
Kamyar Azizzadenesheli

Research Staff, NVIDIA

MACHINE LEARNING ON FUNCTION SPACES

NEURAL OPERATORS

2

TRADITIONAL DEEP LEARNING
Text, speech, image, etc.

Data: Finite dimensional objects

3

TRADITIONAL DEEP LEARNING
Text, speech, image, etc.

Paradigm: Neural networks

Architectures: CNN, AlexNet, LSTM, ResNet, UNet, EfficientNet, MobileNet, Transformer, ViT.

4

TRADITIONAL DEEP LEARNING
Text, speech, image, etc.

Paradigm: Neural networks

Conventional machine learning practice,

 Learning a function between finite dimensional spaces, 𝑓!: ℝ" → ℝ#

Input vector
𝑥 ∈ ℝ!

Output function space
𝑦 ∈ ℝ"

what is 𝑓(𝑥)?

Finite dimension

1

5

𝑓

5

TRADITIONAL DEEP LEARNING
Text, speech, image, etc.

Paradigm: Neural networks

Architectures: CNN, AlexNet, LSTM, ResNet, UNet, EfficientNet, MobileNet, Transformer, ViT.

Datasets: UCI-dataset, MNITS, ImageNet, Common Crawl.

Problem setup: input/output, supervision, Image/label, laws, metric, loss,

• Inception score,

• FID

• RMSE

• L1

• CLIP

• …

Applications: Recommendation systems, content generation, self driving cars, knowledge, search, etc.

A series of great developments for domains such as images, languages, …

With the main focus in CV and language

6

COMMUTATING
Text, speech, and image what else?

Aeronautics & Astronautics Department
Anthropology
Applied Physics Department
Biochemistry Department
Bioengineering Department
Biology Department
Biology, Developmental
Biomedical Informatics
Business,
Chemical and Systems Biology
Chemical Engineering Department
Chemistry Department
Civil & Environmental Engineering Department
Computer Science Department
Developmental Biology Department
Dermatology Department
Earth and Planetary Sciences
Earth System Science
Economics Department
Electrical Engineering Department
Energy Science & Engineering
Genetics Department
Geophysics
Management Science & Engineering Department
Materials Science & Engineering Department
Mechanical Engineering Department
Mathematics Department
Medicine Department
Microbiology & Immunology Department
Molecular & Cellular Physiology Department
Neurobiology Department
Neurology & Neurological Sciences Department
Neurosurgery Department
Obstetrics and Gynecology Department
Oceans Department
Ophthalmology Department
Physics Department
Radiation Oncology Department
Radiology Department
Stanford Doerr School of Sustainability
Structural Biology Department

www.nature.com/scientificreports/

2SCIENTIFIC REPORTS | (2017) 7:17912 | DOI:10.1038/s41598-017-17398-8

and subcutaneous fat20. The epidermis is four to five layers of stratified epithelia with no blood vessels, the
most superficial being the stratum corneum21. The epidermis connects to the dermis by a layer known as the
dermal-epidermal junction (DEJ). Cutaneous appendages, including sensory receptors, nerves, glands, blood ves-
sels and hair follicles, reside in the dermis. Skin varies in color, thickness, and texture in different parts of the body
according to specific functional needs. Regional variations include thickness of the stratum corneum, the pres-
ence of a stratum lucidum on palms and soles, epidermal thickness and variable numbers of sebaceous glands,
eccrine glands and hair follicles21. In this study, we have looked at nose, preauricular, neck, volar forearm, palm,
back, thumb, dorsal forearm, sole, and calf as representative of the variety of skin architectures and epidermal
thicknesses across the body. The most notable features of thick skin (palm, thumb and sole) are the thick stratum
corneum, presence of a stratum lucidum, an abundance of eccrine sweat glands and, a lack of hair follicles, seba-
ceous glands and apocrine glands. In OCT images of skin from the palm and sole, the stratum corneum is the first
visualized layer of the epidermis, appearing as a homogenous layer of cells with scattered eccrine sweat ducts. The

Figure 1. The illustration demonstrates the sequential images obtained by OCT (top left), and the 3D OCT
representation of the skin (top right). The center illustration demonstrates several skin structures and their
corresponding appearance on OCT. The bottom images demonstrate thick skin and thin skin, and annotated
structures, their corresponding equivalent histology, and OCT images. The scale bar in OCT images is 400 µm.

90.jpeg

Now project it to the broader industry:

7

REAL WORLD DATA
Weather, ocean, climate

Domain is function à data is function, e.g.,

• Given temperature and wind today, forecast temperature and wind tomorrow

NASA NVIDIA Omniverse

8

REAL WORLD DATA
Geophysics, seismology, earth systems, ocean, climate

Domain is function à data is function, e.g.,

• Given the velocity field in subsurface, how the wave propagates and cause earthquakes

Los Angeles basin

Broadband (0--5 Hz) fully deterministic 3D ground-motion simulations of a magnitude 7.0 Hayward fault earthquake: Comparison with empirical ground-motion models and 3D path and site effects from source normalized intensities

San Francisco

9

REAL WORLD DATA
Geophysics, seismology, earth systems, ocean, climate

Domain is function à data is function, e.g.,

• Material deformation, plasma evolution, tissue imaging

Deformation Fusion Ultrasound

10

REAL WORLD DATA
Geophysics, seismology, earth systems, ocean, climate

Domain is function à data is function, e.g.,

• Molecular dynamics, protein engineering, humanoid and robotics

11

REAL WORLD DATA
Automative industry, aviation industry

Domain is function à data is function, e.g.,

• Fluid dynamics dynamics

REAL WORLD DATA
Natural Sciences and engineering

Domain is function à data is function, e.g.,

• Biochemistry

• Carbon dioxide deposit

• Climate mitigation

• Water reservoir

• Medicine

• Sustainability

• …

Data is function, it is visualized, but these are not

- Pictures

- Sequential time series.

13

TRADITIONAL METHODS
Natural Sciences and engineering

How are we used to tackling these computational problems?

Model the phenomena using differential and algebraic equations (e.g., PDEs)

 Schrödinger, Darcy, Maxwell, Navier-Stokes, fluid dynamics, laws of thermodynamics, Helmholtz,

etc.,

Develop suitable conventional solvers to solve these equations at certain resolutions,

 Finite difference, elements, volume methods, spectral, etc.

14

TRADITIONAL METHODS
Natural Sciences and engineering

Develop conventional methods and solvers for solving these equations at certain resolutions,

 Finite difference, elements, volume methods, spectral, etc.

E.g., in Darcy’s flow

−∇. 𝑎 𝑥 ∇𝑢 𝑥 = 𝑓(𝑥)

Input function: diffusion coefficients, 𝑎#𝑠 Output functions: solutions, 𝑢#𝑠

Solution operator
 𝒢

Finer discretization à more accurate solution, and more accurate method,

 Also more compute

𝑢$%&,(− 𝑢$(
Δ𝑥 	

15

TRADITIONAL METHODS
Modeling is hard to impossible, computation is massive

Why not continue this direction and hand design solution operator?

Modeling real world using equations is hard, e.g., weather forecast,

Parametrizing behavior of clouds, ocean waves, mountains, etc. For some, we don’t have much idea how to do them.

…

16

TRADITIONAL METHODS
Computational constraints limit model resolution

Reasonable solution operator requires high resolution à much more computes

1000km

100km

10km

1km

100m

10m

1m

1980 1990 2000 2010 2020 2030 2040 2050 2060

AR1 AR2 AR3 AR4 AR5 AR6IPCC

1km at 1min (1X COMPUTE)

100m at 1s (10,000X COMPUTE)

1m at 0.01s (100 BILLION X COMPUTE)

CO
N

VE
CT

IO
N

RE

SO
LV

IN
G

ST
O

RM
 R

ES
O

LV
IN

G

ST
RA

TO
CU

M
U

LU
S

RE
SO

LV
IN

G

COM
PUT

ERE
SO

LU
TI

O
N

17

TRADITIONAL METHODS
Modeling is hard to impossible, computation is massive

Why not continue this direction and hand design solution operator?

Human digestible modeling is challenging and limiting,

Modeling unknown physics

Error due to parameterization

Differentiability for invers problems

Barrier to entry

Often hard to incorporate expert knowledge

Hard to incorporate real data and experiments

Massive computation

…

Machine learning provides tool to advance science and complement the conventional methods

How about we learn the solution operator?

Given 𝑎, predict 𝑢

Input function space
𝑎 ∈ 𝒜

Output function space
𝑢 ∈ 𝒰

what is 𝒢(𝑎)?

Infinite dimension

18

TRADITIONAL METHODS
AI/ML to enable the leap in performance

Why not continue this direction and hand design solution operator?

Human digestible modeling is challenging and limiting,

Modeling unknown physics

Error due to parameterization

Differentiability for invers problems

Barrier to entry

Often hard to incorporate expert knowledge

Hard to incorporate real data and experiments

Massive computation

…

Machine learning provides tools to advance science and complement the conventional methods

1980 1990 2000 2010 2020

Single-threaded perf

1.5X per year

1.1X per year
102

103

104

105

106

107

109

108

101

MACHINE
LEARNING

SCALE
UP & OUT

ACCELERATED
COMPUTING

19

TRADITIONAL METHODS
AI/ML to enable the leap in performance

Why not continue this direction and hand design solution operator?

Human digestible modeling is challenging and limiting,

Modeling unknowns

Approximation due to parameterization

Massive computation

Differentiability for invers problems

Barrier to entry

Often hard to incorporate expert knowledge

Hard to incorporate real data and experiments

…
1980 1990 2000 2010 2020

Single-threaded perf

1.5X per year

1.1X per year
102

103

104

105

106

107

109

108

101

MACHINE
LEARNING

SCALE
UP & OUT

ACCELERATED
COMPUTING

https://www.ted.com/talks/anima_anandkumar_ai_that_connects_the_digital_and_physical_worlds

https://www.ted.com/talks/anima_anandkumar_ai_that_connects_the_digital_and_physical_worlds

20

MACHINE LEARNING ON FUNCTION SPACES

21

MACHINE LEARNING ON FUNCTIONS
Data and discretization

Input function space
𝑎 ∈ 𝒜

Output function space
𝑢 ∈ 𝒰

what is 𝒢(𝑎)?

First step challenge

 Input data is given at various resolutions

 Output data is given at various resolution

 The model output needs to be function (derivatives and integrals in physics)

22

MACHINE LEARNING ON FUNCTIONS
Data and discretization

Input function space
𝑎 ∈ 𝒜

Output function space
𝑢 ∈ 𝒰

what is 𝒢(𝑎)?

First step challenge

 Input data is given at various resolutions

 Output data is given at various resolution

 The model output needs to be function (derivatives and integrals in physics)

23

MACHINE LEARNING ON FUNCTIONS
Data and discretization

Input function space
𝑎 ∈ 𝒜

Output function space
𝑢 ∈ 𝒰

what is 𝒢(𝑎)?

First step challenge

 Input data is given at various resolutions

 Output data is given at various resolution

 The model output needs to be function (derivatives and integrals in physics)

24

MACHINE LEARNING ON FUNCTIONS
Data and discretization

Input function space
𝑎 ∈ 𝒜

Output function space
𝑢 ∈ 𝒰

what is 𝒢(𝑎)?

First step challenge

 Input data is given at various resolutions

 Output data is given at various resolution

 The model output needs to be function (derivatives and integrals in physics)

25

MACHINE LEARNING ON FUNCTIONS
Data and discretization

Input function space
𝑎 ∈ 𝒜

Output function space
𝑢 ∈ 𝒰

what is 𝒢(𝑎)?

First step challenge

 Input data is given at various resolutions

 Output data is given at various resolution

 The model output needs to be function (derivatives and integrals in physics)

26

NEURAL OPERATOR

27

DISCRETIZATION AGNOSTIC LEARNING
One ML model for any discretization

Neural Network Neural Operator

Input and output at any resolutionInput and output at fixed resolution

28

NEURAL OPERATOR: DISCRETIZATION AGNOSTIC
One ML model for any discretization

Definition: a trained AI model is discretization-convergent if

• We can query at any point.
• Converges upon mesh refinement to a limit.

Mesh refinement

Converging solution

29

PRE-REQ

30

MACHINE LEARNING ON FUNCTIONS
Integral and discretization

Pre-req for ML on function spaces

𝑥

𝑎(𝑥)

*𝑎 𝑥 𝑑𝑥 ≈-
$

"

𝑎 𝑥$ Δx%	

𝑥! 𝑥" 𝑥# 𝑥$ 𝑥% 𝑥&'!… 𝑥('" 𝑥('! 𝑥(…𝑥& 𝑥&)!

Δ𝑥&

Riemannian sum

31

MACHINE LEARNING ON FUNCTIONS
Integral and discretization

Pre-req for ML on function spaces

𝑥

𝑎(𝑥)

𝑥&'! 𝑥&𝑥&)!

Δ𝑥&

Finer mesh à better approximation of integral

Riemannian sum

*𝑎 𝑥 𝑑𝑥 ≈-
$

"

𝑎 𝑥$ Δx%	

32

MACHINE LEARNING ON FUNCTIONS
Derivative and discretization

Pre-req for ML on function spaces

𝑥

𝑎(𝑥)

1
𝑑𝑎
𝑑𝑥 &

≈
𝑎 𝑥$'(− 𝑎 𝑥$

Δ𝑥
	

	 1
𝑑𝑎
𝑑𝑥 &

≈
𝑎 𝑥$'(− 𝑎 𝑥$

2Δ𝑥
	+
𝑎 𝑥$ 	− 𝑎 𝑥$)(

2Δ𝑥
	

𝑥&𝑥&)!

Δ𝑥&

Finer mesh à better approximation of derivatives

33

FROM NEURAL NETWORKS

TO NEURAL OPERATORS

34

MACHINE LEARNING ON FUNCTIONS
From neural networks to neural operators

Consider a basic feed forward neural network layer

𝑥

𝑎

𝑥*𝑥! 𝑥(

𝑎(𝑥*)

𝑎(𝑥()

𝑎(𝑥!)

𝑎 ≈

𝑎(𝑥')
𝑎(𝑥()
..
.

𝑎(𝑥)*')
𝑎(𝑥))

1
n	

35

MACHINE LEARNING ON FUNCTIONS
From neural networks to neural operators

Consider a basic feed forward neural network layer

𝑥

𝑎

𝑗1 𝑛

𝑎*

𝑎(

𝑎!

𝑎 ≈

𝑎(𝑥')
𝑎(𝑥()
..
.

𝑎(𝑥)*')
𝑎(𝑥))

36

MACHINE LEARNING ON FUNCTIONS
From neural networks to neural operators

Consider a basic feed forward neural network layer

𝑥

𝑎 First layer

𝜈$ = 𝜎(
1
𝑛-

*

"

𝐾$*𝑎*)𝑎 ≈

𝑎(𝑥')
𝑎(𝑥()
..
.

𝑎(𝑥)*')
𝑎(𝑥))

𝑦𝑦&𝑦! 𝑦(

𝜈&

𝜈,𝜈!

𝐾

𝐾

Linear model in conventional ML

(finite dimensional ML)

𝑗1 𝑛

𝑎*

𝑎(

𝑎!

37

MACHINE LEARNING ON FUNCTIONS
From neural networks to neural operators

Consider a basic feed forward neural network layer

𝑥

𝑎

𝑥*
1
n	

𝑥! 𝑥(

𝑎(𝑥*)

𝑎(𝑥()

𝑎(𝑥!)

First layer

𝜈$ = 𝜎(
1
𝑛-

*

"

𝐾$*𝑎*)

	 = 𝜎(
1
𝑛-

*

"

𝐾$*𝑎 𝑥*)

𝑎 ≈

𝑎(𝑥')
𝑎(𝑥()
..
.

𝑎(𝑥)*')
𝑎(𝑥))

𝑦𝑦&𝑦! 𝑦(

𝜈&

𝜈,𝜈!

𝐾

𝐾

Linear model in conventional ML

(finite dimensional ML)

38

MACHINE LEARNING ON FUNCTIONS
From neural networks to neural operators

Consider a basic feed forward neural network layer

𝑥

𝑎

𝑥*
1
n	

𝑥! 𝑥(

𝑎(𝑥*)

𝑎(𝑥()

𝑎(𝑥!)

𝜈(𝑦$)	 = 𝜎(
1
𝑛-

*

"

𝐾$*𝑎 𝑥*)𝑎 ≈

𝑎(𝑥')
𝑎(𝑥()
..
.

𝑎(𝑥)*')
𝑎(𝑥))

𝑦𝑦&𝑦! 𝑦(

𝜈&

𝜈,𝜈!

𝐾

𝐾

First layer

39

MACHINE LEARNING ON FUNCTIONS
From neural networks to neural operators

Consider a basic feed forward neural network layer

𝑥

𝑎

𝑥*
1
n	

𝑥! 𝑥(

𝑎(𝑥*)

𝑎(𝑥()

𝑎(𝑥!)

𝜈(𝑦$)	 = 𝜎(
1
𝑛-

*

"

𝐾$*𝑎 𝑥*)

	 = 𝜎(
1
𝑛-

*

"

𝜅 𝑦$, 𝑥* 𝑎 𝑥*)

𝑎 ≈

𝑎(𝑥')
𝑎(𝑥()
..
.

𝑎(𝑥)*')
𝑎(𝑥))

𝐾

𝐾

𝑦𝑦&𝑦! 𝑦(

𝜈(𝑦&)

𝜈(𝑦,)𝜈(𝑦!)

First layer

40

MACHINE LEARNING ON FUNCTIONS
From neural networks to neural operators

Consider a basic feed forward neural network layer

𝑥

𝑎

𝑥*
1
n	

𝑥! 𝑥(

𝑎(𝑥*)

𝑎(𝑥()

𝑎(𝑥!)

𝜈(𝑦$)	 = 𝜎(
1
𝑛-

*

"

𝐾$*𝑎 𝑥*)

	 = 𝜎(
1
𝑛-

*

"

𝜅 𝑦$, 𝑥* 𝑎 𝑥*)

	 = 𝜎(-
*

"

𝜅 𝑦$, 𝑥* 𝑎 𝑥* 	
Δ𝑥*)

𝑎 ≈

𝑎(𝑥')
𝑎(𝑥()
..
.

𝑎(𝑥)*')
𝑎(𝑥))

𝐾

𝐾

𝑦𝑦&𝑦! 𝑦(

𝜈(𝑦&)

𝜈(𝑦,)𝜈(𝑦!)

First layer

41

MACHINE LEARNING ON FUNCTIONS
From neural networks to neural operators

Consider a basic feed forward neural network layer

𝑥

𝑎

𝑥*
1
n	

𝑥! 𝑥(

𝑎(𝑥*)

𝑎(𝑥()

𝑎(𝑥!)

𝜈(𝑦$)	 = 𝜎(
1
𝑛-

*

"

𝐾$*𝑎 𝑥*)

	 = 𝜎(
1
𝑛-

*

"

𝜅 𝑦$, 𝑥* 𝑎 𝑥*)

	 = 𝜎(-
*

"

𝜅 𝑦$, 𝑥* 𝑎 𝑥* 	
Δ𝑥*)

𝑎 ≈

𝑎(𝑥')
𝑎(𝑥()
..
.

𝑎(𝑥)*')
𝑎(𝑥))

𝐾

𝐾

𝑦𝑦&𝑦! 𝑦(

𝜈(𝑦&)

𝜈(𝑦,)𝜈(𝑦!)

𝜈(𝑦)	 = 	𝜎(*𝜅 𝑦, 𝑥 𝑎 𝑥 	d𝑥)

Linear integral operator in function spaces

(infinite dimensional ML)

First layer

Linear model in conventional ML

(finite dimensional ML)

43

MACHINE LEARNING ON FUNCTIONS
From neural networks to neural operators

Basic neural operator layer

𝑥

𝑎 𝐾

𝒦

𝑦

𝜈

𝒦 𝑎 (𝑦) = *𝜅 𝑦, 𝑥 𝑎 𝑥 	d𝑥	

Note: Similar to linear model 𝑦 = 𝐴𝑥	that is ubiquitous,

The linear integral operator ∫𝜅 𝑦, 𝑥 𝑎 𝑥 	d𝑥	is also familiar and ubiquitous:

• Impulse response

• Green’s function

• Frequency response, convolution

• …

• Poisson eq, stationary 3D Schrödinger eq, wave eq, diffusion eq, harmonic oscillator,

Gravity eq, heat eq, relativity eq, Feynman eq, …

45

MACHINE LEARNING ON FUNCTIONS
From neural networks to neural operators

Basic neural operator layer

𝑥

𝑎

𝑥*𝑥! 𝑥(

𝑎(𝑥*)

𝑎(𝑥()

𝑎(𝑥!)

𝐾

𝒦

𝑦𝑦&𝑦! 𝑦(

𝜈(𝑦&)

𝜈(𝑦,)𝜈(𝑦!)

𝜈(𝑦)	 = 𝜎 𝒦 𝑎 𝑦 = 	𝜎 *𝜅 𝑦, 𝑥 𝑎 𝑥 	d𝑥	 ≈ 𝜎(-
*

"

𝜅 𝑦	, 𝑥* 𝑎 𝑥* 	 Δ𝑥*)

𝑥𝑥*'! 𝑥*)!

Δ𝑥*

×𝜅 𝑦,⋅

Input function at any resolution

Output function can be evaluated at any point

46

MACHINE LEARNING ON FUNCTIONS
From neural networks to neural operators

Basic neural operator layer

𝑥

𝑎

𝑥*𝑥! 𝑥(

𝑎(𝑥*)

𝑎(𝑥()

𝑎(𝑥!)

𝐾

𝒦

𝑦𝑦&𝑦! 𝑦(

𝜈(𝑦&)

𝜈(𝑦,)𝜈(𝑦!)

𝜈(𝑦)	 = 𝜎 𝒦 𝑎 (𝑦) = 	𝜎(*𝜅 𝑦, 𝑥 𝑎 𝑥 	d𝜇	 +𝑊𝑎 𝑦 + 𝑏(𝑦))

𝑥𝑥*'! 𝑥*)!

Δ𝑥*

×𝜅 𝑦,⋅

Add more basic components Residual connection

Bias function

Proper measure/distribution

For simplicity, we keep x and y to belong to same space

47

Input:
Feature vector 𝑥

Output:
Label vector 𝑦Linear function Non-linearity

𝐴𝑥 + 𝑤 ⋅ 𝑥 + 	𝑏

Neural Networks, learn function	𝑦 = 𝑓(𝑥)

Input:
Function a

Output:
Solution

function 𝑢
Linear Integral Non-linearity

∫ 𝜅 𝑥, 𝑦 𝑎 𝑦 𝑑𝜇 +𝑊(𝑎 𝑦) + 𝑏(𝑦)Neural Operators, learn operator u = 𝒢(𝑎)

• Integral operator outputs functions (not just finite-dimensional vectors).

• Integral operator is discretization agnostic and discretization convergent.

• Neural Operators are universal approximator of operators.

𝜅(x, y)

NEURAL OPERATORS
From neural networks to neural operators

48

Input:
Function a

Output:
Solution

function 𝑢
Linear Integral Non-linearity

Neural Operators, learn operator u = 𝒢!(𝑎)

• Composition of linear operators followed by point-wise non linearity

𝜈)

u = 𝒢 𝑎 = 𝜎 𝒦, 𝜎 𝒦,)(… 𝜎 𝒦(𝑎 … 	

Recall neural networks

∫ 𝜅& 𝑥, 𝑦 𝑎 𝑦 𝑑𝜇 +𝑊&(𝑎 𝑦) + 𝑏&(𝑦)

NEURAL OPERATORS

Function to function map

49

Input:
Function a

Output:
Solution

function 𝑢
Linear Integral Non-linearity

Neural Operators, learn operator u = 𝒢!(𝑎)

• Integral operator outputs functions (not just finite-dimensional vectors).

𝜈)

𝑢(𝑦)	 = 𝜎 𝒦, 𝜈, 𝑦 = 	𝜎 *𝜅, 𝑦, 𝑥 𝜈, 𝑥 	d𝑥	 ≈ 𝜎(-
*

"

𝜅, 𝑦	, 𝑥* 𝜈, 𝑥* 	
Δ𝑥$)

Output function can be evaluated at any point

∫ 𝜅& 𝑥, 𝑦 𝑎 𝑦 𝑑𝜇 +𝑊&(𝑎 𝑦) + 𝑏&(𝑦)

NEURAL OPERATORS
Function to function map

50

Input:
Function a

Output:
Solution

function 𝑢
Linear Integral Non-linearity

∫ 𝜅& 𝑥, 𝑦 𝑎 𝑦 𝑑𝜇 +𝑊&(𝑎 𝑦) + 𝑏&(𝑦)Neural Operators, learn operator u = 𝒢!(𝑎)

• Integral operator is discretization agnostic and discretization convergent.

𝜈((𝑦)	 = 𝜎 𝒦(𝑎 𝑦 = 	𝜎 *𝜅(𝑦, 𝑥 𝑎 𝑥 	d𝑥	 ≈ 𝜎(-
*

"

𝜅(𝑦	, 𝑥* 𝑎 𝑥* 	
Δ𝑥$)

𝜈)

Input function can be provided at any discretization

As discretization gets finer (no matter what way), the operator converges to a unique operator in continuum.

NEURAL OPERATORS
Function to function map

51

Input:
Function a

Output:
Solution

function 𝑢
Linear Integral Non-linearity

Neural Operators, learn operator u = 𝒢!(𝑎)

• Neural Operators are universal approximator of operators.

𝜈)

∫ 𝜅& 𝑥, 𝑦 𝑎 𝑦 𝑑𝜇 +𝑊&(𝑎 𝑦) + 𝑏&(𝑦)

KOVACHKI, LI, LIU, AZIZZADENESHELI, BHATTACHARYA, STUART, ANANDKUMAR

Preprocessing It is often beneficial to manually include features into the input functions a to help
facilitate the learning process. For example, instead of considering the Rda-valued vector field a
as input, we use the Rd+da-valued vector field (x, a(x)). By including the identity element, infor-
mation about the geometry of the spatial domain D is directly incorporated into the architecture.
This allows the neural networks direct access to information that is already known in the problem
and therefore eases learning. We use this idea in all of our numerical experiments in Section 7.
Similarly, when learning a smoothing operator, it may be beneficial to include a smoothed version
of the inputs a✏ using, for example, Gaussian convolution. Derivative information may also be
of interest and thus, as input, one may consider, for example, the Rd+2da+dda-valued vector field
(x, a(x), a✏(x),rxa✏(x)). Many other possibilities may be considered on a problem-specific basis.

Discretization Invariance and Approximation In light of discretization invariance Theorem 8
and universal approximation Theorems 11 12, 13, 14 whose formal statements are given in Sec-
tion 8, we may obtain a decomposition of the total error made by a neural operator as a sum of the
discretization error and the approximation error. In particular, given a finite dimensional instantia-
tion of a neural operator Ĝ✓ : RLd

⇥ RLda ! U , for some L-point discretization of the input, we
have

kĜ✓(DL, a|DL)� G
†(a)kU  kĜ✓(DL, a|DL)� G✓(a)kU| {z }

discretization error

+ kG✓(a)� G
†(a)kU| {z }

approximation error

.

Our approximation theoretic Theorems imply that we can find parameters ✓ so that the approxi-
mation error is arbitrarily small while the discretization invariance Theorem states that we can find
a fine enough discretization (large enough L) so that the discretization error is arbitrarily small.
Therefore, with a fixed set of parameters independent of the input discretization, a neural operator
that is able to be implemented on a computer can approximate operators to arbitrary accuracy.

4. Parameterization and Computation

In this section, we discuss various ways of parameterizing the infinite dimensional architecture
(6), Figure 2. The goal is to find an intrinsic infinite dimensional parameterization that achieves
small error (say ✏), and then rely on numerical approximation to ensure that this parameterization
delivers an error of the same magnitude (say 2✏), for all data discretizations fine enough. In this way
the number of parameters used to achieve O(✏) error is independent of the data discretization. In
many applications we have in mind the data discretization is something we can control, for example
when generating input/output pairs from solution of partial differential equations via numerical
simulation. The proposed approach allows us to train a neural operator approximation using data
from different discretizations, and to predict with discretizations different from those used in the
data, all by relating everything to the underlying infinite dimensional problem.

We also discuss the computational complexity of the proposed parameterizations and suggest al-
gorithms which yield efficient numerical methods for approximation. Subsections 4.1-4.4 delineate
each of the proposed methods.

To simplify notation, we will only consider a single layer of (6) i.e. (10) and choose the input
and output domains to be the same. Furthermore, we will drop the layer index t and write the single
layer update as

u(x) = �

✓
Wv(x) +

Z

D

(x, y)v(y) d⌫(y) + b(x)

◆
8x 2 D (12)

12

Theorem (Universal approximation theorem of neural operators) :

 Under a mild regularity condition, for any given arbitrary operator between general function spaces 𝒢	-	, and any	𝜖 > 0, there

exist a neural operator 𝒢!, such that,

NEURAL OPERATORS
Function to function map

KOVACHKI, LI, LIU, AZIZZADENESHELI, BHATTACHARYA, STUART, ANANDKUMAR

Assumption 10 Let D0
⇢ Rd

0 be a Lipschitz domain for some d0 2 N. One of the following holds

1. U = Lp2(D0) for some 1  p2 < 1, and m2 = 0,

2. U = Wm2,p2(D0) for some 1  p2 < 1 and m2 2 N,

3. U = Cm2(D̄0) and m2 2 N0.

We first show that neural operators are dense in the continuous operators G
† : A ! U in

the topology of uniform convergence on compacta. The proof proceeds by making three main
approximations which are schematically shown in Figure 16. First, inputs are mapped to a finite-
dimensional representation through a set of appropriate linear functionals on A denoted by F :
A ! RJ . We show in Lemmas 21 and 23 that, when A satisfies Assumption 9, elements of A⇤ can
be approximated by integration against smooth functions. This generalizes the idea from (Chen and
Chen, 1995) where functionals on C(D̄) are approximated by a weighted sum of Dirac measures.
We then show in Lemma 25 that, by lifting the dimension, this representation can be approximated
by a single element of IO. Second, the representation is non-linearly mapped to a new representation
by a continuous function : RJ

! RJ
0 which finite-dimensionalizes the action of G†. We show,

in Lemma 28, that this map can be approximated by a neural operator by reducing the architecture
to that of a standard neural network. Third, the new representation is used as the coefficients of
an expansion onto representers of U , the map denoted G : RJ

0
! U , which we show can be

approximated by a single IO layer in Lemma 27 using density results for continuous functions. The
structure of the overall approximation is similar to (Bhattacharya et al., 2020) but generalizes the
ideas from working on Hilbert spaces to the spaces in Assumptions 9 and 10. Statements and proofs
of the lemmas used in the theorems are given in the appendices.

Theorem 11 Let Assumptions 9 and 10 hold and suppose G† : A ! U is continuous. Let �1 2 A
L
0 ,

�2 2 A0, and �3 2 Am2 . Then for any compact set K ⇢ A and 0 < ✏  1, there exists a number
N 2 N and a neural operator G 2 NON (�1,�2,�3;D,D0) such that

sup
a2K

kG
†(a)� G(a)kU  ✏.

Furthermore, if U is a Hilbert space and �1 2 BA and, for some M > 0, we have that kG†(a)kU 

M for all a 2 A then G can be chosen so that

kG(a)kU  4M, 8a 2 A.

The proof is provided in appendix F In the following theorem, we extend this result to the case
A = Cm1(D̄), showing density of the m1-th order neural operators.

Theorem 12 Let D ⇢ Rd be a Lipschitz domain, m1 2 N, define A := Cm1(D̄), suppose Assump-
tion 10 holds and assume that G† : A ! U is continuous. Let �1 2 A

L
0 , �2 2 A0, and �3 2 Am2 .

Then for any compact set K ⇢ A and 0 < ✏  1, there exists a number N 2 N and a neural
operator G 2 NO

m1
N

(�1,�2,�3;D,D0) such that

sup
a2K

kG
†(a)� G(a)kU  ✏.

52

KOVACHKI, LI, LIU, AZIZZADENESHELI, BHATTACHARYA, STUART, ANANDKUMAR

Assumption 10 Let D0
⇢ Rd

0 be a Lipschitz domain for some d0 2 N. One of the following holds

1. U = Lp2(D0) for some 1  p2 < 1, and m2 = 0,

2. U = Wm2,p2(D0) for some 1  p2 < 1 and m2 2 N,

3. U = Cm2(D̄0) and m2 2 N0.

We first show that neural operators are dense in the continuous operators G
† : A ! U in

the topology of uniform convergence on compacta. The proof proceeds by making three main
approximations which are schematically shown in Figure 16. First, inputs are mapped to a finite-
dimensional representation through a set of appropriate linear functionals on A denoted by F :
A ! RJ . We show in Lemmas 21 and 23 that, when A satisfies Assumption 9, elements of A⇤ can
be approximated by integration against smooth functions. This generalizes the idea from (Chen and
Chen, 1995) where functionals on C(D̄) are approximated by a weighted sum of Dirac measures.
We then show in Lemma 25 that, by lifting the dimension, this representation can be approximated
by a single element of IO. Second, the representation is non-linearly mapped to a new representation
by a continuous function : RJ

! RJ
0 which finite-dimensionalizes the action of G†. We show,

in Lemma 28, that this map can be approximated by a neural operator by reducing the architecture
to that of a standard neural network. Third, the new representation is used as the coefficients of
an expansion onto representers of U , the map denoted G : RJ

0
! U , which we show can be

approximated by a single IO layer in Lemma 27 using density results for continuous functions. The
structure of the overall approximation is similar to (Bhattacharya et al., 2020) but generalizes the
ideas from working on Hilbert spaces to the spaces in Assumptions 9 and 10. Statements and proofs
of the lemmas used in the theorems are given in the appendices.

Theorem 11 Let Assumptions 9 and 10 hold and suppose G† : A ! U is continuous. Let �1 2 A
L
0 ,

�2 2 A0, and �3 2 Am2 . Then for any compact set K ⇢ A and 0 < ✏  1, there exists a number
N 2 N and a neural operator G 2 NON (�1,�2,�3;D,D0) such that

sup
a2K

kG
†(a)� G(a)kU  ✏.

Furthermore, if U is a Hilbert space and �1 2 BA and, for some M > 0, we have that kG†(a)kU 

M for all a 2 A then G can be chosen so that

kG(a)kU  4M, 8a 2 A.

The proof is provided in appendix F In the following theorem, we extend this result to the case
A = Cm1(D̄), showing density of the m1-th order neural operators.

Theorem 12 Let D ⇢ Rd be a Lipschitz domain, m1 2 N, define A := Cm1(D̄), suppose Assump-
tion 10 holds and assume that G† : A ! U is continuous. Let �1 2 A

L
0 , �2 2 A0, and �3 2 Am2 .

Then for any compact set K ⇢ A and 0 < ✏  1, there exists a number N 2 N and a neural
operator G 2 NO

m1
N

(�1,�2,�3;D,D0) such that

sup
a2K

kG
†(a)� G(a)kU  ✏.

52

52

Conventional deep learning error analysis

• Generalization

• Approximation

NEURAL OPERATORS
Function to function map

Approximation

Discretization

Generalization

Error analysis in operator learning

• Generalization

• Approximation

• Discretization

Learning happens on discretized data

Precision is relevant

53

Neural Operator architecture

NEURAL OPERATORS
Architectures

KOVACHKI, LI, LIU, AZIZZADENESHELI, BHATTACHARYA, STUART, ANANDKUMAR

Figure 5: top: The architecture of the neural operators; bottom: Fourier layer.
(a) The full architecture of neural operator: start from input a. 1. Lift to a higher dimension channel
space by a neural network P . 2. Apply T (typically T = 4) layers of integral operators and activation

functions. 3. Project back to the target dimension by a neural network Q. Output u. (b) Fourier layers:
Start from input v. On top: apply the Fourier transform F ; a linear transform R on the lower Fourier modes
which also filters out the higher modes; then apply the inverse Fourier transform F

�1. On the bottom: apply
a local linear transform W .

The Discrete Case and the FFT. Assuming the domain D is discretized with J 2 N points, we
can treat v 2 CJ⇥n and F(v) 2 CJ⇥n. Since we convolve v with a function which only has kmax
Fourier modes, we may simply truncate the higher modes to obtain F(v) 2 Ckmax⇥n. Multiplication
by the weight tensor R 2 Ckmax⇥m⇥n is then

�
R · (Fvt)

�
k,l

=
nX

j=1

Rk,l,j(Fv)k,j , k = 1, . . . , kmax, l = 1, . . . ,m. (27)

When the discretization is uniform with resolution s1⇥ · · ·⇥sd = J , F can be replaced by the Fast
Fourier Transform. For v 2 CJ⇥n, k = (k1, . . . , kd) 2 Zs1 ⇥ · · ·⇥Zsd , and x = (x1, . . . , xd) 2 D,
the FFT F̂ and its inverse F̂

�1 are defined as

(F̂v)l(k) =
s1�1X

x1=0

· · ·

sd�1X

xd=0

vl(x1, . . . , xd)e
�2i⇡

Pd
j=1

xjkj
sj ,

(F̂�1v)l(x) =
s1�1X

k1=0

· · ·

sd�1X

kd=0

vl(k1, . . . , kd)e
2i⇡

Pd
j=1

xjkj
sj

for l = 1, . . . , n. In this case, the set of truncated modes becomes

Zkmax = {(k1, . . . , kd) 2 Zs1 ⇥ · · ·⇥ Zsd | kj  kmax,j or sj � kj  kmax,j , for j = 1, . . . , d}.

When implemented, R is treated as a (s1⇥· · ·⇥sd⇥m⇥n)-tensor and the above definition of Zkmax

corresponds to the “corners” of R, which allows for a straight-forward parallel implementation of
(27) via matrix-vector multiplication. In practice, we have found the choice kmax,j roughly around
1
3 to 2

3 of the maximum number of Fourier modes in the Fast Fourier Transform of the grid valuation
of the input function provides desirable performance. In our empirical studies, we set kmax,j = 12
which yields kmax = 12d parameters per channel, to be sufficient for all the tasks that we consider.

22

Point-wise decoderPoint-wise encoder

𝑎: 𝐷 → ℝ*

Domain Co-Domain

E.g., weather:
Temperature, velocity, humidity, land mask, vorticity, precipitation, …

𝜈+(𝑥) = 𝑃(𝑎 𝑥)

𝜈+

54

Neural Operator architecture

Represent the kernel using a neural network

Graph Neural Operator (GNO) “also referred to as kernel NO)

NEURAL OPERATORS
Architectures

KOVACHKI, LI, LIU, AZIZZADENESHELI, BHATTACHARYA, STUART, ANANDKUMAR

Figure 5: top: The architecture of the neural operators; bottom: Fourier layer.
(a) The full architecture of neural operator: start from input a. 1. Lift to a higher dimension channel
space by a neural network P . 2. Apply T (typically T = 4) layers of integral operators and activation

functions. 3. Project back to the target dimension by a neural network Q. Output u. (b) Fourier layers:
Start from input v. On top: apply the Fourier transform F ; a linear transform R on the lower Fourier modes
which also filters out the higher modes; then apply the inverse Fourier transform F

�1. On the bottom: apply
a local linear transform W .

The Discrete Case and the FFT. Assuming the domain D is discretized with J 2 N points, we
can treat v 2 CJ⇥n and F(v) 2 CJ⇥n. Since we convolve v with a function which only has kmax
Fourier modes, we may simply truncate the higher modes to obtain F(v) 2 Ckmax⇥n. Multiplication
by the weight tensor R 2 Ckmax⇥m⇥n is then

�
R · (Fvt)

�
k,l

=
nX

j=1

Rk,l,j(Fv)k,j , k = 1, . . . , kmax, l = 1, . . . ,m. (27)

When the discretization is uniform with resolution s1⇥ · · ·⇥sd = J , F can be replaced by the Fast
Fourier Transform. For v 2 CJ⇥n, k = (k1, . . . , kd) 2 Zs1 ⇥ · · ·⇥Zsd , and x = (x1, . . . , xd) 2 D,
the FFT F̂ and its inverse F̂

�1 are defined as

(F̂v)l(k) =
s1�1X

x1=0

· · ·

sd�1X

xd=0

vl(x1, . . . , xd)e
�2i⇡

Pd
j=1

xjkj
sj ,

(F̂�1v)l(x) =
s1�1X

k1=0

· · ·

sd�1X

kd=0

vl(k1, . . . , kd)e
2i⇡

Pd
j=1

xjkj
sj

for l = 1, . . . , n. In this case, the set of truncated modes becomes

Zkmax = {(k1, . . . , kd) 2 Zs1 ⇥ · · ·⇥ Zsd | kj  kmax,j or sj � kj  kmax,j , for j = 1, . . . , d}.

When implemented, R is treated as a (s1⇥· · ·⇥sd⇥m⇥n)-tensor and the above definition of Zkmax

corresponds to the “corners” of R, which allows for a straight-forward parallel implementation of
(27) via matrix-vector multiplication. In practice, we have found the choice kmax,j roughly around
1
3 to 2

3 of the maximum number of Fourier modes in the Fast Fourier Transform of the grid valuation
of the input function provides desirable performance. In our empirical studies, we set kmax,j = 12
which yields kmax = 12d parameters per channel, to be sufficient for all the tasks that we consider.

22

∑,- κ y	, x, 𝜈 x, 	
Δx,

Learnable neural network

Generalization of GNNs to neural operators

NEURAL OPERATOR: LEARNING MAPS BETWEEN FUNCTION SPACES WITH APPLICATIONS TO PDES

Figure 4: V-cycle
Left: the multi-level discretization. Right: one V-cycle iteration for the multipole neural operator.

2005): starting from a discretization with J1 = J nodes, we impose inducing points of size
J2, J3, . . . , JL which all admit a low-rank kernel matrix decomposition of the form (15). The orig-
inal J ⇥ J kernel matrix Kl is represented by a much smaller Jl ⇥ Jl kernel matrix, denoted by
Kl,l. As shown in Figure 3, K1 is full-rank but very sparse while KL is dense but low-rank. Such
structure can be achieved by applying equation (15) recursively to equation (19), leading to the
multi-resolution matrix factorization (Kondor et al., 2014):

K ⇡ K1,1 +K1,2K2,2K2,1 +K1,2K2,3K3,3K3,2K2,1 + · · · (20)

where K1,1 = K1 represents the shortest range, K1,2K2,2K2,1 ⇡ K2, represents the second shortest
range, etc. The center matrix Kl,l is a Jl ⇥ Jl kernel matrix corresponding to the l-level of the
discretization described above. The matrices Kl+1,l,Kl,l+1 are Jl+1 ⇥ Jl and Jl ⇥ Jl+1 wide and
long respectively block transition matrices. Denote vl 2 RJl⇥n for the representation of the input
v at each level of the discretization for l = 1, . . . , L, and ul 2 RJl⇥n for the output (assuming the
inputs and outputs has the same dimension). We define the matrices Kl+1,l,Kl,l+1 as moving the
representation vl between different levels of the discretization via an integral kernel that we learn.
Combining with the truncation idea introduced in subsection 4.1, we define the transition matrices
as discretizations of the following integral kernel operators:

Kl,l : vl 7! ul =

Z

B(x,rl,l)
l,l(x, y)vl(y) dy (21)

Kl+1,l : vl 7! ul+1 =

Z

B(x,rl+1,l)
l+1,l(x, y)vl(y) dy (22)

Kl,l+1 : vl+1 7! ul =

Z

B(x,rl,l+1)
l,l+1(x, y)vl+1(y) dy (23)

where each kernel l,l0 : D ⇥D ! Rn⇥n is parameterized as a neural network and learned.

V-cycle Algorithm We present a V-cycle algorithm, see Figure 4, for efficiently computing (20).
It consists of two steps: the downward pass and the upward pass. Denote the representation in
downward pass and upward pass by v̌ and v̂ respectively. In the downward step, the algorithm starts
from the fine discretization representation v̌1 and updates it by applying a downward transition

19

Or ∑./κ y	, x., 𝜈 x. 𝜈 x. 	 Δx.,
and many more variants

Local or Global

55

What are the ways to compute integrals?

Project onto 𝜙0 and project back to 𝜓0

NEURAL OPERATORS
Architectures

KOVACHKI, LI, LIU, AZIZZADENESHELI, BHATTACHARYA, STUART, ANANDKUMAR

Figure 5: top: The architecture of the neural operators; bottom: Fourier layer.
(a) The full architecture of neural operator: start from input a. 1. Lift to a higher dimension channel
space by a neural network P . 2. Apply T (typically T = 4) layers of integral operators and activation

functions. 3. Project back to the target dimension by a neural network Q. Output u. (b) Fourier layers:
Start from input v. On top: apply the Fourier transform F ; a linear transform R on the lower Fourier modes
which also filters out the higher modes; then apply the inverse Fourier transform F

�1. On the bottom: apply
a local linear transform W .

The Discrete Case and the FFT. Assuming the domain D is discretized with J 2 N points, we
can treat v 2 CJ⇥n and F(v) 2 CJ⇥n. Since we convolve v with a function which only has kmax
Fourier modes, we may simply truncate the higher modes to obtain F(v) 2 Ckmax⇥n. Multiplication
by the weight tensor R 2 Ckmax⇥m⇥n is then

�
R · (Fvt)

�
k,l

=
nX

j=1

Rk,l,j(Fv)k,j , k = 1, . . . , kmax, l = 1, . . . ,m. (27)

When the discretization is uniform with resolution s1⇥ · · ·⇥sd = J , F can be replaced by the Fast
Fourier Transform. For v 2 CJ⇥n, k = (k1, . . . , kd) 2 Zs1 ⇥ · · ·⇥Zsd , and x = (x1, . . . , xd) 2 D,
the FFT F̂ and its inverse F̂

�1 are defined as

(F̂v)l(k) =
s1�1X

x1=0

· · ·

sd�1X

xd=0

vl(x1, . . . , xd)e
�2i⇡

Pd
j=1

xjkj
sj ,

(F̂�1v)l(x) =
s1�1X

k1=0

· · ·

sd�1X

kd=0

vl(k1, . . . , kd)e
2i⇡

Pd
j=1

xjkj
sj

for l = 1, . . . , n. In this case, the set of truncated modes becomes

Zkmax = {(k1, . . . , kd) 2 Zs1 ⇥ · · ·⇥ Zsd | kj  kmax,j or sj � kj  kmax,j , for j = 1, . . . , d}.

When implemented, R is treated as a (s1⇥· · ·⇥sd⇥m⇥n)-tensor and the above definition of Zkmax

corresponds to the “corners” of R, which allows for a straight-forward parallel implementation of
(27) via matrix-vector multiplication. In practice, we have found the choice kmax,j roughly around
1
3 to 2

3 of the maximum number of Fourier modes in the Fast Fourier Transform of the grid valuation
of the input function provides desirable performance. In our empirical studies, we set kmax,j = 12
which yields kmax = 12d parameters per channel, to be sufficient for all the tasks that we consider.

22

*𝜅 𝑦, 𝑥 𝑎 𝑥 	d𝑥	 =-
0

𝑅0 ⋅	< 𝜙0, 𝑎 > 𝜓0 𝑦

	 =-
0

𝑅0 ⋅ *𝜙0 𝑥 𝑎 𝑥 𝑑𝑥	 𝜓0 𝑦

	 ≈-
0

𝑅0 ⋅-
*

"

𝜙0 𝑥* 𝑎 𝑥* Δ𝑥*	 𝜓0 𝑦

Project input function on 𝜙0
𝜓0	Rep. functions for output space

𝜈(𝑦)	 = 𝜎 𝒦 𝜈 (𝑦) = 	𝜎(3𝜅 𝑦, 𝑥 𝜈 𝑥 	d𝜇	 +𝑊𝜈 𝑦 + 𝑏(𝑦))

Residual connection

56

What are the ways to compute integrals?

When 𝜙0 and 𝜓0 are Fourier bases à similarity to convolution

 (inspired by Fluid dynamics where Fourier bases or ubiquitous)

NEURAL OPERATORS
Architectures

KOVACHKI, LI, LIU, AZIZZADENESHELI, BHATTACHARYA, STUART, ANANDKUMAR

Figure 5: top: The architecture of the neural operators; bottom: Fourier layer.
(a) The full architecture of neural operator: start from input a. 1. Lift to a higher dimension channel
space by a neural network P . 2. Apply T (typically T = 4) layers of integral operators and activation

functions. 3. Project back to the target dimension by a neural network Q. Output u. (b) Fourier layers:
Start from input v. On top: apply the Fourier transform F ; a linear transform R on the lower Fourier modes
which also filters out the higher modes; then apply the inverse Fourier transform F

�1. On the bottom: apply
a local linear transform W .

The Discrete Case and the FFT. Assuming the domain D is discretized with J 2 N points, we
can treat v 2 CJ⇥n and F(v) 2 CJ⇥n. Since we convolve v with a function which only has kmax
Fourier modes, we may simply truncate the higher modes to obtain F(v) 2 Ckmax⇥n. Multiplication
by the weight tensor R 2 Ckmax⇥m⇥n is then

�
R · (Fvt)

�
k,l

=
nX

j=1

Rk,l,j(Fv)k,j , k = 1, . . . , kmax, l = 1, . . . ,m. (27)

When the discretization is uniform with resolution s1⇥ · · ·⇥sd = J , F can be replaced by the Fast
Fourier Transform. For v 2 CJ⇥n, k = (k1, . . . , kd) 2 Zs1 ⇥ · · ·⇥Zsd , and x = (x1, . . . , xd) 2 D,
the FFT F̂ and its inverse F̂

�1 are defined as

(F̂v)l(k) =
s1�1X

x1=0

· · ·

sd�1X

xd=0

vl(x1, . . . , xd)e
�2i⇡

Pd
j=1

xjkj
sj ,

(F̂�1v)l(x) =
s1�1X

k1=0

· · ·

sd�1X

kd=0

vl(k1, . . . , kd)e
2i⇡

Pd
j=1

xjkj
sj

for l = 1, . . . , n. In this case, the set of truncated modes becomes

Zkmax = {(k1, . . . , kd) 2 Zs1 ⇥ · · ·⇥ Zsd | kj  kmax,j or sj � kj  kmax,j , for j = 1, . . . , d}.

When implemented, R is treated as a (s1⇥· · ·⇥sd⇥m⇥n)-tensor and the above definition of Zkmax

corresponds to the “corners” of R, which allows for a straight-forward parallel implementation of
(27) via matrix-vector multiplication. In practice, we have found the choice kmax,j roughly around
1
3 to 2

3 of the maximum number of Fourier modes in the Fast Fourier Transform of the grid valuation
of the input function provides desirable performance. In our empirical studies, we set kmax,j = 12
which yields kmax = 12d parameters per channel, to be sufficient for all the tasks that we consider.

22

*𝜅 𝑦, 𝑥 𝑎 𝑥 	d𝑥	

*𝜅 𝑦 − 𝑥 𝑎 𝑥 	d𝑥	

Integral kernel operator

Convolution

ℱ)(ℱ 𝜅 ⋅ ℱ 𝑎 	 Fourier Domain

ℱ)(𝑅 ⋅ ℱ 𝑎 	 Fourier Domain

Learn 𝜅 function

Learn 𝑅 matrix

Learn weights 𝑅 in Fourier Domain

Generalization of CNN with large kernels to neural operators

57

What are the ways to compute integrals?

Fourier Neural Operator (FNO)

When the input function is given on a regular grid,

 The integral is approximated using FFT

NEURAL OPERATORS
Architectures

KOVACHKI, LI, LIU, AZIZZADENESHELI, BHATTACHARYA, STUART, ANANDKUMAR

Figure 5: top: The architecture of the neural operators; bottom: Fourier layer.
(a) The full architecture of neural operator: start from input a. 1. Lift to a higher dimension channel
space by a neural network P . 2. Apply T (typically T = 4) layers of integral operators and activation

functions. 3. Project back to the target dimension by a neural network Q. Output u. (b) Fourier layers:
Start from input v. On top: apply the Fourier transform F ; a linear transform R on the lower Fourier modes
which also filters out the higher modes; then apply the inverse Fourier transform F

�1. On the bottom: apply
a local linear transform W .

The Discrete Case and the FFT. Assuming the domain D is discretized with J 2 N points, we
can treat v 2 CJ⇥n and F(v) 2 CJ⇥n. Since we convolve v with a function which only has kmax
Fourier modes, we may simply truncate the higher modes to obtain F(v) 2 Ckmax⇥n. Multiplication
by the weight tensor R 2 Ckmax⇥m⇥n is then

�
R · (Fvt)

�
k,l

=
nX

j=1

Rk,l,j(Fv)k,j , k = 1, . . . , kmax, l = 1, . . . ,m. (27)

When the discretization is uniform with resolution s1⇥ · · ·⇥sd = J , F can be replaced by the Fast
Fourier Transform. For v 2 CJ⇥n, k = (k1, . . . , kd) 2 Zs1 ⇥ · · ·⇥Zsd , and x = (x1, . . . , xd) 2 D,
the FFT F̂ and its inverse F̂

�1 are defined as

(F̂v)l(k) =
s1�1X

x1=0

· · ·

sd�1X

xd=0

vl(x1, . . . , xd)e
�2i⇡

Pd
j=1

xjkj
sj ,

(F̂�1v)l(x) =
s1�1X

k1=0

· · ·

sd�1X

kd=0

vl(k1, . . . , kd)e
2i⇡

Pd
j=1

xjkj
sj

for l = 1, . . . , n. In this case, the set of truncated modes becomes

Zkmax = {(k1, . . . , kd) 2 Zs1 ⇥ · · ·⇥ Zsd | kj  kmax,j or sj � kj  kmax,j , for j = 1, . . . , d}.

When implemented, R is treated as a (s1⇥· · ·⇥sd⇥m⇥n)-tensor and the above definition of Zkmax

corresponds to the “corners” of R, which allows for a straight-forward parallel implementation of
(27) via matrix-vector multiplication. In practice, we have found the choice kmax,j roughly around
1
3 to 2

3 of the maximum number of Fourier modes in the Fast Fourier Transform of the grid valuation
of the input function provides desirable performance. In our empirical studies, we set kmax,j = 12
which yields kmax = 12d parameters per channel, to be sufficient for all the tasks that we consider.

22

(a) The full architecture of neural operator: start from input a. 1. Lift to a higher dimension channel
space by a neural network P . 2. Apply four layers of integral operators and activation functions. 3. Project
back to the target dimension by a neural network Q. Output u. (b) Fourier layers: Start from input v. On

top: apply the Fourier transform F ; a linear transform R on the lower Fourier modes and filters out the
higher modes; then apply the inverse Fourier transform F

�1. On the bottom: apply a local linear transform
W .

Figure 4: top: The architecture of the neural operators; bottom: Fourier layer.

5.4 Fourier Neural Operator (FNO)

Instead of working with a kernel directly on the domain D, we may consider its representation in
Fourier space and directly parameterize it there. This allows us to utilize Fast Fourier Transform
(FFT) methods in order to compute the action of the kernel integral operator (23) with almost linear
complexity. The method we outline was first described in Li et al. (2020a) and is termed the Fourier
Neural Operator (FNO). For simplicity, we will assume that D = Td is the unit torus and all
functions are complex-valued. Let F : L1(D;Cn) ! L1(D;Cn) denote the Fourier transform of a
function v : D ! Cn and F

�1 its inverse

(Fv)j(k) =

Z

D
vj(x)e

�2i⇡hx,kidx

(F�1v)j(x) =

Z

D
vj(k)e

2i⇡hx,kidk

for j = 1, . . . , n where i =
p
�1 is the imaginary unit and h·, ·i denotes the Euclidean inner product

on Rd. By letting (x, y) = (x�y) for some  : D ! Cm⇥n in (23) and applying the convolution
theorem, we find that

u(x) = F
�1

�
F() · F(v)

�
(x) 8x 2 D.

We therefore propose to directly parameterize  by its Fourier coefficients. We write

u(x) = F
�1

�
R� · F(v)

�
(x) 8x 2 D

where R� is the Fourier transform of a periodic function  : D ! Cn⇥n parameterized by some
� 2 Rp.

For frequency mode k 2 D, we have (Fv)(k) 2 Cn and R�(k) 2 Cm⇥n. Notice that since
we assume  is periodic, it admits a Fourier series expansion, so we may work with the discrete

28

M𝑒	/$0!1	𝑎 𝑥 𝑑𝑥 ≈
1
𝑛R

(

!

𝑒	/$0!1"𝑎 𝑥(

Discrete Fourier transform à Fast Fourier transform

58

Train using coarse resolution data

NEURAL OPERATORS
Discretization agnostic, zero shot super resolution

Directly evaluate on higher resolution (no re-training)

59

What are the ways to compute integrals?

• Wavelet (WNO)

• PCA (PCA-NO)

• Laplace (LNO)

• Represented by an implicit neural network (GNO, DeepONet-NeuralOperator)

NEURAL OPERATORS
Architectures

KOVACHKI, LI, LIU, AZIZZADENESHELI, BHATTACHARYA, STUART, ANANDKUMAR

Figure 5: top: The architecture of the neural operators; bottom: Fourier layer.
(a) The full architecture of neural operator: start from input a. 1. Lift to a higher dimension channel
space by a neural network P . 2. Apply T (typically T = 4) layers of integral operators and activation

functions. 3. Project back to the target dimension by a neural network Q. Output u. (b) Fourier layers:
Start from input v. On top: apply the Fourier transform F ; a linear transform R on the lower Fourier modes
which also filters out the higher modes; then apply the inverse Fourier transform F

�1. On the bottom: apply
a local linear transform W .

The Discrete Case and the FFT. Assuming the domain D is discretized with J 2 N points, we
can treat v 2 CJ⇥n and F(v) 2 CJ⇥n. Since we convolve v with a function which only has kmax
Fourier modes, we may simply truncate the higher modes to obtain F(v) 2 Ckmax⇥n. Multiplication
by the weight tensor R 2 Ckmax⇥m⇥n is then

�
R · (Fvt)

�
k,l

=
nX

j=1

Rk,l,j(Fv)k,j , k = 1, . . . , kmax, l = 1, . . . ,m. (27)

When the discretization is uniform with resolution s1⇥ · · ·⇥sd = J , F can be replaced by the Fast
Fourier Transform. For v 2 CJ⇥n, k = (k1, . . . , kd) 2 Zs1 ⇥ · · ·⇥Zsd , and x = (x1, . . . , xd) 2 D,
the FFT F̂ and its inverse F̂

�1 are defined as

(F̂v)l(k) =
s1�1X

x1=0

· · ·

sd�1X

xd=0

vl(x1, . . . , xd)e
�2i⇡

Pd
j=1

xjkj
sj ,

(F̂�1v)l(x) =
s1�1X

k1=0

· · ·

sd�1X

kd=0

vl(k1, . . . , kd)e
2i⇡

Pd
j=1

xjkj
sj

for l = 1, . . . , n. In this case, the set of truncated modes becomes

Zkmax = {(k1, . . . , kd) 2 Zs1 ⇥ · · ·⇥ Zsd | kj  kmax,j or sj � kj  kmax,j , for j = 1, . . . , d}.

When implemented, R is treated as a (s1⇥· · ·⇥sd⇥m⇥n)-tensor and the above definition of Zkmax

corresponds to the “corners” of R, which allows for a straight-forward parallel implementation of
(27) via matrix-vector multiplication. In practice, we have found the choice kmax,j roughly around
1
3 to 2

3 of the maximum number of Fourier modes in the Fast Fourier Transform of the grid valuation
of the input function provides desirable performance. In our empirical studies, we set kmax,j = 12
which yields kmax = 12d parameters per channel, to be sufficient for all the tasks that we consider.

22

*𝜅 𝑦, 𝑥 𝑎 𝑥 	d𝑥	 =-
0

𝑅0 ⋅	< 𝜙0, 𝑎 > 𝜙10 𝑦

	 =-
0

𝑅0 ⋅ *𝜙0 𝑥 𝑎 𝑥 𝑑𝑥	 𝜙10 𝑦

	 ≈-
0

𝑅0 ⋅-
*

"

𝜙0 𝑥* 𝑎 𝑥* Δ𝑥*	 𝜙10 𝑦

60

What are the ways to compute integrals?

In the last few centuries, many methods are developed to compute integrals

• Gaussian quadrature (𝜔$Δ𝑥$)

• Galerkin method (Gaussian Pyramid)

• Muti-grid method (Pyramid+Yolo)

• Muti-pole method (UNet)

• …

NEURAL OPERATORS
Architectures

KOVACHKI, LI, LIU, AZIZZADENESHELI, BHATTACHARYA, STUART, ANANDKUMAR

Figure 5: top: The architecture of the neural operators; bottom: Fourier layer.
(a) The full architecture of neural operator: start from input a. 1. Lift to a higher dimension channel
space by a neural network P . 2. Apply T (typically T = 4) layers of integral operators and activation

functions. 3. Project back to the target dimension by a neural network Q. Output u. (b) Fourier layers:
Start from input v. On top: apply the Fourier transform F ; a linear transform R on the lower Fourier modes
which also filters out the higher modes; then apply the inverse Fourier transform F

�1. On the bottom: apply
a local linear transform W .

The Discrete Case and the FFT. Assuming the domain D is discretized with J 2 N points, we
can treat v 2 CJ⇥n and F(v) 2 CJ⇥n. Since we convolve v with a function which only has kmax
Fourier modes, we may simply truncate the higher modes to obtain F(v) 2 Ckmax⇥n. Multiplication
by the weight tensor R 2 Ckmax⇥m⇥n is then

�
R · (Fvt)

�
k,l

=
nX

j=1

Rk,l,j(Fv)k,j , k = 1, . . . , kmax, l = 1, . . . ,m. (27)

When the discretization is uniform with resolution s1⇥ · · ·⇥sd = J , F can be replaced by the Fast
Fourier Transform. For v 2 CJ⇥n, k = (k1, . . . , kd) 2 Zs1 ⇥ · · ·⇥Zsd , and x = (x1, . . . , xd) 2 D,
the FFT F̂ and its inverse F̂

�1 are defined as

(F̂v)l(k) =
s1�1X

x1=0

· · ·

sd�1X

xd=0

vl(x1, . . . , xd)e
�2i⇡

Pd
j=1

xjkj
sj ,

(F̂�1v)l(x) =
s1�1X

k1=0

· · ·

sd�1X

kd=0

vl(k1, . . . , kd)e
2i⇡

Pd
j=1

xjkj
sj

for l = 1, . . . , n. In this case, the set of truncated modes becomes

Zkmax = {(k1, . . . , kd) 2 Zs1 ⇥ · · ·⇥ Zsd | kj  kmax,j or sj � kj  kmax,j , for j = 1, . . . , d}.

When implemented, R is treated as a (s1⇥· · ·⇥sd⇥m⇥n)-tensor and the above definition of Zkmax

corresponds to the “corners” of R, which allows for a straight-forward parallel implementation of
(27) via matrix-vector multiplication. In practice, we have found the choice kmax,j roughly around
1
3 to 2

3 of the maximum number of Fourier modes in the Fast Fourier Transform of the grid valuation
of the input function provides desirable performance. In our empirical studies, we set kmax,j = 12
which yields kmax = 12d parameters per channel, to be sufficient for all the tasks that we consider.

22

*𝜅 𝑦, 𝑥 𝜈 𝑥 	d𝑥	 ≈-
*

"

𝜅 𝑦	, 𝑥* 𝜈 𝑥* 	
Δ𝑥$

NEURAL OPERATOR: LEARNING MAPS BETWEEN FUNCTION SPACES WITH APPLICATIONS TO PDES

Figure 4: V-cycle
Left: the multi-level discretization. Right: one V-cycle iteration for the multipole neural operator.

2005): starting from a discretization with J1 = J nodes, we impose inducing points of size
J2, J3, . . . , JL which all admit a low-rank kernel matrix decomposition of the form (15). The orig-
inal J ⇥ J kernel matrix Kl is represented by a much smaller Jl ⇥ Jl kernel matrix, denoted by
Kl,l. As shown in Figure 3, K1 is full-rank but very sparse while KL is dense but low-rank. Such
structure can be achieved by applying equation (15) recursively to equation (19), leading to the
multi-resolution matrix factorization (Kondor et al., 2014):

K ⇡ K1,1 +K1,2K2,2K2,1 +K1,2K2,3K3,3K3,2K2,1 + · · · (20)

where K1,1 = K1 represents the shortest range, K1,2K2,2K2,1 ⇡ K2, represents the second shortest
range, etc. The center matrix Kl,l is a Jl ⇥ Jl kernel matrix corresponding to the l-level of the
discretization described above. The matrices Kl+1,l,Kl,l+1 are Jl+1 ⇥ Jl and Jl ⇥ Jl+1 wide and
long respectively block transition matrices. Denote vl 2 RJl⇥n for the representation of the input
v at each level of the discretization for l = 1, . . . , L, and ul 2 RJl⇥n for the output (assuming the
inputs and outputs has the same dimension). We define the matrices Kl+1,l,Kl,l+1 as moving the
representation vl between different levels of the discretization via an integral kernel that we learn.
Combining with the truncation idea introduced in subsection 4.1, we define the transition matrices
as discretizations of the following integral kernel operators:

Kl,l : vl 7! ul =

Z

B(x,rl,l)
l,l(x, y)vl(y) dy (21)

Kl+1,l : vl 7! ul+1 =

Z

B(x,rl+1,l)
l+1,l(x, y)vl(y) dy (22)

Kl,l+1 : vl+1 7! ul =

Z

B(x,rl,l+1)
l,l+1(x, y)vl+1(y) dy (23)

where each kernel l,l0 : D ⇥D ! Rn⇥n is parameterized as a neural network and learned.

V-cycle Algorithm We present a V-cycle algorithm, see Figure 4, for efficiently computing (20).
It consists of two steps: the downward pass and the upward pass. Denote the representation in
downward pass and upward pass by v̌ and v̂ respectively. In the downward step, the algorithm starts
from the fine discretization representation v̌1 and updates it by applying a downward transition

19

Local integration

Local integration

Generalization of UNet to graph based Neural Operators

Multi-pole GNO (MPGNO)

62

U-shaped neural operator (UNO)

NEURAL OPERATORS
Architectures

KOVACHKI, LI, LIU, AZIZZADENESHELI, BHATTACHARYA, STUART, ANANDKUMAR

Figure 5: top: The architecture of the neural operators; bottom: Fourier layer.
(a) The full architecture of neural operator: start from input a. 1. Lift to a higher dimension channel
space by a neural network P . 2. Apply T (typically T = 4) layers of integral operators and activation

functions. 3. Project back to the target dimension by a neural network Q. Output u. (b) Fourier layers:
Start from input v. On top: apply the Fourier transform F ; a linear transform R on the lower Fourier modes
which also filters out the higher modes; then apply the inverse Fourier transform F

�1. On the bottom: apply
a local linear transform W .

The Discrete Case and the FFT. Assuming the domain D is discretized with J 2 N points, we
can treat v 2 CJ⇥n and F(v) 2 CJ⇥n. Since we convolve v with a function which only has kmax
Fourier modes, we may simply truncate the higher modes to obtain F(v) 2 Ckmax⇥n. Multiplication
by the weight tensor R 2 Ckmax⇥m⇥n is then

�
R · (Fvt)

�
k,l

=
nX

j=1

Rk,l,j(Fv)k,j , k = 1, . . . , kmax, l = 1, . . . ,m. (27)

When the discretization is uniform with resolution s1⇥ · · ·⇥sd = J , F can be replaced by the Fast
Fourier Transform. For v 2 CJ⇥n, k = (k1, . . . , kd) 2 Zs1 ⇥ · · ·⇥Zsd , and x = (x1, . . . , xd) 2 D,
the FFT F̂ and its inverse F̂

�1 are defined as

(F̂v)l(k) =
s1�1X

x1=0

· · ·

sd�1X

xd=0

vl(x1, . . . , xd)e
�2i⇡

Pd
j=1

xjkj
sj ,

(F̂�1v)l(x) =
s1�1X

k1=0

· · ·

sd�1X

kd=0

vl(k1, . . . , kd)e
2i⇡

Pd
j=1

xjkj
sj

for l = 1, . . . , n. In this case, the set of truncated modes becomes

Zkmax = {(k1, . . . , kd) 2 Zs1 ⇥ · · ·⇥ Zsd | kj  kmax,j or sj � kj  kmax,j , for j = 1, . . . , d}.

When implemented, R is treated as a (s1⇥· · ·⇥sd⇥m⇥n)-tensor and the above definition of Zkmax

corresponds to the “corners” of R, which allows for a straight-forward parallel implementation of
(27) via matrix-vector multiplication. In practice, we have found the choice kmax,j roughly around
1
3 to 2

3 of the maximum number of Fourier modes in the Fast Fourier Transform of the grid valuation
of the input function provides desirable performance. In our empirical studies, we set kmax,j = 12
which yields kmax = 12d parameters per channel, to be sufficient for all the tasks that we consider.

22 ...

a P

...

G1

G2 GL-1

Q u

......Gl Gl’

G
L

Neural Operator Layer

v

W

+ σ

ʃ k(x,y)v(y)dμ(y) + b(x)

Skip-connection

1

10.5

Shrinking domain size

63

Transformer Neural Operator

NEURAL OPERATORS
Architectures

KOVACHKI, LI, LIU, AZIZZADENESHELI, BHATTACHARYA, STUART, ANANDKUMAR

Figure 5: top: The architecture of the neural operators; bottom: Fourier layer.
(a) The full architecture of neural operator: start from input a. 1. Lift to a higher dimension channel
space by a neural network P . 2. Apply T (typically T = 4) layers of integral operators and activation

functions. 3. Project back to the target dimension by a neural network Q. Output u. (b) Fourier layers:
Start from input v. On top: apply the Fourier transform F ; a linear transform R on the lower Fourier modes
which also filters out the higher modes; then apply the inverse Fourier transform F

�1. On the bottom: apply
a local linear transform W .

The Discrete Case and the FFT. Assuming the domain D is discretized with J 2 N points, we
can treat v 2 CJ⇥n and F(v) 2 CJ⇥n. Since we convolve v with a function which only has kmax
Fourier modes, we may simply truncate the higher modes to obtain F(v) 2 Ckmax⇥n. Multiplication
by the weight tensor R 2 Ckmax⇥m⇥n is then

�
R · (Fvt)

�
k,l

=
nX

j=1

Rk,l,j(Fv)k,j , k = 1, . . . , kmax, l = 1, . . . ,m. (27)

When the discretization is uniform with resolution s1⇥ · · ·⇥sd = J , F can be replaced by the Fast
Fourier Transform. For v 2 CJ⇥n, k = (k1, . . . , kd) 2 Zs1 ⇥ · · ·⇥Zsd , and x = (x1, . . . , xd) 2 D,
the FFT F̂ and its inverse F̂

�1 are defined as

(F̂v)l(k) =
s1�1X

x1=0

· · ·

sd�1X

xd=0

vl(x1, . . . , xd)e
�2i⇡

Pd
j=1

xjkj
sj ,

(F̂�1v)l(x) =
s1�1X

k1=0

· · ·

sd�1X

kd=0

vl(k1, . . . , kd)e
2i⇡

Pd
j=1

xjkj
sj

for l = 1, . . . , n. In this case, the set of truncated modes becomes

Zkmax = {(k1, . . . , kd) 2 Zs1 ⇥ · · ·⇥ Zsd | kj  kmax,j or sj � kj  kmax,j , for j = 1, . . . , d}.

When implemented, R is treated as a (s1⇥· · ·⇥sd⇥m⇥n)-tensor and the above definition of Zkmax

corresponds to the “corners” of R, which allows for a straight-forward parallel implementation of
(27) via matrix-vector multiplication. In practice, we have found the choice kmax,j roughly around
1
3 to 2

3 of the maximum number of Fourier modes in the Fast Fourier Transform of the grid valuation
of the input function provides desirable performance. In our empirical studies, we set kmax,j = 12
which yields kmax = 12d parameters per channel, to be sufficient for all the tasks that we consider.

22

Tokens after 𝑃à 𝜈(𝑥)

Under review as submission to TMLR

3.2 Transformers

While transformer can be interpreted as a GNN operating on a fully-connected graph with attention layers
as in (4), we want to mention some specific considerations. Using a fully-connected graph (instead of a
k-nearest neighbor graph), which can also be interpreted as a radius-graph with r = Œ, the attention layer
does not collapse to a point-wise operator as in (9). However, we might still need suitable weights for the
aggregation in order to prevent di�erent outputs for di�erent discretizations.

JB: Please proofread everything in the pa-
per above this note (this content should be fin-
ished). I am still adapting notation and adding
details on the parts below.

In particular, using the notation from (3), we note that the (self-)attention layer typically has the following
form

„

Q

axi, fi,
ÿ

xjœGxi

Â(xi, fi, xj , fj)

R

b =
ÿ

j

exp
!+

k(xj , fj), q(xi, fi)
,"

q
j exp

!+
k(xj , fj), q(xi, fi)

,"v(xi, fi), (18)

ÿ

j

exp
!
k(‹(xj))€q(‹(yi))

"
q

j exp (k(‹(xj))€q(‹(yi)))
v(‹(yi)),

⁄

x

exp
!
k(‹(x))€q(‹(y))

"
s

x exp (k(‹(x)€q(‹(y))) dx
v(‹(y))dx,

ÿ

j

exp
!
k(‹(xj))€q(‹(yi))

"
q

j exp (k(‹(xj))€q(‹(yi))) �xj
v(‹(yi))�xj ,

where we interpret points (xi, fi) as tokens and k, q, v are suitable key, query, and value functions. We note
that both sums do not leverage integration weights. The transformer neural operator architecture, on the
other hand, is represented as follows,

„ (x, f(x), Â(x, f(x), ·, f)) =
⁄

y

exp
!+

k(y, f(y)), q(x, f(x))
,"

s
y exp

!+
k(y, f(y), q(x, f(x))

,"
dy

v(x, f(x))dy, (19)

Since the input function to this layer is provided in a discretized form, the above transformer neural operator
layer is approximated according to the input discretization,

„

Q

axi, fi,
ÿ

xjœGxi

Â(xi, fi, xj , fj)

R

b =
ÿ

j

exp
!+

k(xj , fj), q(xi, fi)
,"

q
j exp

!+
k(xj , fj), q(xi, fi)

,"
�xj

v(xi, fi)�xj , (20)

and they can equivalently be represented as means, showing that, at least for equidistant grids or random
points, the attention layer coincides with the neural operator attention layer and would be resolution agnostic.

Moreover, transformers also use positional encoding, which often depends on an absolute ordering of the
tokens, i.e., the index i of the points (xi, fi). To make positional encodings agnostic to the resolution, they
can only depend on the coordinates xi.

8

Key Query

Value

From neural networks to neural operators

Discretization

Under review as submission to TMLR

3.2 Transformers

While transformer can be interpreted as a GNN operating on a fully-connected graph with attention layers
as in (4), we want to mention some specific considerations. Using a fully-connected graph (instead of a
k-nearest neighbor graph), which can also be interpreted as a radius-graph with r = Œ, the attention layer
does not collapse to a point-wise operator as in (9). However, we might still need suitable weights for the
aggregation in order to prevent di�erent outputs for di�erent discretizations.

JB: Please proofread everything in the pa-
per above this note (this content should be fin-
ished). I am still adapting notation and adding
details on the parts below.

In particular, using the notation from (3), we note that the (self-)attention layer typically has the following
form

„

Q

axi, fi,
ÿ

xjœGxi

Â(xi, fi, xj , fj)

R

b =
ÿ

j

exp
!+

k(xj , fj), q(xi, fi)
,"

q
j exp

!+
k(xj , fj), q(xi, fi)

,"v(xi, fi), (18)

ÿ

j

exp
!
k(‹(xj))€q(‹(yi))

"
q

j exp (k(‹(xj))€q(‹(yi)))
v(‹(yi)),

⁄

x

exp
!
k(‹(x))€q(‹(y))

"
s

x exp (k(‹(x)€q(‹(y))) dx
v(‹(y))dx,

ÿ

j

exp
!
k(‹(xj))€q(‹(yi))

"
q

j exp (k(‹(xj))€q(‹(yi))) �xj
v(‹(yi))�xj ,

where we interpret points (xi, fi) as tokens and k, q, v are suitable key, query, and value functions. We note
that both sums do not leverage integration weights. The transformer neural operator architecture, on the
other hand, is represented as follows,

„ (x, f(x), Â(x, f(x), ·, f)) =
⁄

y

exp
!+

k(y, f(y)), q(x, f(x))
,"

s
y exp

!+
k(y, f(y), q(x, f(x))

,"
dy

v(x, f(x))dy, (19)

Since the input function to this layer is provided in a discretized form, the above transformer neural operator
layer is approximated according to the input discretization,

„

Q

axi, fi,
ÿ

xjœGxi

Â(xi, fi, xj , fj)

R

b =
ÿ

j

exp
!+

k(xj , fj), q(xi, fi)
,"

q
j exp

!+
k(xj , fj), q(xi, fi)

,"
�xj

v(xi, fi)�xj , (20)

and they can equivalently be represented as means, showing that, at least for equidistant grids or random
points, the attention layer coincides with the neural operator attention layer and would be resolution agnostic.

Moreover, transformers also use positional encoding, which often depends on an absolute ordering of the
tokens, i.e., the index i of the points (xi, fi). To make positional encodings agnostic to the resolution, they
can only depend on the coordinates xi.

8

Under review as submission to TMLR

3.2 Transformers

While transformer can be interpreted as a GNN operating on a fully-connected graph with attention layers
as in (4), we want to mention some specific considerations. Using a fully-connected graph (instead of a
k-nearest neighbor graph), which can also be interpreted as a radius-graph with r = Œ, the attention layer
does not collapse to a point-wise operator as in (9). However, we might still need suitable weights for the
aggregation in order to prevent di�erent outputs for di�erent discretizations.

JB: Please proofread everything in the pa-
per above this note (this content should be fin-
ished). I am still adapting notation and adding
details on the parts below.

In particular, using the notation from (3), we note that the (self-)attention layer typically has the following
form

„

Q

axi, fi,
ÿ

xjœGxi

Â(xi, fi, xj , fj)

R

b =
ÿ

j

exp
!+

k(xj , fj), q(xi, fi)
,"

q
j exp

!+
k(xj , fj), q(xi, fi)

,"v(xi, fi), (18)

ÿ

j

exp
!
k(‹(xj))€q(‹(yi))

"
q

j exp (k(‹(xj))€q(‹(yi)))
v(‹(yi)),

⁄

x

exp
!
k(‹(x))€q(‹(y))

"
s

x exp (k(‹(x)€q(‹(y))) dx
v(‹(y))dx,

ÿ

j

exp
!
k(‹(xj))€q(‹(yi))

"
q

j exp (k(‹(xj))€q(‹(yi))) �xj
v(‹(yi))�xj ,

where we interpret points (xi, fi) as tokens and k, q, v are suitable key, query, and value functions. We note
that both sums do not leverage integration weights. The transformer neural operator architecture, on the
other hand, is represented as follows,

„ (x, f(x), Â(x, f(x), ·, f)) =
⁄

y

exp
!+

k(y, f(y)), q(x, f(x))
,"

s
y exp

!+
k(y, f(y), q(x, f(x))

,"
dy

v(x, f(x))dy, (19)

Since the input function to this layer is provided in a discretized form, the above transformer neural operator
layer is approximated according to the input discretization,

„

Q

axi, fi,
ÿ

xjœGxi

Â(xi, fi, xj , fj)

R

b =
ÿ

j

exp
!+

k(xj , fj), q(xi, fi)
,"

q
j exp

!+
k(xj , fj), q(xi, fi)

,"
�xj

v(xi, fi)�xj , (20)

and they can equivalently be represented as means, showing that, at least for equidistant grids or random
points, the attention layer coincides with the neural operator attention layer and would be resolution agnostic.

Moreover, transformers also use positional encoding, which often depends on an absolute ordering of the
tokens, i.e., the index i of the points (xi, fi). To make positional encodings agnostic to the resolution, they
can only depend on the coordinates xi.

8

64

Transformer Neural Operator

NEURAL OPERATORS
Architectures

KOVACHKI, LI, LIU, AZIZZADENESHELI, BHATTACHARYA, STUART, ANANDKUMAR

Figure 5: top: The architecture of the neural operators; bottom: Fourier layer.
(a) The full architecture of neural operator: start from input a. 1. Lift to a higher dimension channel
space by a neural network P . 2. Apply T (typically T = 4) layers of integral operators and activation

functions. 3. Project back to the target dimension by a neural network Q. Output u. (b) Fourier layers:
Start from input v. On top: apply the Fourier transform F ; a linear transform R on the lower Fourier modes
which also filters out the higher modes; then apply the inverse Fourier transform F

�1. On the bottom: apply
a local linear transform W .

The Discrete Case and the FFT. Assuming the domain D is discretized with J 2 N points, we
can treat v 2 CJ⇥n and F(v) 2 CJ⇥n. Since we convolve v with a function which only has kmax
Fourier modes, we may simply truncate the higher modes to obtain F(v) 2 Ckmax⇥n. Multiplication
by the weight tensor R 2 Ckmax⇥m⇥n is then

�
R · (Fvt)

�
k,l

=
nX

j=1

Rk,l,j(Fv)k,j , k = 1, . . . , kmax, l = 1, . . . ,m. (27)

When the discretization is uniform with resolution s1⇥ · · ·⇥sd = J , F can be replaced by the Fast
Fourier Transform. For v 2 CJ⇥n, k = (k1, . . . , kd) 2 Zs1 ⇥ · · ·⇥Zsd , and x = (x1, . . . , xd) 2 D,
the FFT F̂ and its inverse F̂

�1 are defined as

(F̂v)l(k) =
s1�1X

x1=0

· · ·

sd�1X

xd=0

vl(x1, . . . , xd)e
�2i⇡

Pd
j=1

xjkj
sj ,

(F̂�1v)l(x) =
s1�1X

k1=0

· · ·

sd�1X

kd=0

vl(k1, . . . , kd)e
2i⇡

Pd
j=1

xjkj
sj

for l = 1, . . . , n. In this case, the set of truncated modes becomes

Zkmax = {(k1, . . . , kd) 2 Zs1 ⇥ · · ·⇥ Zsd | kj  kmax,j or sj � kj  kmax,j , for j = 1, . . . , d}.

When implemented, R is treated as a (s1⇥· · ·⇥sd⇥m⇥n)-tensor and the above definition of Zkmax

corresponds to the “corners” of R, which allows for a straight-forward parallel implementation of
(27) via matrix-vector multiplication. In practice, we have found the choice kmax,j roughly around
1
3 to 2

3 of the maximum number of Fourier modes in the Fast Fourier Transform of the grid valuation
of the input function provides desirable performance. In our empirical studies, we set kmax,j = 12
which yields kmax = 12d parameters per channel, to be sufficient for all the tasks that we consider.

22

Under review as submission to TMLR

3.2 Transformers

While transformer can be interpreted as a GNN operating on a fully-connected graph with attention layers
as in (4), we want to mention some specific considerations. Using a fully-connected graph (instead of a
k-nearest neighbor graph), which can also be interpreted as a radius-graph with r = Œ, the attention layer
does not collapse to a point-wise operator as in (9). However, we might still need suitable weights for the
aggregation in order to prevent di�erent outputs for di�erent discretizations.

JB: Please proofread everything in the pa-
per above this note (this content should be fin-
ished). I am still adapting notation and adding
details on the parts below.

In particular, using the notation from (3), we note that the (self-)attention layer typically has the following
form

„

Q

axi, fi,
ÿ

xjœGxi

Â(xi, fi, xj , fj)

R

b =
ÿ

j

exp
!+

k(xj , fj), q(xi, fi)
,"

q
j exp

!+
k(xj , fj), q(xi, fi)

,"v(xi, fi), (18)

ÿ

j

exp
!
k(‹(xj))€q(‹(yi))

"
q

j exp (k(‹(xj))€q(‹(yi)))
v(‹(yi)),

⁄

x

exp
!
k(‹(x))€q(‹(y))

"
s

x exp (k(‹(x)€q(‹(y))) dx
v(‹(y))dx,

ÿ

j

exp
!
k(‹(xj))€q(‹(yi))

"
q

j exp (k(‹(xj))€q(‹(yi))) �xj
v(‹(yi))�xj ,

where we interpret points (xi, fi) as tokens and k, q, v are suitable key, query, and value functions. We note
that both sums do not leverage integration weights. The transformer neural operator architecture, on the
other hand, is represented as follows,

„ (x, f(x), Â(x, f(x), ·, f)) =
⁄

y

exp
!+

k(y, f(y)), q(x, f(x))
,"

s
y exp

!+
k(y, f(y), q(x, f(x))

,"
dy

v(x, f(x))dy, (19)

Since the input function to this layer is provided in a discretized form, the above transformer neural operator
layer is approximated according to the input discretization,

„

Q

axi, fi,
ÿ

xjœGxi

Â(xi, fi, xj , fj)

R

b =
ÿ

j

exp
!+

k(xj , fj), q(xi, fi)
,"

q
j exp

!+
k(xj , fj), q(xi, fi)

,"
�xj

v(xi, fi)�xj , (20)

and they can equivalently be represented as means, showing that, at least for equidistant grids or random
points, the attention layer coincides with the neural operator attention layer and would be resolution agnostic.

Moreover, transformers also use positional encoding, which often depends on an absolute ordering of the
tokens, i.e., the index i of the points (xi, fi). To make positional encodings agnostic to the resolution, they
can only depend on the coordinates xi.

8

Key Query

Value

1
𝑛

When grid/mesh is regular

Under review as submission to TMLR

3.2 Transformers

While transformer can be interpreted as a GNN operating on a fully-connected graph with attention layers
as in (4), we want to mention some specific considerations. Using a fully-connected graph (instead of a
k-nearest neighbor graph), which can also be interpreted as a radius-graph with r = Œ, the attention layer
does not collapse to a point-wise operator as in (9). However, we might still need suitable weights for the
aggregation in order to prevent di�erent outputs for di�erent discretizations.

JB: Please proofread everything in the pa-
per above this note (this content should be fin-
ished). I am still adapting notation and adding
details on the parts below.

In particular, using the notation from (3), we note that the (self-)attention layer typically has the following
form

„

Q

axi, fi,
ÿ

xjœGxi

Â(xi, fi, xj , fj)

R

b =
ÿ

j

exp
!+

k(xj , fj), q(xi, fi)
,"

q
j exp

!+
k(xj , fj), q(xi, fi)

,"v(xi, fi), (18)

ÿ

j

exp
!
k(‹(xj))€q(‹(yi))

"
q

j exp (k(‹(xj))€q(‹(yi)))
v(‹(yi)),

⁄

x

exp
!
k(‹(x))€q(‹(y))

"
s

x exp (k(‹(x)€q(‹(y))) dx
v(‹(y))dx,

ÿ

j

exp
!
k(‹(xj))€q(‹(yi))

"
q

j exp (k(‹(xj))€q(‹(yi))) �xj
v(‹(yi))�xj ,

where we interpret points (xi, fi) as tokens and k, q, v are suitable key, query, and value functions. We note
that both sums do not leverage integration weights. The transformer neural operator architecture, on the
other hand, is represented as follows,

„ (x, f(x), Â(x, f(x), ·, f)) =
⁄

y

exp
!+

k(y, f(y)), q(x, f(x))
,"

s
y exp

!+
k(y, f(y), q(x, f(x))

,"
dy

v(x, f(x))dy, (19)

Since the input function to this layer is provided in a discretized form, the above transformer neural operator
layer is approximated according to the input discretization,

„

Q

axi, fi,
ÿ

xjœGxi

Â(xi, fi, xj , fj)

R

b =
ÿ

j

exp
!+

k(xj , fj), q(xi, fi)
,"

q
j exp

!+
k(xj , fj), q(xi, fi)

,"
�xj

v(xi, fi)�xj , (20)

and they can equivalently be represented as means, showing that, at least for equidistant grids or random
points, the attention layer coincides with the neural operator attention layer and would be resolution agnostic.

Moreover, transformers also use positional encoding, which often depends on an absolute ordering of the
tokens, i.e., the index i of the points (xi, fi). To make positional encodings agnostic to the resolution, they
can only depend on the coordinates xi.

8

Tokens after 𝑃à 𝜈(𝑥)

65

Many real-world datasets have different number of variables, e.g., coupled PDEs, climate data (collaboration between many countries) …

Co-domain Attention Neural Operator (CoDANO)

NEURAL OPERATORS
Architectures

KOVACHKI, LI, LIU, AZIZZADENESHELI, BHATTACHARYA, STUART, ANANDKUMAR

Figure 5: top: The architecture of the neural operators; bottom: Fourier layer.
(a) The full architecture of neural operator: start from input a. 1. Lift to a higher dimension channel
space by a neural network P . 2. Apply T (typically T = 4) layers of integral operators and activation

functions. 3. Project back to the target dimension by a neural network Q. Output u. (b) Fourier layers:
Start from input v. On top: apply the Fourier transform F ; a linear transform R on the lower Fourier modes
which also filters out the higher modes; then apply the inverse Fourier transform F

�1. On the bottom: apply
a local linear transform W .

The Discrete Case and the FFT. Assuming the domain D is discretized with J 2 N points, we
can treat v 2 CJ⇥n and F(v) 2 CJ⇥n. Since we convolve v with a function which only has kmax
Fourier modes, we may simply truncate the higher modes to obtain F(v) 2 Ckmax⇥n. Multiplication
by the weight tensor R 2 Ckmax⇥m⇥n is then

�
R · (Fvt)

�
k,l

=
nX

j=1

Rk,l,j(Fv)k,j , k = 1, . . . , kmax, l = 1, . . . ,m. (27)

When the discretization is uniform with resolution s1⇥ · · ·⇥sd = J , F can be replaced by the Fast
Fourier Transform. For v 2 CJ⇥n, k = (k1, . . . , kd) 2 Zs1 ⇥ · · ·⇥Zsd , and x = (x1, . . . , xd) 2 D,
the FFT F̂ and its inverse F̂

�1 are defined as

(F̂v)l(k) =
s1�1X

x1=0

· · ·

sd�1X

xd=0

vl(x1, . . . , xd)e
�2i⇡

Pd
j=1

xjkj
sj ,

(F̂�1v)l(x) =
s1�1X

k1=0

· · ·

sd�1X

kd=0

vl(k1, . . . , kd)e
2i⇡

Pd
j=1

xjkj
sj

for l = 1, . . . , n. In this case, the set of truncated modes becomes

Zkmax = {(k1, . . . , kd) 2 Zs1 ⇥ · · ·⇥ Zsd | kj  kmax,j or sj � kj  kmax,j , for j = 1, . . . , d}.

When implemented, R is treated as a (s1⇥· · ·⇥sd⇥m⇥n)-tensor and the above definition of Zkmax

corresponds to the “corners” of R, which allows for a straight-forward parallel implementation of
(27) via matrix-vector multiplication. In practice, we have found the choice kmax,j roughly around
1
3 to 2

3 of the maximum number of Fourier modes in the Fast Fourier Transform of the grid valuation
of the input function provides desirable performance. In our empirical studies, we set kmax,j = 12
which yields kmax = 12d parameters per channel, to be sufficient for all the tasks that we consider.

22

5 tokens

Pretraining Codomain Attention Neural Operators
for Solving Multiphysics PDEs

Md Ashiqur Rahman 1 Robert Joseph George 2 Mogab Elleithy 2 Daniel Leibovici 2 Zongyi Li 2 Boris Bonev 3

Colin White 3 Julius Berner 2 Raymond A. Yeh 1 Jean Kossaifi 3 Kamyar Azizzadenesheli 3

Anima Anandkumar 2

Abstract
Existing neural operator architectures face chal-
lenges when solving multiphysics problems with
coupled partial differential equations (PDEs), due
to complex geometries, interactions between phys-
ical variables, and the lack of large amounts of
high-resolution training data. To address these
issues, we propose Codomain Attention Neural
Operator (CoDA-NO), which tokenizes functions
along the codomain or channel space, enabling
self-supervised learning or pretraining of multi-
ple PDE systems. Specifically, we extend po-
sitional encoding, self-attention, and normaliza-
tion layers to the function space. CoDA-NO
can learn representations of different PDE sys-
tems with a single model. We evaluate CoDA-
NO’s potential as a backbone for learning mul-
tiphysics PDEs over multiple systems by con-
sidering few-shot learning settings. On com-
plex downstream tasks with limited data, such
as fluid flow simulations and fluid-structure in-
teractions, we found CoDA-NO to outperform
existing methods on the few-shot learning task
by over 36%. The code is available at https:
//github.com/ashiq24/CoDA-NO.

1. Introduction
Many science and engineering problems frequently involve
solving complex multiphysics partial differential equations
(PDEs) (Strang). However, traditional numerical methods
usually require the PDEs to be discretized on fine grids to
capture important physics accurately. This becomes compu-
tationally infeasible in many applications.

Neural operators (Li et al., 2021; Azzizadenesheli et al.,
*Equal contribution 1Department of Computer Science, Pur-

due University, IN, USA 2Department of Computing and Math-
ematical Sciences, California Institute of Technology, Pasadena
CA 91125 3NVIDIA, Santa Clara, CA 9505. Correspondence to:
Md Ashiqur Rahman <rahman79@purdue.edu>, Robert Joseph
George <rgeorge@caltech.edu>, Kamyar Azizzadenesheli <kam-
yara@nvidia.com>.

CoDA-NO

ux

uy

p

Self-Supervised Pre-training

ux

uy

p

Few Shot Supervised Finetuning

Single Physics System

Coupled Multi-Physics System

Additional
variables

Mask

ux,t

uy,t

pt

dx,t

dy,t

ux,t+�t

uy,t+�t

pt+�t

dx,t+�t

dy,t+�t

Figure 1. CoDA-NO, our proposed architecture, generalizes
to novel multi-physics systems. CoDA-NO can be pre-trained
on fluid dynamics data, a single physics system governed by the
Navier-Stocks equation with variables such as velocities (ux, uy)
and pressure (p). The pre-trained CoDA-NO can be easily adapted
to a multi-physics fluid-solid interaction system governed by cou-
pled Navier-Stocks and Elastic wave equations. It handles the
addition displacement variables (dx, dy) without any architecture
changes.

2023) have shown to be a powerful data-driven technique
for solving PDEs. Neural operators learn maps between
function spaces and converge to a unique operator for any
discretization of the functions. This property, called dis-

cretization convergence, makes them suitable for approx-
imating solution operators of PDEs. By training on pairs
of input and solution functions, we obtain estimates of so-
lution operators that are often orders of magnitude faster
to evaluate than traditional PDE solvers while being highly
accurate (Schneider et al., 2017; Kossaifi et al., 2023; Bonev
et al., 2023).

Neural operators are a data-driven approach and therefore,
their performance depends on the quality and abundance of
training data. This can be a bottleneck since it is expensive

1

ar
X

iv
:2

40
3.

12
55

3v
2

 [c
s.L

G
]

5
A

pr
 2

02
4

Input function with 5 variables Output function with 5 variablesEach token is a function
(an infinite dimensional vector)

Query, key, value matrices in transformers become become integral operators in CoDANO.

66

Co-domain Attention Neural Operator (CoDANO)

• Self-supervised learning

• Generalize to new unseen functions

• Prompt learning for fine tunning

• Variable specific positional encoding

NEURAL OPERATORS
Architectures

KOVACHKI, LI, LIU, AZIZZADENESHELI, BHATTACHARYA, STUART, ANANDKUMAR

Figure 5: top: The architecture of the neural operators; bottom: Fourier layer.
(a) The full architecture of neural operator: start from input a. 1. Lift to a higher dimension channel
space by a neural network P . 2. Apply T (typically T = 4) layers of integral operators and activation

functions. 3. Project back to the target dimension by a neural network Q. Output u. (b) Fourier layers:
Start from input v. On top: apply the Fourier transform F ; a linear transform R on the lower Fourier modes
which also filters out the higher modes; then apply the inverse Fourier transform F

�1. On the bottom: apply
a local linear transform W .

The Discrete Case and the FFT. Assuming the domain D is discretized with J 2 N points, we
can treat v 2 CJ⇥n and F(v) 2 CJ⇥n. Since we convolve v with a function which only has kmax
Fourier modes, we may simply truncate the higher modes to obtain F(v) 2 Ckmax⇥n. Multiplication
by the weight tensor R 2 Ckmax⇥m⇥n is then

�
R · (Fvt)

�
k,l

=
nX

j=1

Rk,l,j(Fv)k,j , k = 1, . . . , kmax, l = 1, . . . ,m. (27)

When the discretization is uniform with resolution s1⇥ · · ·⇥sd = J , F can be replaced by the Fast
Fourier Transform. For v 2 CJ⇥n, k = (k1, . . . , kd) 2 Zs1 ⇥ · · ·⇥Zsd , and x = (x1, . . . , xd) 2 D,
the FFT F̂ and its inverse F̂

�1 are defined as

(F̂v)l(k) =
s1�1X

x1=0

· · ·

sd�1X

xd=0

vl(x1, . . . , xd)e
�2i⇡

Pd
j=1

xjkj
sj ,

(F̂�1v)l(x) =
s1�1X

k1=0

· · ·

sd�1X

kd=0

vl(k1, . . . , kd)e
2i⇡

Pd
j=1

xjkj
sj

for l = 1, . . . , n. In this case, the set of truncated modes becomes

Zkmax = {(k1, . . . , kd) 2 Zs1 ⇥ · · ·⇥ Zsd | kj  kmax,j or sj � kj  kmax,j , for j = 1, . . . , d}.

When implemented, R is treated as a (s1⇥· · ·⇥sd⇥m⇥n)-tensor and the above definition of Zkmax

corresponds to the “corners” of R, which allows for a straight-forward parallel implementation of
(27) via matrix-vector multiplication. In practice, we have found the choice kmax,j roughly around
1
3 to 2

3 of the maximum number of Fourier modes in the Fast Fourier Transform of the grid valuation
of the input function provides desirable performance. In our empirical studies, we set kmax,j = 12
which yields kmax = 12d parameters per channel, to be sufficient for all the tasks that we consider.

22

Pretraining Codomain Attention Neural Operators
for Solving Multiphysics PDEs

Md Ashiqur Rahman 1 Robert Joseph George 2 Mogab Elleithy 2 Daniel Leibovici 2 Zongyi Li 2 Boris Bonev 3

Colin White 3 Julius Berner 2 Raymond A. Yeh 1 Jean Kossaifi 3 Kamyar Azizzadenesheli 3

Anima Anandkumar 2

Abstract
Existing neural operator architectures face chal-
lenges when solving multiphysics problems with
coupled partial differential equations (PDEs), due
to complex geometries, interactions between phys-
ical variables, and the lack of large amounts of
high-resolution training data. To address these
issues, we propose Codomain Attention Neural
Operator (CoDA-NO), which tokenizes functions
along the codomain or channel space, enabling
self-supervised learning or pretraining of multi-
ple PDE systems. Specifically, we extend po-
sitional encoding, self-attention, and normaliza-
tion layers to the function space. CoDA-NO
can learn representations of different PDE sys-
tems with a single model. We evaluate CoDA-
NO’s potential as a backbone for learning mul-
tiphysics PDEs over multiple systems by con-
sidering few-shot learning settings. On com-
plex downstream tasks with limited data, such
as fluid flow simulations and fluid-structure in-
teractions, we found CoDA-NO to outperform
existing methods on the few-shot learning task
by over 36%. The code is available at https:
//github.com/ashiq24/CoDA-NO.

1. Introduction
Many science and engineering problems frequently involve
solving complex multiphysics partial differential equations
(PDEs) (Strang). However, traditional numerical methods
usually require the PDEs to be discretized on fine grids to
capture important physics accurately. This becomes compu-
tationally infeasible in many applications.

Neural operators (Li et al., 2021; Azzizadenesheli et al.,
*Equal contribution 1Department of Computer Science, Pur-

due University, IN, USA 2Department of Computing and Math-
ematical Sciences, California Institute of Technology, Pasadena
CA 91125 3NVIDIA, Santa Clara, CA 9505. Correspondence to:
Md Ashiqur Rahman <rahman79@purdue.edu>, Robert Joseph
George <rgeorge@caltech.edu>, Kamyar Azizzadenesheli <kam-
yara@nvidia.com>.

CoDA-NO

ux

uy

p

Self-Supervised Pre-training

ux

uy

p

Few Shot Supervised Finetuning

Single Physics System

Coupled Multi-Physics System

Additional
variables

Mask

ux,t

uy,t

pt

dx,t

dy,t

ux,t+�t

uy,t+�t

pt+�t

dx,t+�t

dy,t+�t

Figure 1. CoDA-NO, our proposed architecture, generalizes
to novel multi-physics systems. CoDA-NO can be pre-trained
on fluid dynamics data, a single physics system governed by the
Navier-Stocks equation with variables such as velocities (ux, uy)
and pressure (p). The pre-trained CoDA-NO can be easily adapted
to a multi-physics fluid-solid interaction system governed by cou-
pled Navier-Stocks and Elastic wave equations. It handles the
addition displacement variables (dx, dy) without any architecture
changes.

2023) have shown to be a powerful data-driven technique
for solving PDEs. Neural operators learn maps between
function spaces and converge to a unique operator for any
discretization of the functions. This property, called dis-

cretization convergence, makes them suitable for approx-
imating solution operators of PDEs. By training on pairs
of input and solution functions, we obtain estimates of so-
lution operators that are often orders of magnitude faster
to evaluate than traditional PDE solvers while being highly
accurate (Schneider et al., 2017; Kossaifi et al., 2023; Bonev
et al., 2023).

Neural operators are a data-driven approach and therefore,
their performance depends on the quality and abundance of
training data. This can be a bottleneck since it is expensive

1

ar
X

iv
:2

40
3.

12
55

3v
2

 [c
s.L

G
]

5
A

pr
 2

02
4

Pretraining CoDA-NO for Multiphysics PDEs

�

CoDA-NO Layers

GNOper

Uniform
Disc.

K

Q

VToken
functions

Latent
Input function

Key functions

Query functions

Value functions

k
1

q
1

v
1

k
2

q
2

v
2

SoftMax
hq

1
, k

1
i hq

1
, k

2
i

hq
2
, k

1
ihq

2
, k

2
i

⇥

Latent
Output function

GNOper

Target
Disc.

VSPE

VSPE

Input
Function

Uniform
Latent Grid

Output
Function

Figure 2. On the left, we illustrate the architecture of the Codomain Attention Neural Operator. Each physical variable (or co-domain) of
the input function is concatenated with variable specific positional encoding (VSPE). Each variable, along with the VSPE, is passed
through a GNO layer, which maps from the given non-uniform geometry to a latent regular grid. Then, the output on a uniform grid
is passed through a series of CoDA-NO layers. Lastly, the output of the stacked CoDA-NO layers is mapped onto the domain of the
output geometry for each query point using another GNO layer. On the right, we illustrate the mechanism of codomain attention. At each
CoDA-NO layer, the input function is tokenized codomain-wise, and each token function is passed through the K,Q, and V operators to
get key, query, and value functions {k1, k2}, {q1, q2}, and {v1, v2} respectively. The output function is calculated via an extension of
the self-attention mechanism to the function space.

of variables than those on which it was trained. In par-
ticular, when the PDE systems have overlapping physical
variables {a

i
}

din
i=1 \ {ã

i
}

d̃in
i=1 6= ;, this naturally allows to

transfer learned knowledge from one system to the other.
We will next describe the details of the CoDa-NO layers and
architecture to achieve this goal.

Permutation Equivariant Neural Operator. As we con-
sider the vector-valued input function a as a set of din func-
tions {a

1
, a

2
, . . . , a

din} that represent different physical
variables of the PDE. We seek to construct operators that act
on sets of input functions with different cardinalities. For
an efficient implementation, we mimic transformer archi-
tectures and share weights across different variables. We
achieve this by defining permutation equivariant integral

operator Iper as

Iper[w] =


I[w1

e
], . . . , I[wdin

e
]

�
, (7)

where I is a regular integral operator following Eq. (3) and
w

i

e
is the codomain group of the input variable i. Follow-

ing the same mechanism, we can also define permutation
equivariant pointwise operator Hper with a shared pointwise
operator H as described in Eq. (2). We will use FNOper and
GNOper to denote permutation equivariant operators using
a shared GNO and FNO, respectively.

CoDA-NO Layer. Given a function w : D ! Rd, we
partition the function into a set of so-called token functions

w
i : D ! Rd

0
for i 2 {1, . . . L} along the codomain, such

that w =
⇥
w

1
, . . . w

T
⇤
. That is, w represents the codomain-

wise concatenation of the token functions wi and d
0 = d

L
.

If no other value is specified, we assume that d
0 = 1. The

CoDA-NO layer now processes the token functions using
an extension of the self-attention mechanism to the function
space (see Appendix Sec. A.1 and Fig. 2).

Let us begin by introducing a single-head CoDA-NO layer.
Later, we will expand the concept to multi-head codomain

attention. We extend the key, query, and value matrices of
the standard attention (see Appendix Sec. A.1 for details)
to operators mapping token functions w

i : D ! Rd
0

to key,
query, and value functions. We define the key, query, and
value operators as

K : w
i
! {k

i : D ! Rdk}, (8)

Q : w
i
! {q

i : D ! Rdq}, (9)

V : w
i
! {v

i : D ! Rdv}. (10)

Assuming dk = dq , we denote by k
i = K[wi], q

i = Q[wi],
and v

i = V[wi] the key, query, and value functions of the
token functions, respectively.

Next, we calculate the output (token) functions o
i : D !

Rdv as

o
i = Softmax

✓
[
hq

i
, k

1
i

⌧
. . .

hq
i
, k

T
i

⌧
]

◆
[v1

, . . . , v
L]>

(11)
where ⌧ is the temperature hyperparameter. Here, h., .i

denotes a suitable dot product in the function space. We
take the L

2(D,Rdk)-dot product given by

hq
i
, k

j
i =

Z

D
hq

i(x), kj(x)i dx, (12)

where the integral can be discretized using quadrature rules,
similar to the integral operator (see Sec. 3).

To implement multi-head attention, we apply the (single-
head) attention mechanism described above separately for
multiple heads h 2 {1, . . . H} using K

h
, Q

h
, and V

h to
obtain o

i,h. We then concatenate these outputs o
i,h along

the codomain and get c
i := [oi,1

, . . . o
i,H]. Finally, we use

an operator

M : {c
i : D ! RH·dv} ! {o

i : D ! Rdv} (13)

to get the output function o
i.

4

67

Main components so far,

• Integration, global (FNO) or local (GNO)

• Residual connection (point-wise)

• Bias function (point-wise)

• What else?

NEURAL OPERATORS
Architectures

KOVACHKI, LI, LIU, AZIZZADENESHELI, BHATTACHARYA, STUART, ANANDKUMAR

Figure 5: top: The architecture of the neural operators; bottom: Fourier layer.
(a) The full architecture of neural operator: start from input a. 1. Lift to a higher dimension channel
space by a neural network P . 2. Apply T (typically T = 4) layers of integral operators and activation

functions. 3. Project back to the target dimension by a neural network Q. Output u. (b) Fourier layers:
Start from input v. On top: apply the Fourier transform F ; a linear transform R on the lower Fourier modes
which also filters out the higher modes; then apply the inverse Fourier transform F

�1. On the bottom: apply
a local linear transform W .

The Discrete Case and the FFT. Assuming the domain D is discretized with J 2 N points, we
can treat v 2 CJ⇥n and F(v) 2 CJ⇥n. Since we convolve v with a function which only has kmax
Fourier modes, we may simply truncate the higher modes to obtain F(v) 2 Ckmax⇥n. Multiplication
by the weight tensor R 2 Ckmax⇥m⇥n is then

�
R · (Fvt)

�
k,l

=
nX

j=1

Rk,l,j(Fv)k,j , k = 1, . . . , kmax, l = 1, . . . ,m. (27)

When the discretization is uniform with resolution s1⇥ · · ·⇥sd = J , F can be replaced by the Fast
Fourier Transform. For v 2 CJ⇥n, k = (k1, . . . , kd) 2 Zs1 ⇥ · · ·⇥Zsd , and x = (x1, . . . , xd) 2 D,
the FFT F̂ and its inverse F̂

�1 are defined as

(F̂v)l(k) =
s1�1X

x1=0

· · ·

sd�1X

xd=0

vl(x1, . . . , xd)e
�2i⇡

Pd
j=1

xjkj
sj ,

(F̂�1v)l(x) =
s1�1X

k1=0

· · ·

sd�1X

kd=0

vl(k1, . . . , kd)e
2i⇡

Pd
j=1

xjkj
sj

for l = 1, . . . , n. In this case, the set of truncated modes becomes

Zkmax = {(k1, . . . , kd) 2 Zs1 ⇥ · · ·⇥ Zsd | kj  kmax,j or sj � kj  kmax,j , for j = 1, . . . , d}.

When implemented, R is treated as a (s1⇥· · ·⇥sd⇥m⇥n)-tensor and the above definition of Zkmax

corresponds to the “corners” of R, which allows for a straight-forward parallel implementation of
(27) via matrix-vector multiplication. In practice, we have found the choice kmax,j roughly around
1
3 to 2

3 of the maximum number of Fourier modes in the Fast Fourier Transform of the grid valuation
of the input function provides desirable performance. In our empirical studies, we set kmax,j = 12
which yields kmax = 12d parameters per channel, to be sufficient for all the tasks that we consider.

22

−∇. 𝑎 𝑥 ∇𝑢 𝑥 = 𝑓(𝑥)

Remember Darcy’s flow

Consider the following inverse problem,

Fix 𝑎	, input is 𝑢 and output is 𝑓, then is integration efficient?

We need derivatives in the architecture 2
23
, 2
2&
, 2

2

232
, 2

2

2&2
, …

68

Main components so far,

• Integration, global (FNO) or local (GNO, CNO)

• Residual connection (point-wise)

• Bias function (point-wise)

• Derivatives

NEURAL OPERATORS
Architectures

KOVACHKI, LI, LIU, AZIZZADENESHELI, BHATTACHARYA, STUART, ANANDKUMAR

Figure 5: top: The architecture of the neural operators; bottom: Fourier layer.
(a) The full architecture of neural operator: start from input a. 1. Lift to a higher dimension channel
space by a neural network P . 2. Apply T (typically T = 4) layers of integral operators and activation

functions. 3. Project back to the target dimension by a neural network Q. Output u. (b) Fourier layers:
Start from input v. On top: apply the Fourier transform F ; a linear transform R on the lower Fourier modes
which also filters out the higher modes; then apply the inverse Fourier transform F

�1. On the bottom: apply
a local linear transform W .

The Discrete Case and the FFT. Assuming the domain D is discretized with J 2 N points, we
can treat v 2 CJ⇥n and F(v) 2 CJ⇥n. Since we convolve v with a function which only has kmax
Fourier modes, we may simply truncate the higher modes to obtain F(v) 2 Ckmax⇥n. Multiplication
by the weight tensor R 2 Ckmax⇥m⇥n is then

�
R · (Fvt)

�
k,l

=
nX

j=1

Rk,l,j(Fv)k,j , k = 1, . . . , kmax, l = 1, . . . ,m. (27)

When the discretization is uniform with resolution s1⇥ · · ·⇥sd = J , F can be replaced by the Fast
Fourier Transform. For v 2 CJ⇥n, k = (k1, . . . , kd) 2 Zs1 ⇥ · · ·⇥Zsd , and x = (x1, . . . , xd) 2 D,
the FFT F̂ and its inverse F̂

�1 are defined as

(F̂v)l(k) =
s1�1X

x1=0

· · ·

sd�1X

xd=0

vl(x1, . . . , xd)e
�2i⇡

Pd
j=1

xjkj
sj ,

(F̂�1v)l(x) =
s1�1X

k1=0

· · ·

sd�1X

kd=0

vl(k1, . . . , kd)e
2i⇡

Pd
j=1

xjkj
sj

for l = 1, . . . , n. In this case, the set of truncated modes becomes

Zkmax = {(k1, . . . , kd) 2 Zs1 ⇥ · · ·⇥ Zsd | kj  kmax,j or sj � kj  kmax,j , for j = 1, . . . , d}.

When implemented, R is treated as a (s1⇥· · ·⇥sd⇥m⇥n)-tensor and the above definition of Zkmax

corresponds to the “corners” of R, which allows for a straight-forward parallel implementation of
(27) via matrix-vector multiplication. In practice, we have found the choice kmax,j roughly around
1
3 to 2

3 of the maximum number of Fourier modes in the Fast Fourier Transform of the grid valuation
of the input function provides desirable performance. In our empirical studies, we set kmax,j = 12
which yields kmax = 12d parameters per channel, to be sufficient for all the tasks that we consider.

22

FNO/CNO corresponds to large kernel CNNs,

Derivative layers corresponds to small (e.g., 3x3) kernel CNNs

Neural Operators with Localized Integral and Differential Kernels

Miguel Liu-Schiaffini * 1 Julius Berner * 1 Boris Bonev * 2 Thorsten Kurth 2 Kamyar Azizzadenesheli 2

Anima Anandkumar 1

Abstract
Neural operators learn mappings between func-
tion spaces, which is practical for learning solu-
tion operators of PDEs and other scientific model-
ing applications. Among them, the Fourier neural
operator (FNO) is a popular architecture that per-
forms global convolutions in the Fourier space.
However, such global operations are often prone
to over-smoothing and may fail to capture local
details. In contrast, convolutional neural networks
(CNN) can capture local features but are limited
to training and inference at a single resolution. In
this work, we present a principled approach to op-
erator learning that can capture local features un-
der two frameworks by learning differential opera-
tors and integral operators with locally supported
kernels. Specifically, inspired by stencil methods,
we prove that we obtain differential operators un-
der an appropriate scaling of the kernel values of
CNNs. To obtain local integral operators, we uti-
lize suitable basis representations for the kernels
based on discrete-continuous convolutions. Both
these approaches preserve the properties of oper-
ator learning and, hence, the ability to predict at
any resolution. Adding our layers to FNOs signif-
icantly improves their performance, reducing the
relative L2-error by 34-72% in our experiments,
which include a turbulent 2D Navier-Stokes and
the spherical shallow water equations.

1. Introduction
Deep learning holds the promise to greatly accelerate ad-
vances in computational science and engineering, which
often require numerical solutions of partial differential equa-

*Equal contribution 1Department of Computing and Mathe-
matical Sciences, California Institute of Technology, Pasadena
CA 91125 2NVIDIA, Santa Clara, CA 95051. Correspondence
to: Miguel Liu-Schiaffini <mliuschi@caltech.edu>, Julius Berner
<jberner@caltech.edu>, Boris Bonev <bbonev@nvidia.com>.

Proceedings of the 41 st
International Conference on Machine

Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

Regular kernel

Local integral kernel

Differential kernel

h �����! h/2 �����! 0

Figure 1: Visualization of different limits of a convolution with a
discretized function v as the grid width h is refined, i.e., h ! 0.
(Top) A regular convolution is collapsing to a pointwise linear op-
erator. (Middle) Instead, we can use a kernel that can be evaluated
at arbitrary resolutions and keep the receptive field unchanged, to
converge to a local integral operator, see Section 3.4. (Bottom)
Alternatively, we can let it collapse while constraining the kernel
appropriately, converging to a differential operator, see Section 3.2.

tions (PDEs) (Azizzadenesheli et al., 2024; Zhang et al.,
2023; Cuomo et al., 2022). Recent advances in deep learn-
ing have enabled applications such as weather forecast-
ing (Pathak et al., 2022; Bonev et al., 2023; Lam et al., 2023),
seismology (Sun et al., 2023; Shi et al., 2023), reservoir en-
gineering for carbon capture (Wen et al., 2022; 2023), and
many other applications with orders of magnitude speedup
over traditional methods.

Many of the above results are achieved by neural operators,
which learn mappings between function spaces, enabling

1

ar
X

iv
:2

40
2.

16
84

5v
2

 [c
s.L

G
]

8
Ju

n
20

24

Convolutional Neural Operators for robust and accurate learning of PDEs

69

Main components so far,

• Integration, global (FNO) or local (GNO, CNO)

• Residual connection (point-wise)

• Bias function (point-wise)

• Derivatives

NEURAL OPERATORS
Architectures

KOVACHKI, LI, LIU, AZIZZADENESHELI, BHATTACHARYA, STUART, ANANDKUMAR

Figure 5: top: The architecture of the neural operators; bottom: Fourier layer.
(a) The full architecture of neural operator: start from input a. 1. Lift to a higher dimension channel
space by a neural network P . 2. Apply T (typically T = 4) layers of integral operators and activation

functions. 3. Project back to the target dimension by a neural network Q. Output u. (b) Fourier layers:
Start from input v. On top: apply the Fourier transform F ; a linear transform R on the lower Fourier modes
which also filters out the higher modes; then apply the inverse Fourier transform F

�1. On the bottom: apply
a local linear transform W .

The Discrete Case and the FFT. Assuming the domain D is discretized with J 2 N points, we
can treat v 2 CJ⇥n and F(v) 2 CJ⇥n. Since we convolve v with a function which only has kmax
Fourier modes, we may simply truncate the higher modes to obtain F(v) 2 Ckmax⇥n. Multiplication
by the weight tensor R 2 Ckmax⇥m⇥n is then

�
R · (Fvt)

�
k,l

=
nX

j=1

Rk,l,j(Fv)k,j , k = 1, . . . , kmax, l = 1, . . . ,m. (27)

When the discretization is uniform with resolution s1⇥ · · ·⇥sd = J , F can be replaced by the Fast
Fourier Transform. For v 2 CJ⇥n, k = (k1, . . . , kd) 2 Zs1 ⇥ · · ·⇥Zsd , and x = (x1, . . . , xd) 2 D,
the FFT F̂ and its inverse F̂

�1 are defined as

(F̂v)l(k) =
s1�1X

x1=0

· · ·

sd�1X

xd=0

vl(x1, . . . , xd)e
�2i⇡

Pd
j=1

xjkj
sj ,

(F̂�1v)l(x) =
s1�1X

k1=0

· · ·

sd�1X

kd=0

vl(k1, . . . , kd)e
2i⇡

Pd
j=1

xjkj
sj

for l = 1, . . . , n. In this case, the set of truncated modes becomes

Zkmax = {(k1, . . . , kd) 2 Zs1 ⇥ · · ·⇥ Zsd | kj  kmax,j or sj � kj  kmax,j , for j = 1, . . . , d}.

When implemented, R is treated as a (s1⇥· · ·⇥sd⇥m⇥n)-tensor and the above definition of Zkmax

corresponds to the “corners” of R, which allows for a straight-forward parallel implementation of
(27) via matrix-vector multiplication. In practice, we have found the choice kmax,j roughly around
1
3 to 2

3 of the maximum number of Fourier modes in the Fast Fourier Transform of the grid valuation
of the input function provides desirable performance. In our empirical studies, we set kmax,j = 12
which yields kmax = 12d parameters per channel, to be sufficient for all the tasks that we consider.

22

Neural Operators with Localized Integral and Differential Kernels

Miguel Liu-Schiaffini * 1 Julius Berner * 1 Boris Bonev * 2 Thorsten Kurth 2 Kamyar Azizzadenesheli 2

Anima Anandkumar 1

Abstract
Neural operators learn mappings between func-
tion spaces, which is practical for learning solu-
tion operators of PDEs and other scientific model-
ing applications. Among them, the Fourier neural
operator (FNO) is a popular architecture that per-
forms global convolutions in the Fourier space.
However, such global operations are often prone
to over-smoothing and may fail to capture local
details. In contrast, convolutional neural networks
(CNN) can capture local features but are limited
to training and inference at a single resolution. In
this work, we present a principled approach to op-
erator learning that can capture local features un-
der two frameworks by learning differential opera-
tors and integral operators with locally supported
kernels. Specifically, inspired by stencil methods,
we prove that we obtain differential operators un-
der an appropriate scaling of the kernel values of
CNNs. To obtain local integral operators, we uti-
lize suitable basis representations for the kernels
based on discrete-continuous convolutions. Both
these approaches preserve the properties of oper-
ator learning and, hence, the ability to predict at
any resolution. Adding our layers to FNOs signif-
icantly improves their performance, reducing the
relative L2-error by 34-72% in our experiments,
which include a turbulent 2D Navier-Stokes and
the spherical shallow water equations.

1. Introduction
Deep learning holds the promise to greatly accelerate ad-
vances in computational science and engineering, which
often require numerical solutions of partial differential equa-

*Equal contribution 1Department of Computing and Mathe-
matical Sciences, California Institute of Technology, Pasadena
CA 91125 2NVIDIA, Santa Clara, CA 95051. Correspondence
to: Miguel Liu-Schiaffini <mliuschi@caltech.edu>, Julius Berner
<jberner@caltech.edu>, Boris Bonev <bbonev@nvidia.com>.

Proceedings of the 41 st
International Conference on Machine

Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

Regular kernel

Local integral kernel

Differential kernel

h �����! h/2 �����! 0

Figure 1: Visualization of different limits of a convolution with a
discretized function v as the grid width h is refined, i.e., h ! 0.
(Top) A regular convolution is collapsing to a pointwise linear op-
erator. (Middle) Instead, we can use a kernel that can be evaluated
at arbitrary resolutions and keep the receptive field unchanged, to
converge to a local integral operator, see Section 3.4. (Bottom)
Alternatively, we can let it collapse while constraining the kernel
appropriately, converging to a differential operator, see Section 3.2.

tions (PDEs) (Azizzadenesheli et al., 2024; Zhang et al.,
2023; Cuomo et al., 2022). Recent advances in deep learn-
ing have enabled applications such as weather forecast-
ing (Pathak et al., 2022; Bonev et al., 2023; Lam et al., 2023),
seismology (Sun et al., 2023; Shi et al., 2023), reservoir en-
gineering for carbon capture (Wen et al., 2022; 2023), and
many other applications with orders of magnitude speedup
over traditional methods.

Many of the above results are achieved by neural operators,
which learn mappings between function spaces, enabling

1

ar
X

iv
:2

40
2.

16
84

5v
2

 [c
s.L

G
]

8
Ju

n
20

24

FNO/CNO corresponds to large kernel CNNs,

Derivative layers corresponds to small (e.g., 3x3) kernel CNNs

Recall derivative in CNNs:

The coefficients sum to zero
0

-1

0

1

0

-1

0

1

0

0

0

0

0

0

1/ℎ−1/ℎ

1/ℎ

−1/ℎ

𝑘!! 𝑘!" 𝑘!#

𝑘"#

𝑘##

𝑘""

𝑘#"

𝑘"!

𝑘#!

&
$%

𝑘$% = 0	

Discretization agonistic
 derivative

General directional
 derivative

If we double the resolution, 𝑘34 ß 2𝑘34

Irregular grids: GNNs to compute derivatives

70

Main components so far,

• Integration, global (FNO) or local (GNO, CNO)

• Residual connection (point-wise)

• Bias function (point-wise)

• Derivatives

• What else? what other ways of information aggregation? Max pooling? We need consistency in some sense

• What else? (yet to be solved)

NEURAL OPERATORS
Architectures

KOVACHKI, LI, LIU, AZIZZADENESHELI, BHATTACHARYA, STUART, ANANDKUMAR

Figure 5: top: The architecture of the neural operators; bottom: Fourier layer.
(a) The full architecture of neural operator: start from input a. 1. Lift to a higher dimension channel
space by a neural network P . 2. Apply T (typically T = 4) layers of integral operators and activation

functions. 3. Project back to the target dimension by a neural network Q. Output u. (b) Fourier layers:
Start from input v. On top: apply the Fourier transform F ; a linear transform R on the lower Fourier modes
which also filters out the higher modes; then apply the inverse Fourier transform F

�1. On the bottom: apply
a local linear transform W .

The Discrete Case and the FFT. Assuming the domain D is discretized with J 2 N points, we
can treat v 2 CJ⇥n and F(v) 2 CJ⇥n. Since we convolve v with a function which only has kmax
Fourier modes, we may simply truncate the higher modes to obtain F(v) 2 Ckmax⇥n. Multiplication
by the weight tensor R 2 Ckmax⇥m⇥n is then

�
R · (Fvt)

�
k,l

=
nX

j=1

Rk,l,j(Fv)k,j , k = 1, . . . , kmax, l = 1, . . . ,m. (27)

When the discretization is uniform with resolution s1⇥ · · ·⇥sd = J , F can be replaced by the Fast
Fourier Transform. For v 2 CJ⇥n, k = (k1, . . . , kd) 2 Zs1 ⇥ · · ·⇥Zsd , and x = (x1, . . . , xd) 2 D,
the FFT F̂ and its inverse F̂

�1 are defined as

(F̂v)l(k) =
s1�1X

x1=0

· · ·

sd�1X

xd=0

vl(x1, . . . , xd)e
�2i⇡

Pd
j=1

xjkj
sj ,

(F̂�1v)l(x) =
s1�1X

k1=0

· · ·

sd�1X

kd=0

vl(k1, . . . , kd)e
2i⇡

Pd
j=1

xjkj
sj

for l = 1, . . . , n. In this case, the set of truncated modes becomes

Zkmax = {(k1, . . . , kd) 2 Zs1 ⇥ · · ·⇥ Zsd | kj  kmax,j or sj � kj  kmax,j , for j = 1, . . . , d}.

When implemented, R is treated as a (s1⇥· · ·⇥sd⇥m⇥n)-tensor and the above definition of Zkmax

corresponds to the “corners” of R, which allows for a straight-forward parallel implementation of
(27) via matrix-vector multiplication. In practice, we have found the choice kmax,j roughly around
1
3 to 2

3 of the maximum number of Fourier modes in the Fast Fourier Transform of the grid valuation
of the input function provides desirable performance. In our empirical studies, we set kmax,j = 12
which yields kmax = 12d parameters per channel, to be sufficient for all the tasks that we consider.

22

𝜈(𝑦)	 = 𝜎 𝒦 𝑎 (𝑦) = 	𝜎(*𝜅456785 𝑦, 𝑥 𝜈 𝑥 	d𝜇	 +*𝜅,6985 𝑦, 𝑥 𝜈 𝑥 	d𝜇1	 +𝔇 V𝑎
:
𝑦 +𝑊𝑎 𝑦 + 𝑏(𝑦))

Residual connection

Bias function

Global integral operator
Local integral operator

Differential operator

71

NEURAL OPERATORS AND SCIENTIFIC COMPUTING

In the past many decades, for each domain, CV, language, etc, we developed algorithms, architectures, benchmarks, datasets, metrics, …

NEURAL OPERATORS
Architectures

KOVACHKI, LI, LIU, AZIZZADENESHELI, BHATTACHARYA, STUART, ANANDKUMAR

Figure 5: top: The architecture of the neural operators; bottom: Fourier layer.
(a) The full architecture of neural operator: start from input a. 1. Lift to a higher dimension channel
space by a neural network P . 2. Apply T (typically T = 4) layers of integral operators and activation

functions. 3. Project back to the target dimension by a neural network Q. Output u. (b) Fourier layers:
Start from input v. On top: apply the Fourier transform F ; a linear transform R on the lower Fourier modes
which also filters out the higher modes; then apply the inverse Fourier transform F

�1. On the bottom: apply
a local linear transform W .

The Discrete Case and the FFT. Assuming the domain D is discretized with J 2 N points, we
can treat v 2 CJ⇥n and F(v) 2 CJ⇥n. Since we convolve v with a function which only has kmax
Fourier modes, we may simply truncate the higher modes to obtain F(v) 2 Ckmax⇥n. Multiplication
by the weight tensor R 2 Ckmax⇥m⇥n is then

�
R · (Fvt)

�
k,l

=
nX

j=1

Rk,l,j(Fv)k,j , k = 1, . . . , kmax, l = 1, . . . ,m. (27)

When the discretization is uniform with resolution s1⇥ · · ·⇥sd = J , F can be replaced by the Fast
Fourier Transform. For v 2 CJ⇥n, k = (k1, . . . , kd) 2 Zs1 ⇥ · · ·⇥Zsd , and x = (x1, . . . , xd) 2 D,
the FFT F̂ and its inverse F̂

�1 are defined as

(F̂v)l(k) =
s1�1X

x1=0

· · ·

sd�1X

xd=0

vl(x1, . . . , xd)e
�2i⇡

Pd
j=1

xjkj
sj ,

(F̂�1v)l(x) =
s1�1X

k1=0

· · ·

sd�1X

kd=0

vl(k1, . . . , kd)e
2i⇡

Pd
j=1

xjkj
sj

for l = 1, . . . , n. In this case, the set of truncated modes becomes

Zkmax = {(k1, . . . , kd) 2 Zs1 ⇥ · · ·⇥ Zsd | kj  kmax,j or sj � kj  kmax,j , for j = 1, . . . , d}.

When implemented, R is treated as a (s1⇥· · ·⇥sd⇥m⇥n)-tensor and the above definition of Zkmax

corresponds to the “corners” of R, which allows for a straight-forward parallel implementation of
(27) via matrix-vector multiplication. In practice, we have found the choice kmax,j roughly around
1
3 to 2

3 of the maximum number of Fourier modes in the Fast Fourier Transform of the grid valuation
of the input function provides desirable performance. In our empirical studies, we set kmax,j = 12
which yields kmax = 12d parameters per channel, to be sufficient for all the tasks that we consider.

22

We need to do the same for each domain of scientific computing domains, e.g.,

• Automative industry,

• Weather/climate,

• Molecular dynamics

• Seismology

• Electromagnetic

• Material design

• Drug discovery

• …

These are not applications, these are domains, no plug and play!

FourCastNet is 45,000 times faster than current weather models

• Dataset: 10 TB of weather data

• Metrics: L2 on function space, ACC, expert analysis

• Architecture: Adaptive FNO (AFNO)

• 45,000x speedup

• 25000x smaller energy footprint.

FOURCASTNET FOR WEATHER PREDICTION
Domain: Weather/Climate/Ocean

Domain inspired advanced architecture

Spherical-harmonic Fourier Neural Operator (SFNO)

• Bases functions: spherical harmonic

• Gaussian quadrature for sum

• MLP based residual connections

Spherical Fourier Neural Operators

in SO(3). The decomposition onto the basis then reads

u(✓,�) =
X

l2N

X

|m|l

û(l,m)Y m
l (✓,�)

û(l,m) =

Z

S2

Y m
l · u d⌦ , (8)

where d⌦ = sin ✓ d✓ d� is the volume form of the sphere.
F : u ! û, maps functions in u 2 L2(S2) to the harmonic
coefficients û(l,m). We call this map Spherical Harmonic
Transform (SHT), or alternatively, generalized Fourier trans-
form (Driscoll & Healy, 1994).

The Fourier transform decomposes a Hilbert space into basis
functions associated to symmetry operations on the under-
lying manifold. For the translation group G = (R2,+),
this basis is given by tensor products of plane waves
bkl(x, y) = exp(ikx) ⌦ exp(ily) since translations along
the axes commute with each other. For the sphere, the situa-
tion is more complicated as the generators of rotations do
not commute in general. This is reflected by the fact that
the associated spherical basis functions do not factor into a
tensor product structure.

4. Spherical Fourier Neural Operator
4.1. Convolutions on the Sphere

We can now generalize the FNO naively by replacing the
Fourier transforms in (3) with the SHT. While the SHT
generalizes the Fourier transform on S2, this ignores that
(3) is derived from a convolution theorem, however, and
ignores the symmetries inherent to the sphere. Instead, we
seek a formulation motivated by a convolution operator
to obtain an equivariant formulation. We introduce the
spherical convolution

( ? u)(x) =

Z

R2SO(3)
(Rn) · u(R�1x)dR, 8x 2 S2.

(9)
This definition applies the rotation R to the northpole
n = (0, 0, 1)T , which makes the function  2 L2(S2)
compatible with rotations R 2 SO(3). This formulation
generalizes the usual definition of convolutions, which can
be recovered by replacing the north pole n with the origin 0
and rotations R with translations T 2 (Rn,+).

The spherical convolution (9) admits a convolution theorem
of the form

F [?u](l,m) = 2⇡

r
4⇡

2l + 1
F [u](l,m)·F [](l, 0), (10)

where F refers to the SHT4. By replacing the filter weights
F [](l, 0) with the learned weights ̃#(l), we obtain the

4For a detailed discussion of Fourier transforms and convo-
lutions on the sphere, we refer the reader to (Driscoll & Healy,
1994).

Spherical Fourier Neural Layer

K#[u] = F
�1[̃# · F [u]], (11)

which forms the core of the SFNO. More precisely, we have

F [K#[u]](l,m) = ̃#(l) · F [u](l,m),

as this approach requires only one filter weight per l to
be learned. If L is the maximum zonal mode (0  l 

L), this approach requires L learned filters, as opposed to
L(L+ 1)/2 for the naive extension of the FNO.

4.2. SFNO Network Topology Design

u

F ̃# F
�1

MLP

+ MLP + u0

Figure 2. The structure of a single SFNO block. Multi-layer per-
ceptrons (MLPs) act point-wise in the spatial domain and allow
for channel mixing. The generalized Fourier transform F and its
inverse F�1 allow for the learning of long-range spatial dependen-
cies.  is a learned filter, which is applied linearly to the frequency
components.

encoder + +SFNO . . . + +SFNO decoder

(pos. embedding)

Figure 3. Diagram of the overall SFNO architecure. Encoder and
decoder MLPs inflate the channel dimension. A learned position
embedding is added in cases where position-dependent information
should be learned by the network. At the core lie N SFNO blocks,
where the first and last blocks perform up- or down-scaling. A skip
connection is added for autoregressive maps close to the identity.

SFNO block: Figure 2 depicts the layout of a single SFNO
block. At the core lies the Fourier layer (11), which allows
the network to efficiently learn global correlations. The
formulation in terms of a spherical convolution makes the
Fourier layer linear and equivariant w.r.t. SO(3). In case

5

• Dataset: 10 TB of weather data

• Metrics: L2 on function space, ACC, expert analysis

• Architecture: Adaptive FNO (AFNO)

• 45,000x speedup

• 25000x smaller energy footprint.

• 1000-member ensemble in a few seconds

FOURCASTNET FOR WEATHER PREDICTION
Domain: Weather/Climate/Ocean

Spherical-harmonic Fourier Neural Operator (SFNO)

• Bases functions: spherical harmonic

• Gaussian quadrature for sum

• MLP based residual connections

Spherical Fourier Neural Operators

in SO(3). The decomposition onto the basis then reads

u(✓,�) =
X

l2N

X

|m|l

û(l,m)Y m
l (✓,�)

û(l,m) =

Z

S2

Y m
l · u d⌦ , (8)

where d⌦ = sin ✓ d✓ d� is the volume form of the sphere.
F : u ! û, maps functions in u 2 L2(S2) to the harmonic
coefficients û(l,m). We call this map Spherical Harmonic
Transform (SHT), or alternatively, generalized Fourier trans-
form (Driscoll & Healy, 1994).

The Fourier transform decomposes a Hilbert space into basis
functions associated to symmetry operations on the under-
lying manifold. For the translation group G = (R2,+),
this basis is given by tensor products of plane waves
bkl(x, y) = exp(ikx) ⌦ exp(ily) since translations along
the axes commute with each other. For the sphere, the situa-
tion is more complicated as the generators of rotations do
not commute in general. This is reflected by the fact that
the associated spherical basis functions do not factor into a
tensor product structure.

4. Spherical Fourier Neural Operator
4.1. Convolutions on the Sphere

We can now generalize the FNO naively by replacing the
Fourier transforms in (3) with the SHT. While the SHT
generalizes the Fourier transform on S2, this ignores that
(3) is derived from a convolution theorem, however, and
ignores the symmetries inherent to the sphere. Instead, we
seek a formulation motivated by a convolution operator
to obtain an equivariant formulation. We introduce the
spherical convolution

( ? u)(x) =

Z

R2SO(3)
(Rn) · u(R�1x)dR, 8x 2 S2.

(9)
This definition applies the rotation R to the northpole
n = (0, 0, 1)T , which makes the function  2 L2(S2)
compatible with rotations R 2 SO(3). This formulation
generalizes the usual definition of convolutions, which can
be recovered by replacing the north pole n with the origin 0
and rotations R with translations T 2 (Rn,+).

The spherical convolution (9) admits a convolution theorem
of the form

F [?u](l,m) = 2⇡

r
4⇡

2l + 1
F [u](l,m)·F [](l, 0), (10)

where F refers to the SHT4. By replacing the filter weights
F [](l, 0) with the learned weights ̃#(l), we obtain the

4For a detailed discussion of Fourier transforms and convo-
lutions on the sphere, we refer the reader to (Driscoll & Healy,
1994).

Spherical Fourier Neural Layer

K#[u] = F
�1[̃# · F [u]], (11)

which forms the core of the SFNO. More precisely, we have

F [K#[u]](l,m) = ̃#(l) · F [u](l,m),

as this approach requires only one filter weight per l to
be learned. If L is the maximum zonal mode (0  l 

L), this approach requires L learned filters, as opposed to
L(L+ 1)/2 for the naive extension of the FNO.

4.2. SFNO Network Topology Design

u

F ̃# F
�1

MLP

+ MLP + u0

Figure 2. The structure of a single SFNO block. Multi-layer per-
ceptrons (MLPs) act point-wise in the spatial domain and allow
for channel mixing. The generalized Fourier transform F and its
inverse F�1 allow for the learning of long-range spatial dependen-
cies.  is a learned filter, which is applied linearly to the frequency
components.

encoder + +SFNO . . . + +SFNO decoder

(pos. embedding)

Figure 3. Diagram of the overall SFNO architecure. Encoder and
decoder MLPs inflate the channel dimension. A learned position
embedding is added in cases where position-dependent information
should be learned by the network. At the core lie N SFNO blocks,
where the first and last blocks perform up- or down-scaling. A skip
connection is added for autoregressive maps close to the identity.

SFNO block: Figure 2 depicts the layout of a single SFNO
block. At the core lies the Fourier layer (11), which allows
the network to efficiently learn global correlations. The
formulation in terms of a spherical convolution makes the
Fourier layer linear and equivariant w.r.t. SO(3). In case

5

Open problems:

• How to make the accuracy absolute?

• How to deal with discretization error?

• How to deal with chaotic nature of the problem?

• How to deal with uncertainty and probabilistic nature of the problem?

• How to scale up?

• How to train on multiple datasets?

• How to incorporate physics and domain knowledge?

• What are the right metrics here (𝐹;𝐼𝐷?)?

WEATHER FORECAST
Domain: Weather/Climate/Ocean

A very important domain of study of ML on function space, which many open problems

Given earth structure, earthquake location, and shaking profile, how the wave propagates?

GEOPHYSICS
Domain: Seismology, Earth Sciences

Given the wave observation on the surface, what is Earth structure and earthquake source?

• Neural operators are fast to query and differentiable à fast inverse solvers

u = 𝒢2(𝑎)

CLIMATE CHANGE MITIGATION: MODELING CO2 STORAGE
Domain: Sub-surface flow

CCS plumes spanning ~ 1km
Omniverse visualization by Marius Koch

NETZERO CLIMATE: CO2 MODELING WITH AI (FNO)
ML to accelerates CCS by 700,000 times using Nvidia GPU - A100

well1

well2

well3 global

Permeability Heat Map

well1

well2

well3

global

Challenges:
• Multi physics, scale, phase
• 30yr to 1000yr
• Seismic monitoring

FOUR-DIMENSIONAL CCS MODELING WITH AI (FNO)
Uncertainty quantification 20 years to 20 second

TIME SERIES OR A FUNCTION IN TIME?
Molecular dynamics

• Simulate stable structure of molecular geometries

• Computationally costly quantum mechanical calculations

• Equivariant to rotation and translation

• Schrödinger equation

Rotate and translate

TIME SERIES OR A FUNCTION IN TIME?
Molecular dynamics

• Neural network approach: data is a time series

• Equivariant graph neural network

• Nature of MD is continuous in time

• Not a discrete sequence of considerably different events

• Spatial graph in space and temporal neural operator in time

• Potentially infinitely more supervision

• True emulator, capturing force and higher order physics

When dealing with time series looking data, we borrow domain expert glasses and check whether it is discrete time series or a continuous function in time

Fast Sampling of Diffusion Models via Operator Learning

Figure 1. Illustration of the architecture and training pipeline of DSNO. The architecture of DSNO is built on top of any existing
diffusion model architecture, where blue blocks are from the existing diffusion U-Net backbone and yellow blocks are the proposed
temporal convolution layers. Suppose the temporal domain is discretized into M points {t1, . . . , tM}, for each feature map, the temporal
convolution layers operate on the temporal and channel dimensions (M⇥C) and the other blocks operate on the pixel and channel
dimensions (C⇥H⇥W). The symbols F and F�1 refer to the Fourier transform and inverse Fourier transform, respectively. R is a
complex-valued parameter that represents a kernel function in Fourier space. For ease of notation, xi represents the solution at time
ti, that is x(ti). Inside each temporal convolution layer, we apply the idea of parallel decoding: Given input function u(t), the Fourier
coefficients R · Fu is the same for all ti, i = 1, . . . ,M . Therefore, the temporal convolution layer can output the representations at
different time locations in the trajectory in a single forward pass by evaluating the output function at queried points in parallel.

work with different resolutions of data without changing the
model parameters, and can approximate any given nonlinear
continuous operator (Kovachki et al., 2021a).

The FNO allows for parallel decoding: i.e. the outputs at all
locations of the trajectory can be simultaneously evaluated.
This is a property that none of the previous sampling meth-
ods for diffusion models enjoy. In this work, we propose a
neural operator for diffusion model sampling (DSNO) that
maps the initial conditions (i.e. Gaussian distribution) to the
solution trajectories and we show its effectiveness in both
unconditional and class-conditional image generation.

Our contributions.

• We propose a neural operator for the fast sampling of
diffusion models (DSNO) that can sample high-quality

images with one model evaluation.

• We introduce temporal convolution blocks parameterized
in Fourier space, which can be easily combined with any
existing neural architectures of diffusion models to build
a neural operator backbone for DSNO. Furthermore, our
proposed temporal convolution blocks are lightweight and
only increase the model size by 10%.

• For the first time, we propose a parallel decoding method
to generate the trajectories of images using continuous
function representation, which enables generation of the
final solution in one model evaluation.

• Our proposed DSNO achieves new state-of-the-art FID
scores of 3.78 for CIFAR-10 and 7.83 for ImageNet-64 in
the setting of single-step-generation of diffusion models.

2

TIME SERIES OR A FUNCTION IN TIME?
Diffusion models distillation

From noise to image, there is a path, which is continuous in time

Map the noise to the function in time

Infinite supervision

Other domains, finance, speech, bio …

Frequency-Aware Masked Autoencoders for Multimodal Pretraining on Biosignals

arXiv Preprint

Figure 1: Motivation of our approach. (A) In multimodal biosignal systems, there exists substantial distri-
butional shifts between the pretraining and inference datasets. (B) The distributional shifts often cause the
shifts of representation in time-space, which can affect the model’s generalization ability within modality and
across modalities. (C) In the meantime, the representation in frequency-space typically would contain similar
frequency components within modality, leading to more stable combinations in multimodal scenarios.

different modalities can be altered. These crossmodal domain shifts can arise from unimodal shifts,
as a change in a single modality can disrupt its relationship to a different modality. Moreover, mul-
timodal biosignals often face modality mismatch scenarios, where modalities may be unavailable at
test time, and thus are removed or replaced with new modalities that provide relevant information to
the detected physiological response (McKinzie et al., 2023). Addressing these distributional shifts
is crucial to effectively leverage multimodal pretraining on biosignals.

In this work, we propose to incorporate frequency information in time series to mitigate distribu-
tional shifts and enable multimodal pretraining on biosignals. Frequency-domain analysis is advan-
tageous for biosignals not only due to its invariance to common causes of distributional shifts such
as temporal shifts and scaling, but also because the extracted frequency components are character-
istic representations for physiological activities (see Figure 1). While previous works have shown
the effectiveness of using frequency domain information to address generalization issues, they have
either relied on encoders from both the time and frequency domains (Zhang et al., 2022b), or com-
plicated sampling and combining modules (Zhou et al., 2022b) to utilize the frequency information.
Here, we propose a simple, yet effective, multi-head frequency filter layer with fixed-size Fourier-
based operator that directly parameterizes the representation of biosignals in the frequency space.
The proposed layer can be easily incorporated into the transformer, giving a frequency-aware (FA)
encoder that is both expressive and computationally efficient.

Furthermore, to extend the frequency awareness into a multimodal pretraining setting, we couple
the FA encoder with a frequency-maintain (FM) pretraining strategy. To prevent the statistical
consistency within the data from being disrupted by conventional masked autoencoding strategies
(Ryali et al., 2023), our method performs masked autoencoding in the latent space to maintain the
frequency awareness during reconstruction. Coupled with a channel-independent design (Nie et al.,
2022; Liu et al., 2022b), our model presents a pure reconstruction-based multimodal pretraining
architecture that can effectively combine and utilize information across modalities, with robustness
towards distributional shifts within and across modalities.

To systematically evaluate our proposed approach, we first examine the transferability of our ar-
chitecture on a publicly available one-to-many transfer learning benchmark (Zhang et al., 2022b).
Our architecture achieves state-of-the-art performance, giving an average of "5.5% improvements
in classification accuracy over the previous state-of-the-art, showing consistency across datasets of
different input lengths, sampling rates, and diverse sources of modalities. Next, we demonstrate
that our architecture is robust to a variety of modality mismatch scenarios commonly encountered
in real-world cases, showing that our architecture can effectively integrate and leverage information
across multiple modalities during pretraining.

We summarize our main contributions as follows:

• We propose bioFAME, a frequency-aware masked autoencoder for biosignals compris-
ing: (i) a frequency-aware (FA) transformer encoder that can learn biosignals in a robust
and computationally efficient way; (ii) a frequency-maintain (FM) pretraining strategy that
retains the frequency awareness during reconstruction.

2

TIPPING POINT FORECASTING ON FUNCTION SPACES

Tipping points: abrupt, drastic, and often irreversible changes in the evolution of non-stationary and chaotic

dynamical systems.

0 5 10 15 20
Tim e [y e a rs]

20

40

60

80

C
lo

ud
 fr

a
ct

io
n

[%
]

500

1000

1500

2000

2500

C
O

2
[p

p
m

v]

Time (years)

C
lo

ud
 fr

ac
tio

n
(%

)

C
O
2 (

pp
m

v)

0 105 2015
20

80

60

40

500

2000

1500

1000

2500

CO2 concentration
Cloud cover

TIPPING POINT FORECASTING ON FUNCTION SPACES

• Recurrent neural operator (RNO) to forecast evolution of non-stationary systems

• RNO maps time interval to time interval

• Tipping point forecast through tracking physics constraint violation

RNO block RNO block RNO block RNO block

°600 °500 °400 °300 °200 °100 0 100 200
Time (seconds)

0

200

400

600

800

P
h
y
si

cs
lo

ss

physics loss

predicted tipping point

tipping point

forecast time

20 40 60 80 100
Time (seconds)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

P
h
y
si

cs
lo

ss

£108

physics loss

predicted tipping point

tipping point

forecast time

AUTOMATIVE INDUSTRY
140,000 speed up on CFD of real cars

• Complex fluid dynamics problem

• 3D solvers to compute pressure and velocity

• Geometry-informed Neural Operator (GINO)

Input
Samples GNO FNO GNO Prediction

discretize query

Operates on
input geometry

Operates on (latent)
regular geometry

Projects to
output geometry

-134. -48.3 37.2 123. 208.

FNO layers

Figure 1: The architecture of GINO. The input geometries are irregular and change for each
sample. These are discretized into point clouds and passed on to a GNO layer, which maps from the
given geometry to a latent regular grid. The output of this GNO layer is concatenated with the
SDF features and passed into an FNO model. The output from the FNO model is projected back
onto the domain of the input geometry for each query point using another GNO layer. This is used
to predict the target function (e.g., pressure), which is used to compute the loss that is optimized
end-to-end for training.

generalize neural networks and learn operators, which are mappings between infinite-dimensional
function spaces [2]. Neural operators are discretization convergent and can approximate general
operators [3]. The input function to neural operators can be presented at any discretization, grid,
resolution, or mesh, and the output function can be evaluated at any arbitrary point. Neural operators
have shown promise in learning solution operators in partial differential equations (PDE) [3] with
numerous applications in scientific computing, including weather forecasting [4], carbon dioxide
storage and reservoir engineering [5], with a tremendous speedup over traditional methods. Prior
works on neural operators developed a series of principled neural operator architectures to tackle a
variety of scientific computing applications. Among the neural operators, graph neural operators
(GNO) [2], and Fourier neural operators (FNO) [6] have been popular in various applications.

GNO implements kernel integration with graph structures and is applicable to complex geometries
and irregular grids. The kernel integration in GNO shares similarities with the message-passing
implementation of graph neural networks (GNN) [7], which is also used in scientific computing [8–10].
However, the main difference is that GNO defines the graph connection in a ball defined on the
physical space, while GNN typically assumes a fixed set of neighbors, e.g., k-nearest neighbors,
see Figure 5. Such nearest-neighbor connectivity in GNN violates discretization convergence, and
it degenerates into a pointwise operator at high resolutions, leading to a poor approximation of
the ground-truth operator using GNN. In contrast, GNO adapts the graph based on points within
a physical space, allowing for universal approximation of operators. However, one limitation of
graph-based methods is the computational complexity when applied to problems with long-range
global interactions. To overcome this, prior works propose using multi-pole methods or multi-level
graphs [11, 12] to help with global connectivity. However, they do not fully alleviate the problem since
they require many such levels to capture global dependence, which still makes them expensive.

While GNO performs kernel integration in the physical space using graph operations, FNO leverages
Fourier transform to represent the kernel integration in the spectral domain using Fourier modes.
This architecture is applicable to general geometries and domains since the (continuous) Fourier

2

Table 2: Shape-Net Car dataset (3.7k mesh points).
Model training error test error

GNO 18.16% 18.77%
Geo-FNO (sphere) 10.79% 15.85%
UNet (interp) 12.48% 12.83%
FNO (interp) 9.65% 9.42%
GINO (encoder-decoder) 7.95% 9.47%
GINO (decoder) 6.37% 7.12%

We do a benchmark study with several standard machine-learning methods on the Shape-Net and
Ahmed body datasets. The training error is normalized L2 error; the test error is de-normalized L2.

4.1 Ahmed-Body dataset

We generate the industry-level vehicle aerodynamics simulation based on the Ahmed-body shapes
[28]. The shapes are parameterized with six design parameters: length, width, height, ground
clearance, slant angle, and fillet radius. We also vary the inlet velocity from 10m/s to 70m/s, leading
to Reynolds numbers ranging from 4.35⇥105 to 6.82⇥106. We use the GPU-accelerated OpenFOAM
solver for steady state simulation using the SST k � ! turbulence model [29] with 7.2 million mesh
points in total with 100k mesh points on the surface. Each simulation takes 7-19 hours on 2 Nvidia
v100 GPUs with 16 CPU cores. We generate 551 shapes in total and divide them into 500 for
training and 51 for validation.

4.2 Shape-Net Car dataset

We also consider the Car dataset generated by [16]. The input shapes are from the ShapeNet Car
category [30]. In [16], the shapes are manually modified to remove the side mirrors, spoilers, and
tires. The RANS equations with the k � ✏ turbulence model and SUPG stabilization are simulated
to obtain the time-averaged velocity and pressure fields using a finite element solver [31]. The inlet
velocity is fixed at 20m/s (72km/h) and the estimated Reynolds number is 5⇥ 106. Each simulation
takes approximately 50 minutes. The car surfaces are stored with 3.7k mesh points. We take the 611
water-tight shapes out of the 889 instances, and divide the 611 instances into 500 for training and
111 for validation.

As shown in Table 2 3 and Figure 2, GINO achieves the best error rate with a large margin compared
with previous methods. On the Ahmed-body dataset, GINO achieves 8.31% while the previous best
method achieve 11.16%. On the Shape-Net Car, GINO achieves 7.12% error rate compared to 9.42%
on FNO. It takes 0.1 seconds to evaluate, which is 100,000x faster than the GPU-parallel OpenFOAM
solver that take 10 hours to generates the data. We further performance a full cost-accuracy analysis
in the following section.

For ablations, we consider channel dimensions [32, 48, 64, 80], latent space [32, 48, 64, 80], and
radius from 0.025 to 0.055 (with the domain size normalized to [-1, 1]). As depicted in Figure 4(a)
and Table 4, larger latent spaces and radii yield superior performance.

9

An open problem in all the mentioned domains: The accuracy is not good enough yet à need same or more amount of work as we did in CV and NLP

87

PHYSICS INFORMED NEURAL OPERATORS

88

PHYSICS
Supervision in supervised learning

Supervision in conventional machine learning:

• Data (real, simulation)

• Domain knowledge

Supervision in Scientific computing and Neural operators?

• Data (real, simulation, simulation, simulation)

• Domain knowledge

• Physics

How to use physics in operator learning?

Neural operators output functions à accurate derivatives and integrals

89

PINO: PHYSICS-INFORMED NEURAL OPERATOR
Infinite supervision from physics

E.g., for a fixed f, à −∇. 𝑎 𝑥 ∇𝑢 𝑥 − 𝑓 𝑥 = 0

90

PINO: PHYSICS-INFORMED NEURAL OPERATOR
Infinite supervision from physics

Train at low resolution

Use PINO principle to further tune à test at higher resolution

PINO enables generalization to unseen high resolutions, where we don’t have data
Fig. 1: Left: The x-axis is the Fourier wavenumber and y-axis is the energy per
spectrum. Fourier Neural Operators (FNO) can extrapolate to unseen frequencies in
Kolmogorov Flows [18] using only limited resolution training data. Physics-informed
Neural Operator (PINO) uses both training data and the PDE equation for the loss
function, and can perfectly recover the ground-truth spectrum. A trained UNet with
trilinear interpolation (NN+Interpolation) has severe distortions at higher frequen-
cies, beyond the resolution of training data. Right: The x-axis is the resolution of
the test data, and y-axis is the test error at that given resolution. Neural Operators
are discretization convergent, meaning the model converges to the target continuum
operator as the discretization is refined. On the Darcy equation, we train each fixed
architecture UNet, FNO, and Graph Neural Operator (GNO) at a given resolution
and test at that same resolution [11] (no super-resolution). As shown in the figure,
FNO and GNO have consistent errors as resolution increases, but UNet has increasing
errors since the size of its receptive field changes with resolution, and it does not enjoy
the guarantees of discretization convergence. UNet is only able to maintain the same
test error as resolution increases if the number of parameters increases. In this case,
we increase the convolutional filter size, corresponding to about 2.2M, 6.0M, 11.8M,
and 19.3M parameters, respectively.

reason, we believe that standard neural networks are unsuitable for replacing numerical
solvers in scientific applications.

To overcome the above limitation of neural networks, we propose Neural Operators
that can predict the solution at any location in the output domain and are not limited
to the grid of training data [11, 22]. Neural Operators accomplish this by approxi-
mating the underlying operator, which is the mapping between the input and output
function spaces, each of which can be infinite-dimensional. See Fig.2. In other words,
Neural Operators approximate the continuum mapping even when trained only on
discrete data, and thus, they have the ability to capture the finer scales more faithfully.

In Fig.1, we show the prediction of a Neural Operator, Fourier Neural Operator
(FNO), for fluid dynamics [10], and contrast it with UNet, a popular neural network
trained at a fixed resolution and then augmented with trilinear interpolation. We find
that FNO follows the trend of ground-truth energy decay in the frequency domain,

4

91

PINO: PHYSICS-INFORMED NEURAL OPERATOR
Solution operator for a family of equations and fine-tune on an instance

Operator learning Instance-wise finetuning

Resembles physics informed neural network, with good preconditioner

92

PINO: PHYSICS-INFORMED NEURAL OPERATOR
Transfer Learning with PINO

Reynolds number 100 Reynolds number 500

Operator learned on Re100, fine-tune to Re500. Converges 3x faster.

93

PINO: PHYSICS-INFORMED NEURAL OPERATOR

Inverse problem: u = 𝒢(𝑎)

Given the output u, what was the corresponding input 𝑎?

Gradient descent find a solution à it might not be physically valid

Run Gradient descent with physics in mind.

Inverse problems with PINO

−∇. 𝑎 𝑥 ∇𝑢 𝑥 = 𝑓(𝑥)

min
V

u∗ − 𝒢(𝑎)

94

PINO: PHYSICS-INFORMED NEURAL OPERATOR

Open problems:

• How to impose partial physics

• How to preserve physics quantities

• How to speed/scale up the PINO paradigm

• How to reduce error to sufficient degree

• How to outperform solvers in terms of accuracy

How to make PINO principle really practical

96

UNCERTAINTY QUANTIFICATION

97

UNCERTAINTY QUANTIFICATION

In science, reporting numbers without error bar is almost always unadvised (remember, we learned error analysis first in science classes)

UQ on function spaces is an important area, with only few studies, e.g., generalization of conformal prediction to function spaces

UQ is ubiquitous in science

True Error

UQNO (Ours) MCDropout Laplace Approximation

Coverage=0.997 Coverage=0.931 Coverage=0.999

Figure 6: Uncertainty quantification comparison across methods on 3D car pressure prediction
problem. The leftmost heatmap plots true error. The top panels show the predicted pointwise
uncertainty, and the bottom panels show the coverage (i.e. true error less than predicted error)
for each point on the domain—yellow points are covered by our predicted uncertainty bands, and
purple points are uncovered. The coverage percentage for each method is shown above the bottom
panels. Our method, although conservative (over-estimates uncertainty), is able to capture the error
pattern on both the top and bottom of the front face of the car. Due to the conservative nature
of our calibration procedure, our method satisfies the coverage threshold of > 98% (actual 99.7%).
MCDropout, although on the same scale as true error, misses the top error region and fails to meet
the coverage threshold. Laplace approximation greatly over-estimates the error and does not capture
the error structure well.

target of 98%. We see that MCDropout has a low calibration percentage at 66.7%, and Laplace
approximation gives a 4.85x wider band while only providing a 94.6% calibration percentage. The
low calibration percentage of the Neural Posterior PC method (0%) shows the problem to be highly
nonlinear.

5 Theoretical Guarantee

Recall from Section 2.2, 2.3 that we want to construct a (↵, �)-risk-controlling confidence set
satisfies:

P(u,a)[Ex[{u(a)(x) 2 C�(a)(x)}] < 1� ↵]  �

C�(a)(x) = {p 2 Rdu : kp� Ĝ(a)(x)k2  �E(a)(x)}

with the minimum possible �. We start with the simple case where m points are sampled from the
domain for each function in calibration set.

st(a, u) = �b1�↵+tc (8)

where �j is the j’th smallest value in {ku(xi)�Ĝ(a)(xi)k2
E(a)(xi)

|i = 1, ...m}, t >
q
� ln �

2m . st(a, u) > �
gives

1

m

mX

i=1

{u(xi) 2 C�(a)(xi)} < 1� ↵+ t (9)

11

Train a predative neural operator

Train a risk-controlling quantile neural operator

Base Neural Operator
Output (red)

Simultaneous Point-wise Uncertainty
(green=upper, yellow=lower)

1. Train with
Generalized

Quantile Loss

2. Calibrate with
Conformal
Prediction

Predicted
uncertainty

band
Prediction

Ground Truth

Figure 1: Overall schematic of UQNO, a risk-controlling quantile neural operator. In operator
learning, the learned neural operator outputs a function (red dots sampled at grid points). We
train a residual operator with generalized quantile loss and then calibrate with conformal prediction,
which yields simultaneous pointwise uncertainty estimates with a PAC guarantee on calibration
coverage—the expected percentage of true value (black) that lies within our predicted uncertainty
bands (green=upper bound and yellow=lower bound). In this example, since the output is 1D, we
output a pointwise uncertainty band. In higher dimensions, we output a pointwise heterogeneous
uncertainty ball.

uncertainty quantification face challenges in three key areas, viz., lack of function-space coverage,
distribution-free calibration guarantee, and scalability.

Function-space formulation: Neural operators provide function-space solutions that can be
evaluated at any point in the domain. The necessary formulation of uncertainty for neural operators
requires to be on the function space, which provides simultaneous uncertainty estimation for all
points. For example, in an automotive design setting that uses neural operators to predict surface
pressure Li et al. [2023], simultaneous uncertainty estimates on the whole surface can inform designers
of structured error around the front face ridge, as shown in Figure 1, whereas a single-point or
aggregate measure of uncertainty cannot convey such information.

Uncertainty quantification in function spaces is more challenging than naively combining point
predictions in the function space. Even if we obtain point-wise guarantees on calibration with
probability 1�p, the standard union bound leads to a loose bound on the probability of simultaneous
calibrations. Prior work focuses on single-point uncertainty estimation [Guo et al., 2023], and
theoretical developments investigate uncertainty quantification in the function space, yet focus
on transformed formulations such as functional projection or scalar function properties such as
pseudo-density or loss [Lei et al., 2015, Benitez et al., 2023].

Distribution-free calibration guarantee: Classical deep learning uncertainty quantification
methods such as MCDropout [Gal and Ghahramani, 2016] or ensemble learning [Maddox et al.,
2019] do not provide calibration guarantees. These methods output mean and variance estimates
under Gaussian assumptions, and the results are generally heuristic. Recent works on uncertainty
quantification for operator learning are either heuristic [Guo et al., 2023, Akhare et al., 2023, Nehme
et al., 2023], or rely on Gaussian assumptions and approximations that may not hold in real-world
settings [Magnani et al., 2022]. Heuristic uncertainty estimation is insufficient for safety-critical or
high-impact applications. We need a method with a rigorous calibration guarantee that works “in
the wild", where distributional assumptions might be broken. Since real-world applications have

2

Report: 3.63 ± 0.04

98

GENERATIVE MODELS IN
FUNCTION SPACES

99

GANO: GENERATIVE ADVERSARIAL NEURAL OPERATOR

Let’s see how we can generalize Wasserstein GAN to function spaces

Generative model for function spaces

𝐺

𝑧'
𝑧(
..
.

𝑧)*'
𝑧)

∼ 𝒩

𝑑

?𝑥

𝑥 ∼ ℙ5

𝐺: Generator neural network
𝑑: Discriminator neural network

GAN

sup
* #3&

𝔼1∼ℙ$ 𝑑 𝑥 − 𝔼 61∼7(9) 𝑑 \𝑥 	

Minimize Wasserstein distance

𝒢𝑎 ∼ 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛	𝑃𝑟𝑜𝑐𝑒𝑠𝑠	(𝐺𝑃)

𝑑

?𝑢

𝑢 ∼ ℙ5

𝒢: Generator neural operator
𝑑: Discriminator neural functional

GANO

sup
* #3&

𝔼;∼ℙ$ 𝑑 𝑢 − 𝔼<;∼7(=) 𝑑 \𝑢 	

Minimize Wasserstein distance

Scalar Scalar

𝑥, 𝑧, ?𝑥 : Finite dimensional objects 𝑎, 𝑢, ?𝑢 : Infinite dimensional objects

Gradient penalty: ∇𝑑 ≤ 1 Gradient penalty: 𝜕𝑑 𝒰∗ ≤ 1

Dual space

Fre ́chet derivative

100

GANO: GENERATIVE ADVERSARIAL NEURAL OPERATOR

GANO in practice

Base model: UNO-FNO

Train and generate at different resolutions

𝑑: Discriminator neural functional

GANO

Gradient penalty: 𝜕𝑑 𝒰∗ ≤ 1

• 1𝐷 domain: If |𝑢 presented on a regular grid of size 𝑚 à ∇𝑑(|𝑢 ") ≤ #
"

• 2𝐷 domain: If |𝑢 presented on a regular grid of size 𝑚#×𝑚$ à ∇𝑑(|𝑢 ") ≤ #
"8"2

• For irregular grid, the law needs to be calculated for each datapoint

Published in Transactions on Machine Learning Research (10/2022)

...

a P

...

G1

G2 GL-1

Q u

......Gl Gl’

G
L

Neural Operator Layer

v

W

+ σ

R FF -1

(a) Generator. u = G(a). The input a first gets passed to a pointwise lifting operator

parameterized with P . Then multiple layers of global integral operators Gl’s are applied which

are accompanied by a few skip connections. At last, the output u is generated using a final

pointwise projection layer parameterized with Q.

(b) Discriminator. r = d(u). The input u first gets passed to a pointwise lifting operator

parameterized with P . Then multiple layers of global integral operators Gl’s are applied which

are accompanied by a few skip connections. At last, the output r is generated using a final

pointwise projection layer parameterized with Q, followed by a linear integral functional layer.

Figure 1: Generative adversarial neural operator (GANO)

physics, and atmospheric sciences, work primarily with data that live in function spaces. In these settings,
the observation data is mainly on irregular and changing points in both space and time.

Applications of functional data are abundant in seismology. For example, for a specific region on Earth,
the base stations record data/seismograms on the surface of Earth. These receiver centers are located on
irregular grids, e.g., point clouds (e.g., more stations closer to faults). The point cloud configuration also is
di�erent from region to region (Tokyo and Osaka). Moreover, due to measurement and local noise, some of
the receivers are on and o� in time. It means that we are dealing with functional data that are observed on
irregular grids both in time and space. Moreover, when studying these functions, we aim to evaluate and
query them at any spatiotemporal point. Since the governing equations are partial di�erential wave equations,
access to the temporal and spatial derivatives reveals information about the dynamics of physical phenomena.
Generative models for the mentioned wave functions allow for sampling many potential seismic behaviors of
each region of Earth, facilitating the hazard study. Similarly, in weather forecasts, many recording stations
on the surface of Earth are located on irregular grids (fewer stations on oceans than on lands) with di�erent
fidelity and frequency of observation. For these applications, scientists represent the weather condition as
a function on a 2D sphere. This allows for evaluating weather conditions at any point on the surface of
Earth and computing the gradient and momentum of the fluid dynamics. The function representation with a
learned generative model allows for accurate sampling of weather forecasts and future events.

In this paper, we study the problem of generative models in function spaces. We propose generative adversarial
neural operator (GANO), a deep learning-based approach that enables the learning of probabilities on function

2

Published in Transactions on Machine Learning Research (10/2022)

...

a P

...

G1

G2 GL-1

Q u

......Gl Gl’

G
L

Neural Operator Layer

v

W

+ σ

R FF -1

(a) Generator. u = G(a). The input a first gets passed to a pointwise lifting operator

parameterized with P . Then multiple layers of global integral operators Gl’s are applied which

are accompanied by a few skip connections. At last, the output u is generated using a final

pointwise projection layer parameterized with Q.

...

u P

...

G1

G2 GL-1

r

...Gl Gl’

G
L

Neural Operator Layer

v

W

+ σ

R FF -1

Functional Layer

Neural Functional Layer

v Q ʃ k(y)v(y)dμ(y)

(b) Discriminator. r = d(u). The input u first gets passed to a pointwise lifting operator

parameterized with P . Then multiple layers of global integral operators Gl’s are applied which

are accompanied by a few skip connections. At last, the output r is generated using a final

pointwise projection layer parameterized with Q, followed by a linear integral functional layer.

Figure 1: Generative adversarial neural operator (GANO)

physics, and atmospheric sciences, work primarily with data that live in function spaces. In these settings,
the observation data is mainly on irregular and changing points in both space and time.

Applications of functional data are abundant in seismology. For example, for a specific region on Earth,
the base stations record data/seismograms on the surface of Earth. These receiver centers are located on
irregular grids, e.g., point clouds (e.g., more stations closer to faults). The point cloud configuration also is
di�erent from region to region (Tokyo and Osaka). Moreover, due to measurement and local noise, some of
the receivers are on and o� in time. It means that we are dealing with functional data that are observed on
irregular grids both in time and space. Moreover, when studying these functions, we aim to evaluate and
query them at any spatiotemporal point. Since the governing equations are partial di�erential wave equations,
access to the temporal and spatial derivatives reveals information about the dynamics of physical phenomena.
Generative models for the mentioned wave functions allow for sampling many potential seismic behaviors of
each region of Earth, facilitating the hazard study. Similarly, in weather forecasts, many recording stations
on the surface of Earth are located on irregular grids (fewer stations on oceans than on lands) with di�erent
fidelity and frequency of observation. For these applications, scientists represent the weather condition as
a function on a 2D sphere. This allows for evaluating weather conditions at any point on the surface of
Earth and computing the gradient and momentum of the fluid dynamics. The function representation with a
learned generative model allows for accurate sampling of weather forecasts and future events.

In this paper, we study the problem of generative models in function spaces. We propose generative adversarial
neural operator (GANO), a deep learning-based approach that enables the learning of probabilities on function

2

𝒢: Generator neural operator

Published in Transactions on Machine Learning Research (10/2022)

Table 1: GANOs and GANs

Models GANO GAN

Input/output spaces Function Spaces Euclidean spaces
Input measure Gaussian Random Fields Multivariate random variables
Controls length scale, variance, energy, etc. dimension, variance, etc.

compassion. We show that as the roughness/noisiness of the input GRF is increased, GANO properly learns
to generate functions from the underlying data probability, while if the input GRF generates smooth or nearly
fixed-value functions, the trained models lose the ability to properly capture the data measure.

We extend our empirical study to satellite remote sensing observations of an active volcano, where each data
point is the phase of a complex-valued function defined on a 2D domain (Rosen et al., 2012). This is a real
world function dataset in which each data point represents ≥ millimeter-scale changes in the surface of a
volcano at a spatial resolution of ≥ 70 meters, measured every 12 days. This dataset constitutes a noisy and
challenging function dataset for GANO and GAN training. We show that GANO learns to generate functions
on par with the real dataset while GAN fails in generating these volcanic phase functions.

We release the code to generate the data sets in the first part of the empirical study. For the purpose of
bench-marking, we also release the processed volcano dataset, which is ready to be deployed in future studies.
We also release the implementation code along with the training procedure.2

2 Related Works

The original GAN formulation can be interpreted as an adversarial game procedure in which the
Jensen–Shannon divergence between a synthetic distribution, implicitly defined by a generator model,
and a real data distribution is minimized (Goodfellow et al., 2014). However, models trained with a Jensen-
Shannon objective function require substantial tuning, su�er from stability issues, and are notoriously
di�cult to scale (Radford et al., 2015). Considerable work has therefore been devoted to developing novel
architectures, improving the formulation, and enhancing the theoretical understanding. In particular, the
Wasserstein version of GAN allows for a more stable training scheme, is less sensitive to hyperparameter and
architectural choices, and provides a loss function that correlates with output quality (Arjovsky et al., 2017).
The Wasserstein formulation is often understood as an attempt to minimize the Wasserstein or Earth Mover’s
distance between the synthetic and real data distributions. In Adler & Lunz (2018), a rigorous theoretical
extension of WGANs along with theoretically grounded choices of hyperparameters are presented, which the
present paper follows. For the comparison study, we choose the Wasserstein version of GAN.

There has been limited previous work on learning densities over function spaces. These works have mainly
focused on non-parametric density estimation with ”-sequences on separable Banach spaces and topological
groups (Rao, 2010; Craswell, 1965). Heuristic kernel density estimation for infinite-dimensional spaces
was also developed (Dabo-Niang, 2004). Such methods assume the existence of a density with respect to
(sometimes unspecified) base measures (Lebesgue measures are undefined for infinite-dimensional spaces) and
impose strong assumptions on the metric and similarity of the output spaces. Moreover, learning the density
does not provide matching algorithmic sampling methods from such infinite-dimensional spaces. Since pure
memorization using ”-sequences does not exploit the data structure and does not constitute a particularly
appealing approach, we do not consider it an appropriate baseline for this study. For this study, we choose the
GAN framework mainly due to its proximity to GANO, its vast success in many machine learning domains,
and the lack of suitable methods for learning generative models in infinite dimensional spaces.

Pioneering work by (Li et al., 2020b) generalized the notion of neural networks to infinite-dimensional spaces
and introduced the concept of neural operators, a novel composable architecture that is able to learn mappings
between functions spaces. (Li et al., 2020a) showed that neural operators could be e�ciently implemented as
a series of convolutions performed in the Fourier domain of the input function. It has also been shown that
any complex operator can be approximated by neural operators, which are compositions of linear integral

2https://github.com/kazizzad/GANO

4

101

GANO: GENERATIVE ADVERSARIAL NEURAL OPERATOR

GANO in practice

Base model: UNO-FNO

Train and generate at different resolutions

𝑑: Discriminator neural functional

GANO

Published in Transactions on Machine Learning Research (10/2022)

...

a P

...

G1

G2 GL-1

Q u

......Gl Gl’

G
L

Neural Operator Layer

v

W

+ σ

R FF -1

(a) Generator. u = G(a). The input a first gets passed to a pointwise lifting operator

parameterized with P . Then multiple layers of global integral operators Gl’s are applied which

are accompanied by a few skip connections. At last, the output u is generated using a final

pointwise projection layer parameterized with Q.

(b) Discriminator. r = d(u). The input u first gets passed to a pointwise lifting operator

parameterized with P . Then multiple layers of global integral operators Gl’s are applied which

are accompanied by a few skip connections. At last, the output r is generated using a final

pointwise projection layer parameterized with Q, followed by a linear integral functional layer.

Figure 1: Generative adversarial neural operator (GANO)

physics, and atmospheric sciences, work primarily with data that live in function spaces. In these settings,
the observation data is mainly on irregular and changing points in both space and time.

Applications of functional data are abundant in seismology. For example, for a specific region on Earth,
the base stations record data/seismograms on the surface of Earth. These receiver centers are located on
irregular grids, e.g., point clouds (e.g., more stations closer to faults). The point cloud configuration also is
di�erent from region to region (Tokyo and Osaka). Moreover, due to measurement and local noise, some of
the receivers are on and o� in time. It means that we are dealing with functional data that are observed on
irregular grids both in time and space. Moreover, when studying these functions, we aim to evaluate and
query them at any spatiotemporal point. Since the governing equations are partial di�erential wave equations,
access to the temporal and spatial derivatives reveals information about the dynamics of physical phenomena.
Generative models for the mentioned wave functions allow for sampling many potential seismic behaviors of
each region of Earth, facilitating the hazard study. Similarly, in weather forecasts, many recording stations
on the surface of Earth are located on irregular grids (fewer stations on oceans than on lands) with di�erent
fidelity and frequency of observation. For these applications, scientists represent the weather condition as
a function on a 2D sphere. This allows for evaluating weather conditions at any point on the surface of
Earth and computing the gradient and momentum of the fluid dynamics. The function representation with a
learned generative model allows for accurate sampling of weather forecasts and future events.

In this paper, we study the problem of generative models in function spaces. We propose generative adversarial
neural operator (GANO), a deep learning-based approach that enables the learning of probabilities on function

2

Published in Transactions on Machine Learning Research (10/2022)

...

a P

...

G1

G2 GL-1

Q u

......Gl Gl’

G
L

Neural Operator Layer

v

W

+ σ

R FF -1

(a) Generator. u = G(a). The input a first gets passed to a pointwise lifting operator

parameterized with P . Then multiple layers of global integral operators Gl’s are applied which

are accompanied by a few skip connections. At last, the output u is generated using a final

pointwise projection layer parameterized with Q.

...

u P

...

G1

G2 GL-1

r

...Gl Gl’

G
L

Neural Operator Layer

v

W

+ σ

R FF -1

Functional Layer

Neural Functional Layer

v Q ʃ k(y)v(y)dμ(y)

(b) Discriminator. r = d(u). The input u first gets passed to a pointwise lifting operator

parameterized with P . Then multiple layers of global integral operators Gl’s are applied which

are accompanied by a few skip connections. At last, the output r is generated using a final

pointwise projection layer parameterized with Q, followed by a linear integral functional layer.

Figure 1: Generative adversarial neural operator (GANO)

physics, and atmospheric sciences, work primarily with data that live in function spaces. In these settings,
the observation data is mainly on irregular and changing points in both space and time.

Applications of functional data are abundant in seismology. For example, for a specific region on Earth,
the base stations record data/seismograms on the surface of Earth. These receiver centers are located on
irregular grids, e.g., point clouds (e.g., more stations closer to faults). The point cloud configuration also is
di�erent from region to region (Tokyo and Osaka). Moreover, due to measurement and local noise, some of
the receivers are on and o� in time. It means that we are dealing with functional data that are observed on
irregular grids both in time and space. Moreover, when studying these functions, we aim to evaluate and
query them at any spatiotemporal point. Since the governing equations are partial di�erential wave equations,
access to the temporal and spatial derivatives reveals information about the dynamics of physical phenomena.
Generative models for the mentioned wave functions allow for sampling many potential seismic behaviors of
each region of Earth, facilitating the hazard study. Similarly, in weather forecasts, many recording stations
on the surface of Earth are located on irregular grids (fewer stations on oceans than on lands) with di�erent
fidelity and frequency of observation. For these applications, scientists represent the weather condition as
a function on a 2D sphere. This allows for evaluating weather conditions at any point on the surface of
Earth and computing the gradient and momentum of the fluid dynamics. The function representation with a
learned generative model allows for accurate sampling of weather forecasts and future events.

In this paper, we study the problem of generative models in function spaces. We propose generative adversarial
neural operator (GANO), a deep learning-based approach that enables the learning of probabilities on function

2

𝒢: Generator neural operator

Generated

Seismogram

Published in Transactions on Machine Learning Research (10/2022)

(a) Input GRF samples (b) Data GRF samples at 64 ◊ 64 (c) Data GRF samples at 128 ◊ 128

(d) GANO generated samples on 64 ◊ 64 (e) GANO generated samples on 128 ◊ 128

(f) GANO Histogram on 64 ◊ 64 (g) GANO Histogram on 128 ◊ 128

(h) GANO Auto Correlation on 64 ◊ 64 (i) GANO Auto Correlation on 128 ◊ 128

Figure 7: We train GANO on a function data set of resolution 64 ◊ 64. The data samples are generated
using a GRF (· = 5). The input GRF (· = 5) sample functions are also represented on a 64 ◊ 64 grid.
The generator neural operator takes a function as an input and outputs a function. To demonstrate this
fact, we test the trained generative model on a di�erent resolution. We change the resolution of the input
function to a higher resolution of 128◊128 and query the generated function samples on a higher resolution of
128 ◊ 128. Figure (c) represents high-resolution data, and figure (e) represents the generated samples on the
higher-resolution input and query points. Figures (g) and (i) demonstrate the histogram and auto-correlation
of the higher-resolution data and higher-resolution generated samples. This study expresses that neural
operators can take inputs at any resolution and the output function can be queried at any point in the
domain. Furthermore, despite the fact that the model has never seen high-resolution data during the training,
it can generate statistically matching samples of high resolution.

output function can be queried at any point in the domain. Furthermore, despite the fact that the model
has never seen high-resolution data during the training, it can generate statistically matching samples of
high resolution. These are desirable properties of the GANO framework, as the first generative model on
function spaces. Please note that, for this empirical study, we use smaller models in GANO in order to fit the
high-resolution data to the present GPU machines. In particular, we reduce the number of layers to 5, the
co-dimension to 8, and the number of modes to 10. These choices for the smaller model did not alter the
performance of the trained generator.

Volcano deformation signals in InSAR data. Interferometric Synthetic Aperture Radar (InSAR) is a
remote sensing technology used to measure deformation of Earth’s surface, often in response to volcanic
eruptions, earthquakes, or subsidence due to excessive groundwater extraction. In InSAR, a radar signal
is emitted from satellites or various types of aircraft and echoes are recorded. Changes in these echoes
over time (as measured by repeat flyovers) can be used to precisely measure the amount that a point on
the surface moves between repeats. The most common form of InSAR data is the interferogram, which

13

Train and generation at different resolutions

102

DENOISING DIFFUSION OPERATOR (DDO)
Score based generative model for function spaces

Theory of SDE on function spaces

Score operator vs score function

Multivariate Gaussian for noise, vs GP

Training loss on function space

Score-based Diffusion Models in Function Space

Figure 11: Navier-Stokes. Uncurated samples at the resolution 1024 ⇥ 1024 from our
diffusion model trained on a dataset at the resolution 128⇥ 128.

51

Training on 128x128, generation on 1024x1024
Score-based Diffusion Models in Function Space
Diffusion generative models in infinite dimensions
Infinite-dimensional diffusion models for function spaces
Functional Diffusion
Infinite-Dimensional Diffusion Models
Conditional score-based diffusion models for Bayesian inference in infinite dimensions
Multilevel diffusion: Infinite dimensional score-based diffusion models for image generation

103

GENERATIVE MODEL ON FUNCTION SPACES

Variational Autoencoding Neural Operators (VAE to function spaces)

Universal Functional Regression with Neural Operator Flows (Normalizing flow to function spaces)

Functional Flow Matching (Flow matching to function spaces

…

104

UNIVERSAL FUNCTION REGRESSION

GP regression à Function prior is Gaussian

Neural Operators to generalize GP regression

7/19/24, 10:42 AM Gaussian-process-with-noise-2.svg

file:///Users/kamyara/Downloads/Gaussian-process-with-noise-2.svg 1/1

In real world, function data is not Gaussian

Can we learn maps between stochastic processes?

Under review as submission to TMLR

within Hilbert spaces and employing infinite-dimensional Langevin dynamics for sampling. The inference
of DDO requires a di�usion process, as with the finite-dimensional score-based model, which can be time-
consuming (Song et al., 2021; Lim et al., 2023); VANO o�ers a functional variational objective (Kingma
& Welling, 2022; Seidman et al., 2023), mapping input functional data to a finite-dimensional latent space
through an encoder, which may be a sub-optimal formulation due to the fixed dimensionality of the latent
space being decoupled from the discretization of the input function data.

All of these aforementioned models have exhibited superior performance over their finite-dimensional counter-
parts for functional data by directly learning mappings between function spaces, which show great potential
in addressing the challenges in science and engineering problems (Shi et al., 2024a;b; Yang et al., 2021;
Azizzadenesheli et al., 2024). Compared to these existing infinite-dimensional generative models, OpFlow

shows advantages in fast training, fast inference, bijective architecture, and providing precise likelihood
estimation as summarized in Table 1. These advantages of OpFlow can be explained by: (i) The training
and inference processes of OpFlow only involve likelihood estimation, and don’t require an adversarial
game or a di�usion process. (ii) OpFlow directly generalizes normalizing flows to function space without
finite-dimensional simplicity, and enables precise likelihood estimation for functional point evaluations on
irregular grids. (iii) As an invertible operator, OpFlow can be useful for tasks that require the bijectivity
between function spaces (Zhou et al., 2023; Furuya et al., 2023).

Table 1: Comparison of OpFlow with other infinite-dimensional generative models

Models Fast training Fast inference Bijective architecture Exact likelihood estimation
GANO 7 3 7 7
DDO 7 7 7 7
VANO 3 3 7 7
OpFlow [Ours] 3 3 3 3

Neural Processes. Neural Process (NP) (Garnelo et al., 2018) leverages neural networks to address
the constraints associated with GPs, particularly the computational demands and the restrictive Gaussian
assumptions for priors and posteriors (Dutordoir et al., 2022). While NP aims to model functional distributions,
several fundamental flaws suggest NP might not be a good candidate for learning function data (Rahman
et al., 2022a; Dupont et al., 2022). First, NP lacks true generative capability; it focuses on maximizing
the likelihood of observed data points through an amortized inference approach, neglecting the metric
space of the data. This approach can misinterpret functions sampled at di�erent resolutions as distinct
functions, undermining the NP’s ability to learn from diverse function representations. As pointed out in
prior works (Rahman et al., 2022a), if a dataset comprises mainly low-resolution functions alongside a single
function with a somewhat high resolution, NP only tries to maximize the likelihood for the point evaluation of
the high-resolution function during training and ignores information from all other lower-resolution functions.
A detailed experiment to show the failure of NP for learning simple function data can be found in Appendix
A.1 of (Rahman et al., 2022a) . What’s more, NP relies on an encoder to map the input data pairs to
finite-dimensional latent variables, which are assumed to have Gaussian distributions (Garnelo et al., 2018),
and then project the finite-dimensional vector to an infinite-dimensional space; this approach results in
diminished consistency at elevated resolutions, and thus disables NP to scale to large datasets (Dupont et al.,
2022). The other fundamental limitation is the Bayesian framework of NP is also defined on a set of points,
rather than functions themselves. This method results in the dilution of prior information as the number of
evaluated points increases, further constraining NP’s ability to generalize from function data.

Normalizing Flows. Normalizing flows are a class of flow-based finite-dimensional generative models,
that usually composed of a sequence of invertible transformations (Kingma & Dhariwal, 2018; Dinh et al.,
2017; Chen et al., 2019). By gradually transforming a simple probability distribution into a more complex
target distribution with the invertible architecture, normalizing flows enable exact likelihood evaluation,
direct sampling, and good interpretability (Kobyzev et al., 2021) with applications from image and audio
generations (Kingma & Dhariwal, 2018; Ping et al., 2020), reinforcement learning (Mazoure et al., 2020) to
Bayesian inference (Gao et al., 2021; Whang et al., 2021). Despite the advantages of normalizing flows, they
still face challenges with high-dimensional data due to computational complexity, memory demands, scalability,

3

Under review as submission to TMLR

domain. Addressing these challenges not only expands the models available for functional regression but also
enhances our capacity to extract meaningful insights from complex datasets.

In this study, our contributions are as follows. We develop a viable formulation for UFR with a novel learnable
bijective operator, OpFlow. This operator extends the classical normalizing flow, which maps between finite
dimensional vector spaces, to the function space setting. OpFlow consists of an invertible neural operator, an
invertible map between function spaces, trained to map the data point-process distribution to a known and
easy-to-sample GP distribution. Given point value samples of a data function, OpFlow allows for computing
the likelihood of the observed values, a principled property a priori held by GP. Using this property, we
formally define the problem setting for UFR and develop an approach for posterior estimation with Stochastic
Gradient Langevin Dynamics (SGLD) (Welling & Teh, 2011). Finally, we demonstrate UFR with OpFlow on
a suite of experiments that use both Gaussian and non-Gaussian processes.

In comparison to GPR, OpFlow draws on the training dataset to learn the prior over a function space.
When such datasets are only minimally available, kernel tuning methods propose to hand-tune the kernel
and parameters of GPR, providing considerable performance, although still with a Gaussian assumption. In
such limited data scenarios, learning accurate priors with OpFlow may be di�cult and less suitable. When
training data is non-existent, often neither the plain GPR nor OpFlow can be of help; when expert knowledge
can be incorporated (Aigrain & Foreman-Mackey, 2023), there may be advantages to GPR. However, such
a method can also be considered as hand-tuning the prior used in OpFlow by, for example, setting the
invertible model to identity map, resembling strong prior over the prior learning process.

2 Related work

(a) (b)

Figure 1: Examples of data
from non-Gaussian processes. (a)
Temperature field from Rayleigh
Bénard convection problem. (b)
Vorticity field from Naiver-Stokes
Equation.

Neural Operators. Neural Operator is a new paradigm in deep learning
for learning maps between infinite-dimensional function spaces. Unlike
traditional neural networks that primarily work with fixed-dimensional
vectors, neural operators are designed to operate on functions, making
them inherently suitable for a wide range of scientific computing and
engineering tasks involving partial di�erential equations (PDEs) (Kovachki
et al., 2023; Li et al., 2020). A key feature of neural operators is their
discretization agnostic (resolution invariant) property (Kovachki et al.,
2023), which means that a neural operator can learn from data represented
on various resolutions and predict outcomes on yet new resolutions. This
property is particularly valuable in applications involving the natural
sciences, PDEs, and complex physical simulations where functional data
may come from variable discretizations of meshes or sensors. Within the
family of neural operators, Fourier Neural Operator (FNO) (Li et al., 2021) stands out for its quasi-linear
time complexity by defining the integral kernel in Fourier space and has been applied to many problems
in engineering and science (Azizzadenesheli et al., 2024). In the conventional view of neural operators,
provided discretization and point evaluation of functions resembles approximation of function for which
increasing the resolution is connected to improved approximation error in the integration and di�erentiation
operators (Liu-Schia�ni et al., 2024). The proposed view in the current work provides a new perspective
for which the point evaluations are instead considered as points samples of functions that are associated
probably rather than finite bases and finite resolution approximation of a continuous function. Therefore,
increasing the resolution is seen as providing more information for regression rather than a way to reduce,
e.g., the approximation error in the integral operators used in neural operations.

Function space generative modeling with Neural Operators. Several discretization invariant generative
models on function spaces have been recently developed using Neural Operators (Li et al., 2020; Kovachki
et al., 2023). These models include Generative Adversarial Neural Operator (GANO) (Rahman et al.,
2022a), Denoising Di�usion models (DDO) (Lim et al., 2023) and Variational Autoencoding Neural Operator
(VANO) (Seidman et al., 2023). To be specific, GANO is the first proposed infinite-dimensional generative
model that generalizes GAN, and learns probability measures on function spaces. However, GANO training
relies on an adversarial game, which can be slow (Goodfellow et al., 2014; Rahman et al., 2022a); DDO is
a resolution-invariant di�usion generative model for function spaces, leveraging denoising score matching

2

Under review as submission to TMLR

Training and Inference

Universal Functional Regression

𝒜
data function space

OpFlow

In
ve

rt
ib

le

op
er

at
or …. 𝒰

Gaussian Process space

: Inverse/Forward: Frozen prior

OpFlow

likelihood estimation

𝑙𝑜𝑔 𝑝஘ 𝑢ம ෤𝑢௢௕௦

density function

SGLD
sampling

𝑎மଵ , 𝑎மଶ … , 𝑎ம௡
Posterior samples

in 𝒜 space

OpFlow
Inference

Posterior samples
 in 𝒰 space

෤𝑢௢௕௦

𝑢மଵ , 𝑢மଶ … , 𝑢ம௡

In
ve

rt
ib

le

op
er

at
or

In
ve

rt
ib

le

op
er

at
or

In
ve

rt
ib

le

op
er

at
or

Figure 2: Model architecture of OpFlow, OpFlow is composed of a list of invertible operators. For the
universal function regression task, OpFlow is the learnt prior, which is able to provide exact likehood
estimation for function point evaluation. ũobs is the noisy observation, u„ is the posterior function of interest
and u„ = G◊(a„), where G◊ is the learnt forward operator.

associated with v0, v1, · · · vs as each layer of F◊ is an invertible operator. Vi is the collection of positions for
function vi with D0

V = D, Ds
V = DA, and each data point has its own discretization D 2.

Although the framework of OpFlow is well-defined, the negative log-likelihood for high-dimensional data
may su�er from instabilities during training, leading to a failure to recover the true distribution.Through our
experiments, we found that relying solely on the likelihood objective in Eq 1 was insu�cient for training
OpFlow successfully. To address this, we introduce a regularization term, to ensure that OpFlow learns
the true probability measure by helping to stabilize the training process and leading to faster convergence.
Such regularization is inspired by the infinite-dimensional Wasserstein loss used in (Rahman et al., 2022a).
Unlike the implicit Wasserstein loss provided by the discriminator in GANO, we could potentially have a
closed-form expression of the infinite-dimensional Wasserstein loss in the context of OpFlow. This is due to
the learning process mapping function data onto a well-understood GP. The inherent properties of Gaussian
Processes facilitate measuring the distance between the learned probability measure and the true probability
measure, which is explained into detail in the subsequent sections.

A common way for measuring the distance between two probability measures is square 2-Wasserstein (Mallasto
& Feragen, 2017) distance, which is defined as

W 2
2 (PA, F◊˘PU) = inf

fiœ�

⁄

A◊A
d2

2(a1, a2)dfi, (a1, a2) œ A ◊ A, (2)

where � is a space of joint measures defined on A ◊ A such that for any fi œ �, the margin measures of
fi(a1, a2) on the first and second arguments are PA and F◊˘PU , and d2 is a metric induced by the L2 norm.
By construction, A ≥ GP and if su�ciently trained, F◊˘U ≥ GP . We can thus further simplify Eq. 2, which

2
Unlike finite-dimensional normalizing flows on fixed-size and regular grids, OpFlow can provide likelihood estimation

log p◊(u|D) on arbitrary grids D, which represents a potentially irregular discretization of DU . To compute log p◊(u|D), we need

the homeomorphic mapping between DA and DU to find DA, corresponding to D. The density function in Eq. 1 holds for new

points of evaluation. Our implementation of OpFlow incorporates FNO that requires inputs on regular grids. Consequently,

although OpFlow is designed to handle functions for irregular grids, our specific implementation of OpFlow only allows for

likelihood estimation on regular girds with arbitrary resolution.

7

Under review as submission to TMLR

learnable constant-valued scale and bias functions, respectively, in this layer. The output of the actnorm layer
is then given by vi = si

◊ § (vÕ)i + bi
◊, where § denotes pointwise multiplication in the function space.

Domain and codomain partitioning. The physical domain refers to the space in which the data resides,
such as the time domain for 1D data or the spatial domain for 2D data. Conversely, the channel domain
is defined as the codomain of the function data, such as the 3 channels in RGB images or temperature,
velocity vector, pressure, and precipitation in weather forecast (Pathak et al., 2022; Hersbach et al., 2020). In
normalizing flows, a bijective structure requires dividing the input domain into two segments (Dinh et al.,
2017; Kingma & Dhariwal, 2018). Based on the method of splitting the data domain, we propose two distinct
OpFlow architectures.

(i) Domain partitioning: In this architecture, we apply checkerboard masks to the physical domain, a technique
widely used in existing normalizing flow models (Dinh et al., 2017; Kingma & Dhariwal, 2018) which we
extend to continuous domains. Our experiments in the following sections reveal that the domain decomposed
OpFlow is e�cient and expressive with a minor downside in introducing checkerboard pattern artifacts in
zero-shot super-resolution tasks.

(ii) Codomain partitioning: This approach partitions the data along the codomain of the input function data,
while maintaining the integrity of the entire physical domain. We show that, unlike its domain decomposed
counterpart, the codomain OpFlow does not produce artifacts in zero-shot super-resolution experiments.
However, it exhibits a lower level of expressiveness compared to the domain decomposed OpFlow.

A�ne coupling. Let vi represent the input function data to the ith a�ne coupling layer of OpFlow. Then,
we split vi either along the physical domain or codomain, and we have two halves hi

1, hi
2 = split(vi). Let T i

◊
denote the ith a�ne coupling layer of OpFlow, where T i

◊ is a FNO layer (Li et al., 2021), which ensures the
model is resolution agnostic. Then, we have log(si), bi = T i

◊ (hi
1), where si and bi are scale and shift functions,

respectively, output by the ith a�ne coupling layer. From here, we update hi
2 through (hÕ)i

2 = si § hi
2 + bi.

Finally, we output the function (vÕ)i+1 for the next layer where (vÕ)i+1 = concat(hi
1, (hÕ)i

2). The concat

(concatenation) operation corresponds to the reversing the split operation, and is either in the physical domain
or codomain.

Inverse process. The inverse process for the ithe layer of OpFlow is summarized in Algorithm 3. First, we
split the input function (vÕ)i+1 with hi

1, (hÕ)i
2 = split((vÕ)i+1). Then the inverse process of the a�ne coupling

layer also takes hi
1 as input, and generates the scale and shift functions log(si), bi = T i

◊ (hi
1). Thus, both

forward and inverse processes utilize the hi
1 as input for the a�ne coupling layer, which implies that the scale

and shift functions derived from the forward process and inverse process are identical from the a�ne coupling
layer. Then we can reconstruct hi

2 and vi through hi
2 = ((hÕ)i

2 ≠ bi)/si; vi = concat(hi
1, hi

2). Finally, we have
the inverse of the actnorm layer with (vÕ)i = (vi ≠ bi

◊)/si
◊. Similar inverse processes of normalizing flows are

described in (Kingma & Dhariwal, 2018; Dinh et al., 2017).

4.2 Training

Since OpFlow is a bijective operator, we only need to learn the inverse mapping F◊ : U æ A, as the
forward operator is immediately available. We train OpFlow in a similar way to other infinite-dimensional
generative models (Rahman et al., 2022a; Seidman et al., 2023; Lim et al., 2023) with special addition of
domain alignment. The space of functions for A is taken to be drawn from a GP, which allows for exact
likelihood estimation and e�cient training of OpFlow by minimizing the negative log-likelihood. Since
OpFlow is discretization agnostic (Rahman et al., 2022a; Kovachki et al., 2023), it can be trained on various
discretizations of DU and be later applied to a new set of discretizations, and in the limit, to the whole of
DU (Kovachki et al., 2023). We now define the training objective L for model training as follows,

L = ≠ min
◊œ�

Eu≥PU [log p◊(u|D)], where, log p◊(u|D) = log p(a|DA) +
sÿ

i=1
log | det(

ˆ(vi|Di
V

)
ˆ(vi≠1|Di≠1

V
))|. (1)

The inverse operator is composed of s invertible operator layers with F◊ := Fs
◊ ¶ Fs≠1

◊ · · · F0
◊ , and gradually

transforms v0 to v1, · · · vs≠1, vs, where v0 = u, vs = a and the alignment naturally holds within the domains

6

105

OPEN PROBLEMS

106

OPEN PROBLEM

Takeaway message à the whole field is absolutely open

• The neural operator architectures are still primitive

• Also, what other ways of information aggregation? Max pooling? We need consistency in some sense

• Necessary components yet to be explored

• Scaling up is a big challenge

• The accuracies of supervised models are yet limited

• PINO is the future, and very challenging

• What are the best methods for inverse problem

• What happens if we train on low res and test on high res, and vice versa? Theory and practice

• What is the deep learning theory for neural operators? What is width?

• The resolution in the intermediate layers is designer choice, how it should be done?

• The last layer of Neural Operator models is similar to NeRF, how we can bridge between these two?

Architecture and training

107

OPEN PROBLEM

Takeaway message à the whole field is absolutely open

• Image as a spatial function

• Video as spatial temporal function

Computer vision, image as a function

FNOSEG3D: RESOLUTION-ROBUST 3D IMAGE SEGMENTATION WITH FOURIER NEURAL OPERATOR
DFU: scale-robust diffusion model for zero-shot super-resolution image generation

108

OPEN PROBLEM

Takeaway message à the whole field is absolutely open

• Data collection and data generation (simulation) are expensive

• Active learning method for data collection and training

• Each scientific domain needs its own active learning method

• UQ is essential in science; what are the principles for UQ in function spaces

• UQ is essential for inverse problem and optimization

Active learning and UQ Real world wind tunnel experiment

Simulations takes days to months

109

OPEN PROBLEM

Takeaway message à the whole field is absolutely open

RL is essential in scientific computing and engineering

• Fluid control

• Wind farm control

• Climate navigation

• Material design

• Drug discovery

• Flow current stabilization

• Online learning in function spaces,

RL in function spaces

110

OPEN PROBLEM

Takeaway message à the whole field is absolutely open

• Unsupervised learning in function spaces,

• Transfer learning and domain adaptation in function spaces,

• Adversarial robustness in function spaces,

• Anomaly Detection in function spaces,

• Self supervised learning in function spaces

• Meta learning in function spaces,

• …

Write all of ML on function spaces, with domain in mind

There is urgent need for curating massive datasets for all these domains

111

COLLABORATION

Be aware of challenges:

• Often domain experts are pessimistic about ML

• Initial ML methods are often not as good as the existing paradigms

• Domain experts don’t know much ML as ML-ists don’t know much other field

• Domain experts often don’t have right metrics

• Needs joint development

• Needs building language bridge

• The data is not generated having ML in mind

How to collaborate with domain experts

CONCLUSION
§ AI4science is the future of science

§ Principled algorithms for zero-shot generalization

§ Neural operator extends neural networks to learning
in infinite dimensional spaces

§ Orders of magnitude speedup while maintaining accuracy

114

RESOURCES

Neural operator library :

https://neuraloperator.github.io/neuraloperator/dev/index.html

Nvidia Modulus

https://docs.nvidia.com/modulus/index.html

https://neuraloperator.github.io/neuraloperator/dev/index.html
https://docs.nvidia.com/modulus/index.html

115

RESOURCES

Nature: - Neural Operators for Accelerating Scientific Simulations and Design

GNO: Neural Operator: - Graph Kernel Network for Partial Differential Equations

Multi-pole: - Multipole Graph Neural Operator for Parametric Partial Differential Equations

FNO: - Fourier Neural Operator for Parametric Partial Differential Equations

PINO: - Physics-informed machine learning: case studies for weather and climate modelling

 : - Physics-Informed Neural Operators with Exact Differentiation on Arbitrary Geometries

Multi-grid: - Multi-Grid Tensorized Fourier Neural Operator for High-Resolution PDEs

Theory: - Neural Operator: Learning Maps Between Function Spaces With Applications to PDEs

UNO: - U-NO: U-shaped Neural Operators

Differential operator: - Neural Operators with Localized Integral and Differential Kernels

DNO: - Fast Sampling of Diffusion Models via Operator Learning

Precision: - Guaranteed Approximation Bounds for Mixed-Precision Neural Operators

CoDANO: - Pretraining Codomain Attention Neural Operators for Solving Multiphysics PDEs

MD: - Equivariant Graph Neural Operator for Modeling 3D Dynamics

UQ: - Calibrated Uncertainty Quantification for Operator Learning via Conformal Prediction

Material science: - A learning-based multiscale method and its application to inelastic impact problems

Tipping points: - Tipping Point Forecasting in Non-Stationary Dynamics on Function Spaces

GINO: - Geometry-Informed Neural Operator for Large-Scale 3D PDEs

Seismology: - Seismic wave propagation and inversion with Neural Operators

 : - Rapid Seismic Waveform Modeling and Inversion with Universal Neural Operators

FourcastNet: - Fourcastnet: A global data-driven high-resolution weather model using adaptive Fourier neural operators

 - Calibration of Large Neural Weather Models

 - Spherical Fourier Neural Operators: Learning Stable Dynamics on the Sphere

CCS: - U-FNO - an enhanced Fourier neural operator based-deep learning model for multiphase flow

 : - Real-time high-resolution CO2 geological storage prediction using nested Fourier neural operators

GANO: - Generative Adversarial Neural Operators

𝐹"𝐼𝐷: - PaCMO: Partner Dependent Human Motion Generation in Dyadic Human Activity using Neural Operators

DDO: Score-based Diffusion Models in Function Space

116

SOURCES OF FIGURES

Figures

https://freecontent.manning.com/neural-network-architectures
 https://images.app.goo.gl/64BSh361KX78THzXA
https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf
https://towardsdatascience.com/u-net-explained-understanding-its-image-segmentation-architecture-56e4842e313a
https://d2l.ai/chapter_convolutional-modern/resnet.html
https://arxiv.org/abs/1706.03762
https://pubs.geoscienceworld.org/ssa/srl/article-abstract/90/3/1268/568984/Broadband-0-5-Hz-Fully-Deterministic-3D-Ground?redirectedFrom=fulltext
https://engys.com/applications/automotive
https://videos.mentor-cdn.com/mgc/videos/5400/d7dd0086-eb28-4302-a67e-17c10c13eeca-en-US-video.mp4
https://www.nbcnewyork.com/weather/weather-stories/storms-threaten-tri-state-monday-as-temps-soar-near-90-strong-winds-possible/3869922/
https://gifs.com/gif/molecular-dynamics-simulation-of-a-drug-entering-into-the-binding-site-of-a-target-protein-vQDNLq
https://www.youtube.com/watch?v=8oIQy6fxfCA
https://www.linkedin.com/pulse/really-useful-add-so-many-ai-units-gaming-graphics-cards/
https://iopscience.iop.org/article/10.1088/1741-4326/ad313a/pdf
https://www.nasa.gov/aeronautics/nasa-simulates-a-smooth-ride-to-stabilize-air-taxis/
https://8020engineering.com/cfd-for-marine-design-and-hull-propeller-optimization/
https://x.com/CadenceCFD/status/1739956538368987433
https://www.youtube.com/watch?app=desktop&v=TXMPE5mtXcw
http://petersengineering.blogspot.com/2017/05/finite-difference-method.html
https://www.lancaster.ac.uk/stor-i-student-sites/thomas-newman/2022/05/05/gaussian-processes-in-regression/
https://opidesign.net/landscape-architecture/landscape-architecture-fun-facts/
https://www.businessinsider.com/boeing-777x-starts-wind-tunnel-testing-2013-12
https://magazine.viterbi.usc.edu/fact/75_dryden-wind-tunnel/
https://www.smartdraw.com/collaboration/collaboration.htm
https://www.geeksforgeeks.org/machine-learning/
https://www.superannotate.com/blog/what-is-natural-language-processing
https://www.mdpi.com/2073-4441/15/5/850
https://www.researchgate.net/figure/a-A-portion-of-the-finite-element-mesh-showing-the-magma-chamber-and-an-inward-dipping_fig2_343026921
https://www.researchgate.net/figure/Dual-mesh-near-body-off-body-overset-grid-system_fig1_242397432
https://www.learncax.com/knowledge-base/blog/by-category/cfd/good-looking-mesh-may-not-always-be-good-for-the-simulation
https://www.nasa.gov/aeronautics/research-model-increases-
accuracy/?utm_source=FBPAGE&utm_medium=NASA+Aeronautics&utm_campaign=NASASocial&linkId=477679258&fbclid=IwZXh0bgNhZW0CMTAAAR3DTq9ozrNiYTdNjeUEIfjk96vDOJ78VflWMWYopNTWal3PT5FaxStAvQ4_aem_qLF6HUttvhnI_tQnDiZThA

https://freecontent.manning.com/neural-network-architectures
https://freecontent.manning.com/neural-network-architectures
https://images.app.goo.gl/64BSh361KX78THzXA
https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf
https://towardsdatascience.com/u-net-explained-understanding-its-image-segmentation-architecture-56e4842e313a
https://d2l.ai/chapter_convolutional-modern/resnet.html
https://arxiv.org/abs/1706.03762
https://pubs.geoscienceworld.org/ssa/srl/article-abstract/90/3/1268/568984/Broadband-0-5-Hz-Fully-Deterministic-3D-Ground?redirectedFrom=fulltext
https://engys.com/applications/automotive
https://videos.mentor-cdn.com/mgc/videos/5400/d7dd0086-eb28-4302-a67e-17c10c13eeca-en-US-video.mp4
https://www.nbcnewyork.com/weather/weather-stories/storms-threaten-tri-state-monday-as-temps-soar-near-90-strong-winds-possible/3869922/
https://gifs.com/gif/molecular-dynamics-simulation-of-a-drug-entering-into-the-binding-site-of-a-target-protein-vQDNLq
https://www.youtube.com/watch?v=8oIQy6fxfCA
https://www.linkedin.com/pulse/really-useful-add-so-many-ai-units-gaming-graphics-cards/
https://iopscience.iop.org/article/10.1088/1741-4326/ad313a/pdf
https://www.nasa.gov/aeronautics/nasa-simulates-a-smooth-ride-to-stabilize-air-taxis/
https://8020engineering.com/cfd-for-marine-design-and-hull-propeller-optimization/
https://x.com/CadenceCFD/status/1739956538368987433
https://www.youtube.com/watch?app=desktop&v=TXMPE5mtXcw
http://petersengineering.blogspot.com/2017/05/finite-difference-method.html
https://www.lancaster.ac.uk/stor-i-student-sites/thomas-newman/2022/05/05/gaussian-processes-in-regression/
https://opidesign.net/landscape-architecture/landscape-architecture-fun-facts/
https://www.businessinsider.com/boeing-777x-starts-wind-tunnel-testing-2013-12
https://magazine.viterbi.usc.edu/fact/75_dryden-wind-tunnel/
https://www.smartdraw.com/collaboration/collaboration.htm
https://www.geeksforgeeks.org/machine-learning/
https://www.superannotate.com/blog/what-is-natural-language-processing
https://www.mdpi.com/2073-4441/15/5/850
https://www.researchgate.net/figure/a-A-portion-of-the-finite-element-mesh-showing-the-magma-chamber-and-an-inward-dipping_fig2_343026921
https://www.researchgate.net/figure/Dual-mesh-near-body-off-body-overset-grid-system_fig1_242397432
https://www.learncax.com/knowledge-base/blog/by-category/cfd/good-looking-mesh-may-not-always-be-good-for-the-simulation

117

THANK YOU.

Anima Anandkumar

Kaushik Bhattacharya

Zachary E. Ross

Zongyi Li

Andrew M Stuart

Nikola Kovachki

Burigede Liu

Jean Kossaifi

Md Ashiqur Rahman

Robert W. Clayton

Gege Wen

Sally Benson

Miguel Liu-Schiaffini

Boris Bonev

Weili Nie

Chris Choy

Boyi Li

Hongyu Sun

Christian Hundt

Yaozhong Shi

Marius Koch

Jan Kautz

Mohammad Amin Nabian

Maximilian Stadler

Weiqiang Zhu

Daniel V Leibovici

Renbo Tu

Gennady Pekhimenko

Grigorios Lavrentiadis

Domniki Asimaki

Caifeng Zou

Björn Lütjens

Suyash Bire

David Pitt

Minkai Xu

Jure Leskovec

Arvind Ramanathan

Stefano Ermon

Jiaqi Han

Aaron Lou

Thorsten Kurth

Angela F. Gao

Mogab Elleithy

Anirban Chandra

Suraj Pawar

Aniruddha Panda

Jeroen Snippe

Faruk O. Alpak

Farah Hariri

Clement Etienam

Pandu Devarakota

Detlef Hohl

Robert Joseph George

Andre Graubner

Tapio Schneider

Noah Brenowitz

Clare E. Singer

Akshay Subramaniam

Dale Durran

Maximilian Baust

Farah Hariri

Karsten Kreis

Ricardo Baptista

Jiaming Song

Jae Hyun Lim

Christopher Beckham

Chris Pal

Karthik Kashinath

Haoxuan Chen

Julius Berner

Colin White

Jaideep Pathak

Morteza Mardani

Hongkai Zheng

Peter Harrington

Shashank Subramanian

Philip Marcus

Yan Yang

Arash Vahdat

Mike Pritchard

Sanjeev Raja

Sanjay Choudhry

Yair Cohen

