Simulations

In full simulation routines, particles can be fully tracked using the complete underlying
physics knowledge (FullSim) or approximate parametrizations can be used to simplify and
accelerate the process (FastSim). Although future experiments plan to be heavily based on
FastSim methods, the usage of FullSim is still imperative [77] (including FastSim tuning).

Focusing on the FullSim, among the most computationally demanding apparatuses to
simulate are dense highly segmented particle physics detectors (e.g. calorimeters). This is
because highly energetic particles produce cascades of secondary particles, resulting in an
exponential number of particles with respect to the particle energy. The actual limit on the
lowest energy particle simulated is controlled by range cuts. Increased range cuts correspond
to increased production energy thresholds, thus reducing the number of produced secondary
particles. As an immediate e↵ect, the computational demands of the simulation are reduced.
A side e↵ect can be the reduction of the accuracy of the simulation. The extent of the
inaccuracy increases as the range cut grows relative to the scale of the sensitive elements
of the detector. While other parameters in Geant4 may also be varied with e↵ects on
the simulation computing time and accuracy, range cuts have been found to be the most
impactful.

This section outlines an approach to accelerate the FullSim execution time. One possi-
bility is to use a deep generative model as a base that is then refined [45]. Another approach

6

https://arxiv.org/pdf/2002.04632
https://differentiable.xyz/

HEP
Foundation

Model

Training Adaptation

Tasks

Jet Tagging

Tracking

Particle-Flow
Reconstruction

Jet Mass
Regression

Jet Energy
Correction

Pileup
Mitigation

H → bb

H → WW
mH ≈ 125 GeV

Data

A HEP FOUNDATION MODEL? 53

SciPost Physics Submission

Figure 1: Illustration of the uniformity and alignment concepts behind the contrastive
learning.

On this sphere we define the similarity between two jets as [36]

s(zi, zj) =
zi · zj
|zi||zj |

= cos ✓ij , (6)

with ✓ij being the angle between the jets in R. The contrastive loss for a positive pair of
jets is defined in terms of this distance as

Li = � log
e
s(zi,z0i)/⌧

P
j 6=i2batch

h
es(zi,zj)/⌧ + e

s(zi,z0j)/⌧
i , (7)

and the total loss is given by the sum over all positive pairs in the batch, L =
P

i Li. Be-
cause the positive pairs appear in the numerator, while the negative pairs contribute to the
denominator, the loss decreases when the distance between positive pairs becomes smaller
and when the distance between negative pairs becomes larger. The hyper-parameter ⌧

is referred to as the temperature and controls the relative influence of positive pairs and
negative pairs. The cosine similarity in Eq.(6) is not a proper distance metric, but we can
define an angular distance as d(zi, zj) = ✓ij/⇡ = 0 ... 1, such that it satisfies the triangle
inequality.

Uniformity vs alignment

The contrastive loss can be understood in terms of uniformity versus alignment on the
unit hypersphere defining R, illustrated in Fig. 1. The numerator of Eq.(7), describing
the positive pairs, is minimal when all jets and their augmented counterparts are mapped
to the same point, s(zi, z0i) = 1. On a hypersphere, the negative pairs cannot be pushed
infinitely far apart, as would be possible in Rdim(z), so the corresponding loss is minimal
when the jets are uniformly distributed on the hypersphere. We can measure uniformity
and alignment through

Lalign =
1

Nbatch

X

i2batch
s(zi, z

0
i)

Luniform =
1

Nbatch

X

i2batch
log

X

j 6=i

h
e
�s(zi,zj) + e

�s(zi,z0j)
i
. (8)

4

▸ Many studies implementing CS-
and physics-inspired pre-training
strategies
▸ JetCLR [arXiv:2108.04253]
▸ Masked particle modeling [arXiv:2401.13537]
▸ Resimulation [arXiv:2403.07066]
▸ GPT [arXiv:2403.05618]

SELF-SUPERVISED LEARNING IN HEP 54

• What is a robust way to generate augmentations for particle physics data? How can we learn the full space
of jets (at least what is available in simulator)?

• augmentations: re-simulated versions of the same generated partons

• We can re-shower with different configurations:

• pythia8 with different seed

• pythia8 with FSR scale varied up and down

• herwig7

• Essentially sampling configurations with all physical variations available in the simulator

Augmentations (Re-simulation)

6

Nominal Augmentation

Augment

Re-shower Initial parton fixed,
only re-do shower

+hadronization
Toy simulation

Credit to:
M Kagan
L Heinrich

2

VQ-VAE
encoder

VQ-VAE
decoder

VQ-VAE
decoder

Transformer
backbone

Jet tokenization

Jet generation

Next-token
prediction head

Transformer
backbone Classification head

Jet classification

Jet type prediction

Autoregressive next-token generation

VQ-VAE
encoder

Figure 1: Schematics of the di↵erent steps (tokenization, generation, classification) in the OmniJet-↵ model.

model can be used as a foundation model for jet
physics. However, the standard GPT constructions
are not built to deal with continuous input data, but
rather tokenized data. As point clouds are the most
versatile representation of physics data [7, 16, 41–
43] and can incorporate both event level informa-
tion, jet substructure, and even low-level detector
signals, finding a suitable input transformation for
point clouds to tokens is the most pressing problem.
Various tokenization strategies have been explored,
for example using a simple mapping based on binning
the input space in [37], a Gaussian mixture model in
[38], and using an additional conditional embedding
network in [39].

Here, we follow the conditional tokenization strat-
egy from [39, 44, 45], but first take a step back to
verify the quality and trade-o↵s involved in building
these tokens. This will allow us to formulate qual-
ity measures to choose a suitable tokenization model,
leading to an increase in codebook size from 512 to-
kens in [39] to 8192 tokens.

Using this representation, we will first demon-
strate training a generative model for jets as to-
kens in an unsupervised way for the JetClass [35]
dataset. Compared to [37], the core of our archi-
tecture is a transformer-decoder, not a transformer-
encoder.

Finally, this allows us to test whether the informa-
tion encoded in a model that was trained to generate
jets can also be transferred to the task of classify-
ing them. Observing such a transfer ability across
di↵erent classes of tasks — as opposed to transfer
between di↵erent classification or generation prob-
lems — would be a crucial ingredient to building
foundation models for physics data, and has not yet

been achieved. A graphical representation of this ap-
proach is provided in Figure 1. As this is the first
prototype of a model to tackle all tasks with jets in
particle physics, it is named OmniJet-↵.

The rest of the paper is organized as follows: Sec-
tion II introduces the data as well as the tokeniza-
tion approach, the generative architecture, and the
transfer learning strategy. Next, Section III shows
the results of the tokenization study, the generative
performance, as well as tests of the transfer learning
capabilities of the model. Finally, Section IV sum-
marizes the results and provides a brief outlook.

II. METHODS AND DATASET

A. Dataset

All studies are performed using the JetClass

dataset [35], originally introduced in [10]. It con-
tains both jet-level and constituent-level features for
ten di↵erent types of jets initiated by gluons and
quarks (q/g), top quarks (t, subdivided by their de-
cay mode into t ! bqq

0 and t ! b`⌫) , as well as W ,
Z, and H (H ! bb̄, H ! cc̄, H ! gg, H ! 4q, and
H ! `⌫qq

0) bosons.
Events are simulated using Mad-

Graph5 aMC@NLO [46] with parton shower-
ing and hadronization done by Pythia [47]. A
simplified detector simulation implemented in
Delphes [48] using the CMS detector [49] card
is performed. Constituents are clustered into jets
using the anti-kT algorithm [50] with a distance
parameter of R = 0.8.

Jets are selected if they have a transverse momen-

https://arxiv.org/pdf/2108.04253
https://arxiv.org/abs/2401.13537
https://arxiv.org/pdf/2403.07066
https://arxiv.org/abs/2403.05618

SUMMARY AND OUTLOOK
▸ Dizzying array of ML opportunities, innovations, and

applications in particle physics experiments

▸ ML can help us solve major challenges for the next
generation of particle physics experiments

▸ So we can (hopefully) get answers to our
big questions

55

32- -
Generic overview slide

Boosted Boson Type Tagging
Jet ETmiss

SLAC, Stanford University

March 26, 2014

Benjamin Nachman and Ariel Schartzman

B. Nachman (SLAC) Boosted Boson Type Tagging March 26, 2014 1 / 21

Boosted Boson Type Tagging
Jet ETmiss

SLAC, Stanford University

March 26, 2014

Benjamin Nachman and Ariel Schartzman

B. Nachman (SLAC) Boosted Boson Type Tagging March 26, 2014 1 / 21

Even more non-linearity: Going Deep

Deep Convolutional Architectures for
Jet-Images at the Large Hadron Collider

Introduction
The Large Hadron Collider (LHC) at CERN is the largest and most powerful particle accelerator in
the world, collecting 3,200 TB of proton-proton collision data every year. A true instance of Big
Data, scientists use machine learning for rare-event detection, and hope to catch glimpses of new
and uncharted physics at unprecedented collision energies.

Our work focuses on the idea of the ATLAS detector as a camera, with events captured as
images in 3D space. Drawing on the success of Convolutional Neural Networks in Computer
Vision, we study the potential of deep leaning for interpreting LHC events in new ways.

The ATLAS detector
The ATLAS detector is one of the two general-purpose experiments at the LHC. The 100 million
channel detector captures snapshots of particle collisions occurring 40 million times per second.
We focus our attention to the Calorimeter, which we treat as a digital camera in cylindrical space.
Below, we see a snapshot of a 13 TeV proton-proton collision.

LHC Events as Images
We transform the ATLAS coordinate system (η, φ) to a rectangular grid that allows for an image-
based grid arrangement. During a collision, energy from particles are deposited in pixels in (η, φ)
space. We take these energy levels, and use them as the pixel intensities in a greyscale analogue.
These images — called Jet Images — were first introduced by our group [JHEP 02 (2015) 118],
enabling the connection between LHC physics event reconstruction and computer vision.. We
transform each image in (η, φ), rotate around the jet-axis, and normalize each image, as is often
done in Computer Vision, to account for non-discriminative difference in pixel intensities.

In our experiments, we build discriminants on top of Jet Images to distinguish between a
hypothetical new physics event, W’→ WZ, and a standard model background, QCD.

Jet Image

Convolution Max-Pool Convolution Max-Pool Flatten

Fully
Connected
ReLU Unit

ReLU Dropout ReLU Dropout
Local

Response
Normalization

W’→ WZ event

Convolutions
Convolved

Feature Layers

Max-Pooling

Repeat

Physics Performance Improvements
Our analysis shows that Deep Convolutional Networks significantly improve the classification of
new physics processes compared to state-of-the-art methods based on physics features,
enhancing the discovery potential of the LHC. More importantly, the improved performance
suggests that the deep convolutional network is capturing features and representations beyond
physics-motivated variables.

Concluding Remarks
We show that modern Deep Convolutional Architectures can significantly enhance the discovery
potential of the LHC for new particles and phenomena. We hope to both inspire future research
into Computer Vision-inspired techniques for particle discovery, and continue down this path
towards increased discovery potential for new physics.

Difference in average
image between signal

and background

Deep Convolutional Networks
Deep Learning — convolutional networks in particular — currently represent the state of the art in
most image recognition tasks. We apply a deep convolutional architecture to Jet Images, and
perform model selection. Below, we visualize a simple architecture used to great success.

We found that architectures with large filters captured the physics response with a higher level of
accuracy. The learned filters from the convolutional layers exhibit a two prong and location based
structure that sheds light on phenomenological structures within jets.

Visualizing Learning
Below, we have the learned convolutional filters (left) and the difference in between the average
signal and background image after applying the learned convolutional filters (right). This novel
difference-visualization technique helps understand what the network learns.

2D
Convolutions
to Jet Images

Understanding Improvements
Since the selection of physics-driven variables is driven by physical understanding, we want to be
sure that the representations we learn are more than simple recombinations of basic physical
variables. We introduce a new method to test this — we derive sample weights to apply such that

meaning that physical variables have no discrimination power. Then, we apply our learned
discriminant, and check for improvement in our figure of merit — the ROC curve.

Standard physically motivated
discriminants — mass (top)
and n-subjettiness (bottom)

Receiver Operating Characteristic

Notice that removing out the individual effects of
the physics-related variables leads to a likelihood
performance equivalent to a random guess, but
the Deep Convolutional Network retains some
discriminative power. This indicates that the deep
network learns beyond theory-driven variables —
we hypothesize these may have to do with
density, shape, spread, and other spatially driven
features.

Luke de Oliveiraa, Michael Aaron Kaganb, Lester Mackeyc, Benjamin Nachmanb, Ariel Schwartzmanb

 
aStanford University, Institute for Computational and Mathematical Engineering (ICME), bSLAC National Accelerator Laboratory, cStanford University, Department of Statistics

Repeat

Apply deep learning techniques on jet images! [3]

convolutional nets are a standard image
processing technique; also consider maxout

Figure 5: The convolution neural network concept as applied to jet-images.

4.1 Architectural Selection

For the MaxOut architecture, we utilize two FC layers with MaxOut activation (the first with 256
units, the second with 128 units, both of which have 5 piecewise components in the MaxOut-operation),
followed by two FC layers with ReLU activations (the first with 64 units, the second with 25 units),
followed by a FC sigmoid layer for classification. We found that the He-uniform initialization [35]
for the initial MaxOut layer weights was needed in order to train the network, which we suspect is
due to the sparsity of the jet-image input. In cases where other initialization schemes were used, the
networks often converged to very sub optimal solutions. This network is trained (and evaluated) on
un-normalized jet-images using the transverse energy for the pixel intensities

For the deep convolution networks, we use a convolutional architecture consisting of three sequen-
tial [Conv + Max-Pool + Dropout] units, followed by a local response normalization (LRN) layer [8],
followed by two fully connected, dense layers. We note that the convolutional layers used are so called
“full” convolutions – i.e., zero padding is added the the input pre-convolution. Our architecture can
be succinctly written as:

[Dropout ! Conv ! ReLU ! MaxPool] ⇤ 3 ! LRN ! [Dropout ! FC ! ReLU] ! Dropout ! Sigmoid.

(4.1)
The convolution layers each utilize 32 feature maps, or filters, with filter sizes of 11 ⇥ 11, 3 ⇥ 3,

and 3 ⇥ 3 respectively. All convolution layers are regularized with the L
2 weight matrix norm. A

down-sampling of (2, 2), (3, 3), and (3, 3) is performed by the three max pooling layers, respectively.
A dropout [8] of 20% is used before the first FC layer, and a dropout 10% is used before the output
layer. The FC hidden layer consists of 64 units.

After early experiments with the standard 3 ⇥ 3 filter size, we discovered significantly worse
performance over a more basic MaxOut [7] feedforward network. After further investigation into larger
convolutional filter size, we discovered that larger-than-normal filters work well on our application.
Though not common in the Deep Learning community, we hypothesize that this larger filter size is
helpful when dealing with sparse structures in the input images. In Table 1, we compare di↵erent
filter sizes, finding the optimal filter size of 11⇥ 11, when considering the Area Under the ROC Curve
(AUC) metric, based on the ROC curve outlined in Sections 3 and 5.

– 8 –

BIG QUESTIONS
▸ What is our universe made of?

▸ What are the smallest building blocks of nature?

▸ How do they interact with each other?

▸ Is our universe stable?

56

BACKUP

JAVIER DUARTE
ICML 2024
JULY 24, 2024

57

HPC AI CHIPS
The HPC AI chip landscape is diversifying

AMD MI250X GPU Intel Gaudi2 deep
learning processor

… we need flexible and portable codes to make use of
these resources in the near future!

PORTABILITY

1 2 3 4 5 6 7 8
Accelerator processors, N

2

4

6

8

10

Sp
ee

du
p

ov
er

 s
in

gl
e

ac
ce

le
ra

to
r,

T(
1)

/T
(N

)

linear scaling
CoreSite (H100)
LUMI (MI250X)
Voyager (Gaudi1)
Voyager (Gaudi2)

Portable on CPU,
Nvidia & AMD GPU,
Intel Habana Gaudi

chips

three different HPC sites

