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this is machine learning:



this is machine learning on images:




this is machine learning on
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this is machine learning on...

S



this is machine learning on...

hire/not



this is machine learning on...

admit/not



this is machine learning on...

Q o=

approve/not



this is machine learning on...

provide/not



{ what could possibly go wrong? ]

(or: how does human behavior change learning and its outcomes?)



Strategic classification

Builds on conventional binary classification

Augments to account for human behavior

Models humans as inputs with agency

Allows (and requires!) to encode what humans:

Basic elements of economic modeling

Together, combine to determine how humans behave

[modeling challenge: weave these into learning setup]




Strategic classification

 SCis great because it is:
» simple enough to permit tractable analysis
» powerful enough to introduce novel challenges
» meaningful enough to have social implications

> flexible enough to permit extensions,
variations, and generalizations

 Start with rigid assumptions — e.g., rationaity:
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want

Strategic classification |

 SCis great because it is:
» simple enough to permit tractable analysis
» powerful enough to introduce novel challenges
» meaningful enough to have social implications

» flexible enough to permit extensions,
variations, and generalizations

e Start with rigid assumptions — e.g., rationaity

» Ultimate goal: capture realistic behavior “in the wild”



Outline

e Introduction

* Three main sections:

) : I1) Econ/GT aspects: I11) Beyond:

* strategic learning — setup * incentives * causality

e aslearning vs. as a game * information * dependencies
* optimization * actions * over time

e generalization * limited resources

* modeling * social welfare

* Challenges and opportunities

* Summary



Tutorial theme and goals

* Introduction to emerging new field

* Many open research questions

* Much potential for application

 Main theme: transitioning from theory — practice

* Focus on supervised batch setting

* More breadth
* More
* More questions

* More content



Strategic classification



standard
classification:

train:

argfrlnin E[1{y # h(x)}]




standard
classification:

train: argmin E[1{y # h(x)}]
h

test: hx) =y=y




BANK

strategic

classification:
h
train: argmin E[1{y # h(x)}]
h representation of 5
human agent
test: h(ix) =9 =y |l
prediction ground truth




strategic

classification:




classification:

o

/1. want: y =1

2. do: modify features




classification:

/1. want: y =1

2. do: modify features
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g now




classification:

response:

X

behavior

/1. want: y =1

2. do: modify features

3. k - h
g now




strategic
classification:

[response: Ap(x) =argmax h(x') — c(x,x')j
[ x 1 I
/

| | rational = most cost-effective

rational utility cost = move on decision boundary
= prediction (e.g., norm)



strategic
classification:

train:

test:

response:

argmin E[1{y # h(x)}]
h

h(Ap(x)) =P =y

;

Ay(x) = argmax h(x") —c(x,x")

X

[ goal: learning that is robust to strategic “gaming” behavior]




strategic
classification:

train: argmin E[1{y # h(x)}]
h

test: h(Ap(x) =9 =y

k

/

&

N
Goodhart’s law:

“If a measure becomes the public’s goal,

it is no longer a good measure.” {3

response: A, (x) = argmax h(x") —c(x,x")

X




» Common examples:

strategic
classification:
train: argmin E[1{y # h(x)}]
h
test: h(Ap(x) =9 =y ,.'.'!'R")'G!;

k

response: A, (x) = argmax h(x") —c(x,x")
xl




» SCis great, by frustrating

» Culprit — lots (and lots) of assumptions:

Holy grail: a realistically practical, well-understood,
plug-n-play framework for strategic learning

outcomes are binary

users always want positive outcomes
costs are fixed, uniform, and known to all
classifier is made public

modifying x does not affect y

changes to x are real (no mis-reporting)
user actions = modify features

users are rational (best-respond)

users respond independently

input data are ‘clean’ (=unmodified)
playing order is fixed

only single playing round

system cares only for accuracy

ongoing community effort to
relax, extend, scrutinize, and generalize



strategic
classification:

-
train: argmin E[1{y # h(x)}]
h
A%fscrvepcmt
test: h(Apy(x) =y =y




strategic
classification:

e )
train: argmin E[1{y # h(A,(x))}]
h
A/consvistent
test: h(Ap(x)) =9y =y
\_ S
key point:

[far from trivial! minor change = major implications]




strategic
classification as a Stackelberg game:
4 )
> Players: [1%t] Learner [2Md] Users
> Actions: classifier h modify x - x"
> Payoffs: E[Y{r(x") = y}] E[t{r(x") = 1}]
* Best response: x" = A, (x) = argmax h(x') — c(x,x")
o ; Y,

* Solve equilibrium < solve learning

* Holds in idealized setting; trickier as becomes more realistic

e Still: SC = fundamental ML task + basic economic questions

Learner

Users

play order is crucial modeling choice —
choose with care!




strategic classification as an interface
between machine learning and game theory:

optimization incentives
generalization information
loss functions social welfare
regularization limited resources
robustness actions

[ revisit old questions + tackle new ones ]




ML

optimization

generalization

loss functions

regularization

robustness

Learning aspects

of strategic classification



m

o . . 1 N
optimization argfrlninn_l z £ (yi, h(Ah (xl)))
=1

s.t. Ap(x) =argmax h(x') —c(x,x")
xl

[ask: how to optimize objective? ]




ML

optimization

m

1 =
argfrlnlnn—l Z £ (yi, h(Ah(xi)))
l=

s.t. Ay (x) = Ap(x) and is differentiable



ML

optimization

m
1 ~
arg}rlmnn—1 Z L (yi, h(Ah(xi)))
i=

s.t. Ay (x) = Ap(x) and is differentiable

layers

J

|/

|/

y labels
output l
5 (loss)
T model

g paras



m

. . . 1 N
optimization argf?linﬂ_l z £ (yl-, h(Ah(xi)))
i=1

s.t. Ay (x) = Ap(x) and is differentiable

input  strategic input

) )

X — |Ap loss

- _ T model
g params




ML

optimization

m

argfrlnin 1 z £ (yi, h(Ay (xi)))

m

i=1 X

s.t. Ay (x) = Ap(x) and is differentiable

* For common case where:
> h(x) =w'x
> c(x,x') =[x — x|
* Admits simple closed-form solution:

X wlx >0 or dist(x;w) > 2

Aw(x) = 0. W.

* Just replace hard-if with soft-if

Ay (x) =
proj* (x; w)



ML

optimization

m

1 ~
argmln—z 4 ()’i; h(Ah(xi))) e.q., if Ais LP:
ne e
z* = argmax, x ' Az
s.t. Ay (x) = Ap(x) and is differentiable st. Bz<0

)
[ z* =h(x;A,B) J

can differentiate!

Otherwise, when:

> h(x) =w o) + )

> A appliesto z = ¢(x)

» C is convex
Then can use plato:
implements A as concave optimization layer
Code: https://plato.codes/



https://plato.codes/

ML

optimization

H Accuracy for various datasets and cost scales
varied costs: y

credit

fin. distress fraud spam

| M

- == Benchmark

m
. 1 ~ g 0.5
argmin — z ? (yi, h(Ap (xl-))) 15
h M4
l=1 g 0.5
s.t. Ay (x) = Ap(x) and is differentiable
Otherwise, when: flexible models:

> h(x) =w o) + )

> A appliesto z = ¢(x)

» C is convex
Then can use plato:
implements A as concave optimization layer
Code: https://plato.codes/
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https://plato.codes/

ML

optimization

current state of affairs:

[ experiments = semi-syntetic ]



https://plato.codes/

ML

optimization

m

1 =
argfrlnlnn—l Z £ (yi, h(Ah(xi)))
l=

s.t. Ay (x) = Ap(x) and is differentiable

Otherwise — uncharted territory
Idea: borrow methods from adversarial learning literature

Essentially, optimize objective by alternating between:
- fixing features x" and updating 6
- fixing parameters 6 and updating x"
Technically possible — but hasn’t been done yet in strategic learning

> More on < adversarial connection to follow!



m

1
argmm—Z# yl,h( n (X ))

i=1
ﬂ generalization

arg}gnin E lf (y,h( n(x ))]

generalization

ML

[ask: how does behavior affect generalization?}




ML

generalization

argmln—z yl,h( n (X ))

Q - will strategic behavior:

1.
2.
3.

increase overfitting?
reduce overfitting?

make no difference?

Rephrase: how does behavior affect sample complexity?

Underfitting

Balanced

Overfitting



ML

generalization

argmln—z yl,h( n (X ))

e SC = model-dependend distribution shift

* |n typical distriubtion shift, piegt is
assumed to be “close” to Pirain

e Contrarily, in
1. only points in “band” before h move
2. entire region moves on decision boundary

3. moving region determined by choice of h

typical shift:

PAIWAN
Aty |

»




ML

generalization

argmln—z yl,h( n (X ))

e SC = model-dependend distribution shift

* |n typical distriubtion shift, piegt is
assumed to be “close” to Pirain

e Contrarily, in
1. only points in “band” before h move
2. entire region moves on decision boundary

3. moving region determined by choice of h

/'
/'
/



ML

generalization

argmln—z yl,h( n (X ))

* Generalization theory typically relies on
discrepency measures d (Pirain, Prest)

* = bounds are shift (and so dsitribution) dependent

* Interestingly, strategic shifts admit
distribution-independent generalization bounds

A,
/'

/'
/'
/

w



instance-invariant:

m
1
arg}gmnazl: £ (yi, h(Ah(xi)))
=

* Induced class: Hy = {h(Ah(x)) :h € H}
generalization « Strategic VC: SVC(H) = VC(H,)

e Result: for standard setting, recover
non-strategic bounds

instance-wise:
* But — cost form matters! [SVXY’'23] show:

* instance-invariant costs:
clx—x")=> SVC=VC
i.e., learning is not harder

* instance-wise costs:
c,(x") = unlearnable!
i.e., learning is impossible



ML

generalization

argmln—z yl,h( n (X ))

Also have data-dependent Rademacher bounds:

4r||wl| 2 In(4[[w]l/6)
LO/l = Ls—hinge + Jm + (1 +2(r )”W”)\/ m

Notice behabior just adds constant to scale

Applies to more general settings

Also: regret analys for online strategic classification



ML

m
1
argmin — z Vi h(Ah(xi))
R T

ﬁ surrogate

m
1
loss functions arg’Ilninn—lz ﬂ{yi i h(Ah(xi))}
=1

[ask: can we just use conventional proxies?]




ML

loss functions

[ standard hinge: max{0,1 — yw "x} j




ML

loss functions

[ standard hinge: 1—yw'x ]

max-margin classifier

standard
hinge




ML

loss functions

max-margin classifier



ML

loss functions

[nai’ve hinge: 1—yw

= margin=0

naive max-margin classifier

\nai’vg hinge

standard

_%;ge

A 4



ML

loss functions

[ strategic hinge:

1—yw'x

- strategic behavior:

@-—--~

|

@-----+
@------- -
|

@-—--+
Q@-—-----!

strategic max-margin classifier

- reasonably tractable

strategic

\nai’vg hinge

hinge

standard

= margin recovered!

- regain selection criterion

- comparable generalization

wge

A 4



ML

[ strategic hinge: 1—yw'x

@----—-
0 ‘ _____ -

loss functions @ —--—- e
@-——-¢

Qo----- -

strategic max-margin classifier

conclusion: strategic robustness requires
rethinking fundamental learning concepts

strategic

\nai’vg hinge

hinge

standard

Qge

= margin recovered!

A 4



ML

regularization

robustness



incentives

information

social welfare

Economic aspects

actions

GT

of strategic classification



standard SC:

Ay (x) = argmax h(x") —c(x,x")
xl

incentives

GT

[ ask: what else could users want? ]




standard SC:

Ay (x) = argmax u(x") —c(x,x")
x! |

incentives

GT



standard SC:

Ay (x) = argmax u(x") — c(x,x")
xl

generalized SC:

[Ah(x) = argmax ulx") —c(x,x"

X

J

1. arbitrary utility function

incentives

GT

LR, ICML22



standard SC:

Ay (x) = argmax u(x") — c(x,x")
xl

generalized SC:

X

[Ah(x) = argmax ™ 2) — c(x,x’)j

1. arbitrary utility function
2. can depend on private information

incentives

GT

LR, ICML22



standard SC:

Ay (x) = argmax u(x") — c(x,x")
xl

generalized SC:

X

[Ah(x) = argmax M) — c(x,x')j

1. arbitrary utility function
2. can depend on private information
3. act on perceived utility

incentives

GT

LR, ICML22



generalized SC:

X

[Ah(x) = argmax i(x";z) — c(x,x’)]

e Q: how to learn?

e A: generalize strategic margins and hinge!

» standard hinge:

yw ' x

sign(yw "x)|w Tx]|
» naive hinge:

sign(yw A, (x,2)) WA, (x, 2)|

» generalized strategic hinge:

sign(yw TAp (x, 2) )da (x, z; w)

incentives

GT

LR, ICML22



generalized SC:

[Ah(x) = argmax i(x";z) — c(x,x’)j

X

reinterpretation of “margin”:

incentives

-
> distance to nearest x' that flips label:

minimal distance

x| |
between points

da(x,z;w) = min

Iwli

flip label St h(Ah(X; Z)) = h(Ah(x’,Z))

\. .

e admits convenient tractable form
for several known special cases

» generalized strategic hinge:

sign(yw TAp (x, 2) )da (x, z; w)

GT

LR, ICML22



classification about humans

correct

positive

standard SC:

h

shared
incentives

[ ask: what else could users want? J

incentives

GT



classification for humans

Recommended for you:

correct

correct

incentive-aligned:

h
@

|

g

aligned
incentives

>

ask: can learning (implicitly)

coordinate cooperation?

incentives

GT



incentive-aligned:

incentives

not linearly separable

GT



incentive-aligned:

strategically linearly separable

incentives

GT



accuracy

0.66

0.65 |

0.64

0.63

0.62

0.61 |

0.60

0.59

incentive-aligned:

Strategic vs. non-strategic learning in PPE

user response: —— squared —— hinge —— logistic
learning: —e— strategic (ours)  —<— non-strategic
baseline: ---- non-strategic users

4 6 8 10 12 14 16 18 20 22 24
number of previous experiences (n)

incentives

GT



classification against humans

correct

wrong

adversarial:

\ h opposing
Q—V\ incentives
~0
-
_—
\4-0
il

ask: can strategic modeling help make
adversarial training less conservative?

incentives

GT






accuracy

X OW R %_T\
"

/ incentives
“clean” anti-semantic adversarial
\_ Y,
< >
I'{4 o V4
continuum
conjectured outcomes
(illustration)
fo1
JCIn
Q
O
/ CIFAR-10 GTSRB
® N\ Y 2V - VGG ResNet18 ViT VGG ResNet18 ViT
O train — clean strat adv clean strat adv clean strat adv clean strat adv clean strat adv clean strat adv
O . clean 89.2 0.1 06 931 0.0 0.0 775 0.1 00 951 58 154 96.6 1.8 16 90.7 28 1.8
E strategic 722 509 337 789 525 407 581 440 236 824 583 470 920 649 617 802 499 424
O @ adversarial  67.7 464 393  79.8 49.6 455  53.1 39.8 333  80.5 472 438 909 554 539 794 496 47.1
O
. . = E-clean 892 02 06 931 00 00 775 02 00 951 146 154 966 43 16 907 64 1.8
clean strat adv g strategic 80.3 69.8 250 851 734 334 653 587 13.1 882 712 367 920 79.1 490 835 74.0 34.0
& adversarial 677 56.8 393 798 674 455  53.1 458 333  80.5 632 438 909 73.0 539 794 64.6 47.1

setting




A note on strategic vs. adversarial learning:

* From SC perspective, IS
e But only in a narrow sense — many distinctions in practice

e E.g., in adversarial learning (vs. strategic learning):
 attack proxy loss
e focus on non-linear models
e focus on complex modalities
= best-responses are approximate
* vulnerabilities mostly in latent space
* maximize utility under budget constraints
= features always modified and to the max

= optimize minimax objective

much potential for synergy!

will return to this

incentives

GT



-

vanilla SC

~

partial

A,

information

|

ask: what happens when users
have partial knowledge of h?

|

GT



e N
vanilla SC
h
Ap,
\_ J
response
curve: :'\
|
0
induced
distribution:

dist(h)

o : ~
noisy
h' = h
Ah’
" Y
dist(h) 0

i T

information

GT



vanilla SC in the dark
h
Ap
\_ Y,
transparent opaque
informed users: uninformed users:
- have more power - have less power
- easy to anticipate - harder to anticipate

T— tradeoff —I

information

GT



vanilla SC

“optimistic”
info
leaks

h

!
A

Ap = Ap

information

GT



- ™
vanilla SC
|
h
|
Ap
- Y,

“optimistic”

E347%

9447 %

info
/eaks

84,92

information

GT



vanilla SC

* Price of OPacity:

“optimistic”
info
leaks

h

!
A

Ap = Ap

err(h, ﬁ) —err(h, h)

e Main result: can be arbitrarily bad

= transparency is often in best interest of system!

information

GT



0.350 A

0.325 A

0.300 A

0.275 A

error

0.225 A

0.200 A

0.175 A

POP in Prosper.com loans data

SVM(in the dark) SVM(fully-informed) SVM(non-strategic)
- HMPW(in the dark) HMPW(fully-informed) HMPW/(non-strategic)
| — SVM
L0z “‘\s;..‘~<..__--___‘ HMPW
0.0 -

0.250 A

10! 102 103
m

POP
10! 102 103
m
Price of OPacity:

err(h, ﬁ) —err(h, h)

Main result: can be arbitrarily bad
= transparency is often in best interest of system!

information

GT



@(A) correct - but costly -
l(c) “(B) o - e
() @ 2 <.
biased . "/(. 2
estimate erroneous *. ° almost =
update g made it!

o

information

GT



m

1
arg’rlnlnazl:f(yi,h( Xi ))
1=
uncertainty
un
1 m
arg’rlnina Z ? (yi, h(A?(xi)))
1=

information

|

ask: how can learning contend
with uncertain user behavior?

|

GT



1) infer A over time

information

GT



2)

argmin
h

Jneck OU .

Oyr poste‘\'

information

GT



2)

argmin
h

m

— unkonwn costs:

f(yi,h( X; ))

=1

information

GT



(public) policy problems:

"+ ”One shot” — can deploy only once

2) robust learning — unkonwn costs: * Goal: learn to be doubly-robust:
1 =& - vs. strategic behavior
argmm max— ) ¥ (yl-, h(Afl (xl-))) < - vs. worst-case cost ¢ € C
CEC M 4
i=

e Hardness: not knowing ¢ can be catastrophic
* Convexification: updated ad-hoc s-hinge

_ * Algorithm: effective, converge to opt. min-max



social welfare

GT



social welfare

GT



social welfare

GT



Robustness via penalizing
deserving sub-population

Main result is negative:
increased accuracy =
increased social burden

However, results apply to certain
monotone setting

In more general settings,
there is reason for optimism!

ask: when and how can
we reduce social harm?

@
@
© @
@
@

@

—u o

\h

social welfare

= “social burden”

[ burden(h) = E|

min
x":h(x")=1

cx,x") |y = 1]}

GT



regularization



* Conjecture: many good models, vary in burden
* Learning objective underspecified — can exploit!

* Regularize for

argmin zm ? (y, h(Ah(x)))

heH =1

regularization



* Conjecture: many good models, vary in induced burden
* Learning objective underspecified — can exploit!

* Regularize for sparsity:

argmin zm ¢ (y, h(Ah(x))) IAll4

heH =1

regularization



* Conjecture: many good models, vary in induced burden
* Learning objective underspecified — can exploit!

* Regularize for... social good?

argmin Em 4 (y, h(Ah(x))) Rburden ()

heH =1

regularization



* Conjecture: many good models, vary in induced burden
* Learning objective underspecified — can exploit!

* Regularize for... social good?

argmin Em 4 (y, h(Ah(x))) Rburden ()

heH =1

0.700
0.675

y
o
(o))
w
o

1

0.625 -
0.600 - A
0.575 -

regularization

accurac

0.550 A1

0.525 -

2.0 1.5 1.0 0.5 0.0
social burden



Conjecture: many good models, vary in induced burden

Learning objective underspecified — can exploit!

Regularize for... social good!

m
argmin 2 t (:Vr h(Ah(x))) Rburden (h)
heH =1
0.700 + mo- O B --O--Fg-------------
0.675 - )O
>, 0.650 yl
® 0.625 -
= halve
O 0.600 4
©
0.575 -
-=-= Benchmark
0.550 - O SERM
0.525 - : : ' .
2.0 1.5 1.0 0.5 0.0

social burden

regularization



* Conjecture: many good models, vary in induced burden
* Learning objective underspecified — can exploit!

* Regularize for... social good!
additional social good metrics:

argmin Em 4 (y, h(Ah(x))) Rburden ()

heH =1

0.700 + g~ B --O--Fg-------------

0.675 - ole) -
>, 0.650 y
(&)
g 0.625 - O -

regularization

§ 0.600 - O g

0.575 - @)

-== Benchmark
0.550 - O SERM %
0.525 - : : ' l
2.0 1.5 1.0 0.5 0.0

social burden

* Applies to other social good metrics

* Similarly underspecified — similar pareto fronts!



limited
resources

GT



Ay (x) = argmax h(x") —c(x, x")
xl

v

limited
resources

{ ask: where do costs come from? ]

GT



o

Ay (x) = argmax h(x') — c(x,x")
xl

[ ask: where do fruits come from? J




supply

Ay (x) = argmax h(x') — c(x,x")
xl



Ay (x) = argmax h(x') — c(x, x")

x price



Ay (x) = argmax h(x') — c(x, x")

x price



SAT
PREP
A COURSE

‘~f: llarch 18, 25,
. |April 1, 15, 22, 29
] '\»&‘

Fee: $80 payable by

check only

w .| Please make checks payable
to Laura Lavacca

€2 | Students are asked to
oot purchase the Official SAT
icalanswi Study Guide 2020 Edition.

6-WEEK COURSE INCLUDES PRACTICE TEST & FEEDBACK

Ap(x) = argmax h(x") —c(x,x") [ claim: classifier induce markets! ]
X .
price




supply

price

demand

Prepare for the SAT
with sample questions,
practice tests, and more.

2020 EDITION

SAT

PREP

COURSE

lMarch 18, 25,
| April 1, 15, 22, 29

Fee: $80 payable by
check only

Please make checks payable
to Laura Lavacca

Students are asked to
purchase the Official SAT
Study Guide 2020 Edition.

6-WEEK COURSE INCLUDES PRACTICE TEST & FEEDBACK




SAT

supply

price

demand

Prepare for the SAT
with sample questions,
practice tests, and more.

2020 EDITION

Includes:
Real
Tests|

and official answ{
explanations

SAT
PREP
COURSE

| March 18, 25,
| April 1, 15, 22, 29

Fee: $80 payable by

check only

Please make checks payable
to Laura Lavacca

Students are asked to
purchase the Official SAT
Study Guide 2020 Edition.

6-WEEK COURSE INCLUDES PRACTICE TEST & FEEDBACK




SAT

-PREP
A COURSE

,3 f; March 18, 25,
L mpri1 1, 15, 22, 20

: $80 ble
ccccccccc
Bt make check bl
acca
Stu e as
pu: e O
Study Guide 2020 Edition.

6-WEEK COURSE INCLUDES PRACTICE TEST & FEEDBACK

ask: can learning anticipate and
account for the markets it induces?




strategic modification'

argmln — 2 f vi, h(Ap (xl)))

incentives

s.t. Ap(x) =argmax h(x') —c(x,x")
x! information
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[ ask: what other actions can users take? )




strategic participation:
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strategic participation:

test
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strategic participation:

screen test utility

—> y=1—>1

f (learned classifier)

GT

actions

[ ask: how does learning affect applications? J




strategic participation:

apply screen test utility
e —>(a=1x—>
wWAB
cond. precision:
Ps(y=1|9=1,2) f (learned classifier)

Observation: learning rule determines self-selection

actions

main result: learning has capacity
to fully determine applications!

GT



strategic participation:

apply screen test utility

f (learned classifier)

Observation: learning rule determines self-selection
Implications: can create false appearance of fairness,

discriminates by making application too costly/risky
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strategic participation:

apply screen test utility

e —>|a=1~—
N |=

cond. precision:
Ps(y=1|y=1,2) f (learned classifier)

Observation: learning rule determines self-selection
Implications: can create false appearance of fairness,

discriminates by making application too costly/risky
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Beyond

the standard setup



optimization incentives

generalization information
loss functions social welfare
regularization limited resources

robustness actions



dynamics dynamics

performativity dependencies

uncertainty fairness and equity

representation regulation

causality social welfare

input modality markets & mechanisms

output structure behavioral modeling

[ revisit old fronts + tackle new ones! ]




3. dynamics

2. dependencies

1. causality



1) Causality

vanilla SC causal SC
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superficial changes
= gaming




1) Causality

The classification G z
aming Improvement

 Standard SC: changing x does not affect y I X, = & X, := &,
* More realistic:

* Assume exists underlying causal graph

[ ask: can we learn in causal strategic settings? J

O Causal features @Non-causal features O Target variable © Classifier output

* Lots of challenges:
» graph not necessarily known
» key variables not necessarily observed
» structure determines interactions

e Causal SCis inherently difficult — as hard as causal inference



Causal SC as distribution shift

Q1: How does

affect learning?

Simplifying assumption: causal vs. correlative features

Al: Entails different types of distribution shift:
 correlative — strategic shift - gaming

* only causal = covariate shift = missinformation
* both — mixture shift = interactions

Corollary: choose your battles!

Xcausal
A
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true graph:
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system sees:

555

users see:




Incentivizing improvement

Q2: How does affect social outcomes?

A2: Causal SC has potential for improvement:
E.|E[p(y | do(8)) —p(y) | x]]

Goal: learn h that (also) promotes improvement

Has long and rich history in economics

Also considered in (online) SC
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A2: Causal SC has potential for improvement:
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Goal: learn h that (also) promotes improvement

Has long and rich history in economics

Also considered in (online) SC

But changing x can also impair outcomes!



Incentivizing improvement

Q2: How does causality affect social outcomes?

A2: Causal SC has potential for improvement:
E.|E[p(y | do(8)) —p(y) | x]]

Goal: learn h that (also) promotes improvement
Has long and rich history in economics

Also considered in (online) SC

But changing x can also impair outcomes!

Solution: learn safe models by “looking ahead”

causal effect:
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2) Dependencies: How users relate

e Standard SC: responses are independent
* More realistic: responses are interdependent

* Reason #1: limited resources
* Actually, all common examples have limiton #of y = 1

* This means that users compete




2) Dependencies: How users relate

e Standard SC: responses are independent
* More realistic: responses are interdependent

* Reason #1: limited resources
* Actually, all common examples have limiton #of y = 1
* This means that users compete 2 ol
« Reasonable approach: »:;\ ’/
learn to , then set y = 1 only for ' L |
* Turns out to be exceedingly hard !g

e Still - major goall!




2) Dependencies: How users relate

e Standard SC: responses are independent

* More realistic: responses are interdependent using graph in learning
creates dependencies

* Reason #2: model-induced dependencies

social network GNN graph-dep. embedding



2) Dependencies: How users relate

e Standard SC: responses are independent

* More realistic: responses are interdependent using graph in learning

creates surprising dependencies

* Reason #2: model-induced dependencies

(A) @/ \@ (D) m 8 odinedl

__—O emb.d),-,)?,-:l

0.33 06 emb. ¢;, §; = —1
(8) j () () () (® —> graph edge
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effective radius
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2) Dependencies: How users relate

e Standard SC: responses are independent
* More realistic: responses are interdependent

* Reason #2: model-induced dependencies

(A) %" \@ (D) m 8 ::d)icfiied x|

emb.¢;, ¥ =1

e = emb. ¢;, ;i = —1
(B) j 0 e /o o (E) —> graph edge
O O move (w/o graph)

———— - —— -

effective radius




2) Dependencies: How users relate

e Standard SC: responses are independent
* More realistic: responses are interdependent

main result: can use graph
to incentiveize diversity

 Reason #3: economic graph structure

consumers
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3) Learning over time

Standard SC: batch setting: train — — test

Assumes access to clean data

More realistic: data is dirty

One solution: iterated deployments over time: train —

Three main aproaches:
1. online learning

2. performative prediction
3. dynamical systems

— train —

— train - ...



3) Learning over time

Standard SC: batch setting: train — — test

Assumes access to clean data

More realistic: data is dirty

One solution: iterated deployments over time: train —

Pros: less restrictive
(1) does not require clean data
(2) does not assume known Ay
(3) permits causal Ay,

Cons: each deployment is social “experiment”
* in some cases, exploration is reasonable
* in other cases — it is very much not

— train -

— train — ...



Opportunities
8¢ challenges



Open questions

 Strategic learning is exiting new field with much potential for growth
e Butitis also young —so that many challenges still lie ahead:

1. Learning aspects:




Open questions

 Strategic learning is exiting new field with much potential for growth
e Butitis also young —so that many challenges still lie ahead:

1. Learning aspects:
 labels beyond binary
- regression
- multiclass
- multilabel
- sequences
- structured




Open questions

 Strategic learning is exiting new field with much potential for growth
e Butitis also young —so that many challenges still lie ahead:

1. Learning aspects:

* inputs beyond vectors
images

text

graphs




Open questions

 Strategic learning is exiting new field with much potential for growth
e Butitis also young —so that many challenges still lie ahead:

1. Learning aspects:

* models beyond linear
- neural nets
- tree-based
- text-based




Open guestions

 Strategic learning is exiting new field with much potential for growth
e Butitis also young — so that many challenges still lie ahead:

1. Learning aspects:

 settings beyond classification
- unsupervised and semi-supervised
- generative
- RLand MARL




Open questions

 Strategic learning is exiting new field with much potential for growth
e Butitis also young —so that many challenges still lie ahead:
1. Learning aspects

2. Econ/GT aspects:
e information
- power

- control
- selective release/withold




Open questions

 Strategic learning is exiting new field with much potential for growth
e Butitis also young —so that many challenges still lie ahead:
1. Learning aspects

2. Econ/GT aspects:

» other economic settings

markets, auctions, contracts, ...
competition

cooperation

monopolistic behavior




Open guestions

 Strategic learning is exiting new field with much potential for growth

* Butitis also young —so that many challenges still lie ahead:

1. Learning aspects . L
loss aversion confirmation bias
2. Econ/GT aspects: causal fallacy
decoy effect
. bounded rationality anchoring endowment effect
* behavior . . :
. risk aversion/seeking choice overload
- Bayesian e
_ y _ ., availability bias
- non-rational “behavioral quantal response

framing/priming



Open questions

 Strategic learning is exiting new field with much potential for growth
e Butitis also young — so that many challenges still lie ahead:

1. Learning aspects

3. “Inthe wild”:
e evaluation
* measuring utility/welfare
* estimating costs
* monitoring and regulation



Why supervised learning?

Most human-centric tasks are policy problems

So supervised learning is clearly the wrong tool to use

But it is also by far the most prevelant, accessible, and easy to use

Vision for the future:

~ ™
strat_clf = LogisticRegression(penalty=12", (C=0.01, max iter=500,

want=‘yhat=1", =‘noisy h’, do=‘game’)
strat_clf.fit(X, Y, cost=c)

pred = strat _clf.predict(X test)
\ y,

* Goal: make integrating human agency as seemless as possible
* Not so easy! And requires much caution and deliberation



summary



Summary

* SC captures natural tension between learning systems and their users
* Appealing interface between ML and GT — many open question!
* Original setup is clean and simple, but likely to narrow

* Nonetheless, flexible and modular: easy to extend, relax, and generalize



summary

» A call to rethink the design of learning algorithms for social settings
» An opportunity to revise foundations using economic and behavioral modeling

» High potential for real impact — much more work needed!



Narrative(s)

e “users game system”
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e “users game system”

e “system exploits users”




Narrative(s)

* “users game system”
* “system exploits users”

* “system exploits users unintentionally”
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“users game system”

“system exploits users”
“system exploits users unintentionally”

“...as long as there is transparency”

“optimistic”
info
leaks

Ah:/: Ah‘




Narrative(s)

e “Users game system”

* “system exploits users”

* “system exploits users unintentionally”
« “..as long as there is transparency”

e “potential for cooperation...”
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Narrative(s)

* “users game system” Pl e TS
B \orket Stall '

e “system exploits users”
* “system exploits users unintentionally”

e “...as long as there is transparency”

e “potential for cooperation...”

e “its just a market”




Narrative(s)
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How Stories Go
Viral & Drive Major
Economic Events
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