slides available at:

Strategic ML: How to Learn With Data That **'Behaves'**

Nir Rosenfeld

Technion CS

tutorial @ ICML 2024

this is machine learning:

this is machine learning on images:

this is machine learning on text:

what could possibly go wrong?

(or: how does human behavior change learning and its outcomes?)

- Builds on **conventional binary classification**
- Augments to account for human behavior
- Models humans as **inputs with agency**

- Allows (and requires!) to encode what humans:
- Basic elements of economic modeling
- Together, combine to determine how humans behave

homo-sapiens

modeling challenge: weave these into learning setup

- SC is great because it is:
 - simple enough to permit tractable analysis
 - > powerful enough to introduce novel challenges
 - > meaningful enough to have social implications
 - flexible enough to permit extensions, variations, and generalizations
- Start with **rigid assumptions** e.g., rationaity:

homo-sapiens

- SC is great because it is:
 - simple enough to permit tractable analysis
 - > powerful enough to introduce novel challenges
 - meaningful enough to have social implications
 - flexible enough to permit extensions, variations, and generalizations
- Start with **rigid assumptions** e.g., rationaity:

homo-economicus

- SC is great because it is:
 - simple enough to permit tractable analysis
 - > powerful enough to introduce novel challenges
 - > meaningful enough to have social implications
 - flexible enough to permit extensions, variations, and generalizations
- Start with **rigid assumptions** e.g., rationaity
- Ultimate goal: capture realistic behavior "in the wild"

homor-simpsonus

Outline

Introduction

• Three main sections:

I) ML aspects: (~40 min)

- strategic learning setup
- as learning vs. as a game
- optimization
- generalization (stats)
- modeling
- Challenges and opportunities
- Summary

II) Econ/GT aspects: (~60 min)

- incentives (=want)
- information (=know)
- actions (=do)
- limited resources
- social welfare

III) Beyond: (~20 min)

- causality
- dependencies
- over time

Tutorial theme and goals

- Introduction to **emerging new field**
- Many open research questions
- Much potential for application
- Main theme: transitioning from theory → practice
- Focus on supervised batch setting (covers "half" of literature; other part being online)
- More **breadth** (less **depth**) → *see references*
- More modeling (less results)
- More questions (less answers)
- More **content** (less **time**) → *fast paced*!

an introduction

standard classification:

learned model

train:

standard classification:

learned model

train:

$$\underset{h}{\operatorname{argmin}} \mathbb{E}[\mathbb{1}\{y \neq h(x)\}]$$

$$input features$$

$$h(x) = \hat{v} \approx v$$

test:

$$h(x) = \hat{y} \approx y$$

prediction

ground truth

train:

test:

[BS'2011, HMPW'2016] learned model argmin $\mathbb{E}[\mathbb{1}\{y \neq h(x)\}]$ h representation of human agent $h(\mathbf{x}) = \hat{\mathbf{y}} \approx \mathbf{y}$ prediction ground truth

train: $\underset{h}{\operatorname{argmin}} \mathbb{E}[\mathbb{1}\{y \neq h(x)\}]$

test:

 $h(\mathbf{x}) = \hat{\mathbf{y}} \approx \mathbf{y}$

1. want: $\hat{y} = 1$ (get the loan)

train: $\underset{h}{\operatorname{argmin}} \mathbb{E}[\mathbb{1}\{y \neq h(x)\}]$

test:

 $h(\mathbf{x}) = \hat{\mathbf{y}} \approx \mathbf{y}$

1. want: $\hat{y} = 1$ (get the loan)

2. do: modify features (at cost)

train: $\underset{h}{\operatorname{argmin}} \mathbb{E}[\mathbb{1}\{y \neq h(x)\}]$

test:

 $h(\mathbf{x}) = \hat{\mathbf{y}} \approx \mathbf{y}$

1. want: $\hat{y} = 1$ (get the loan)

- **2. do:** modify features (at cost)
- **3. know:** h (and cost function)

train: $\underset{h}{\operatorname{argmin}} \mathbb{E}[\mathbb{1}\{y \neq h(x)\}]$

test:

$$h(\mathbf{x}) = \hat{\mathbf{y}} \approx \mathbf{y}$$

behavior

response: $x \mapsto x^h \stackrel{\Delta}{=} \Delta_h(x)$

- **2. do:** modify features (at cost)
- **3. know:** h (and cost function)

train: $\underset{h}{\operatorname{argmin}} \mathbb{E}[\mathbb{1}\{y \neq h(x)\}]$

test:

$$h(\mathbf{x}) = \hat{\mathbf{y}} \approx \mathbf{y}$$

 $rational \Rightarrow most \ cost-effective$

 \Rightarrow move <u>on</u> decision boundary

train: $\underset{h}{\operatorname{argmin}} \mathbb{E}[\mathbb{1}\{y \neq h(x)\}]$ test: $h(\Delta_h(x)) = \hat{y} \not\approx y$ fresponse: $\Delta_h(x) = \underset{x'}{\operatorname{argmax}} h(x') - c(x, x')$

goal: learning that is robust to strategic "gaming" behavior

train: $\underset{h}{\operatorname{argmin}} \mathbb{E}[\mathbb{1}\{y \neq h(x)\}]$ test: $h(\Delta_h(x)) = \hat{y} \not\approx y$ $\bigwedge_{h} (x) = \underset{x'}{\operatorname{argmax}} h(x') - c(x, x')$

Goodhart's law:

"If a measure becomes the public's goal,

it is no longer a good measure."

train: $\underset{h}{\operatorname{argmin}} \mathbb{E}[\mathbb{1}\{y \neq h(x)\}]$ test: $h(\Delta_h(x)) = \hat{y} \not\approx y$ $\bigwedge_{h} (x) = \underset{x'}{\operatorname{argmax}} h(x') - c(x, x')$

> Common examples:

Holy grail: a realistically practical, well-understood, plug-n-play framework for strategic learning

SC is great, by frustrating

Culprit – lots (and <u>lots</u>) of assumptions:

- outcomes are binary
- users always want positive outcomes
- costs are fixed, uniform, and known to all
- classifier is made public
- modifying x does not affect y
- changes to x are real (no mis-reporting)
- user actions = modify features
- users are rational (best-respond)
- users respond independently
- input data are `clean' (=unmodified)
- playing order is fixed

....

- only single playing round
- system cares only for accuracy
- ongoing community effort to relax, extend, scrutinize, and generalize

train:
$$\operatorname{argmin} \mathbb{E}[\mathbb{1}\{y \neq h(x)\}]$$

hh $discrepant$
 $discrepant$ test: $h(\Delta_h(x)) = \hat{y} \approx y$

response:
$$\Delta_h(x) = \underset{x'}{\operatorname{argmax}} h(x') - c(x, x')$$

standard setup has

lots (and lots) of assumptions: (implicit/explicit)

- modifying x does not affect y
- outcomes are binary
- input data are `clean' (=unmodified)
- changes to x are real (no mis-reporting)
- users always want positive outcomes
- costs are fixed, uniform, and known to all
- classifier is made public
- user actions = modify features
- users are rational (best-respond)
- users respond independently
- playing order is fixed
- only single playing round
- system cares only for accuracy
- ongoing community effort to relax, extend, scrutinize, and generalize

train:argmin
$$\mathbb{E}[\mathbb{1}\{y \neq h(\Delta_h(x))\}]$$
hconsistenttest: $h(\Delta_h(x)) = \hat{y} \approx y$

response:
$$\Delta_h(x) = \underset{x'}{\operatorname{argmax}} h(x') - c(x, x')$$

key point:

far from trivial! minor change \Rightarrow major implications

standard setup has lots (and lots) of assumptions: (in

- modifying x does not affect y
- outcomes are binary
- input data are `clean' (=unmodified)
- changes to x are real (no mis-reporting)
- users always want positive outcomes
- costs are fixed, uniform, and known to all
- classifier is made public
- user actions = modify features
- users are rational (best-respond)
- users respond independently
- playing order is fixed
- only single playing round
- system cares only for accuracy

ongoing community effort to relax, extend, scrutinize, and generalize

strategic

classification as a Stackelberg game: [HMPW'16]

Players: [1st] Learner [2nd] Users (dist.)

➤ Actions: classifier h modify $x \mapsto x^h$

> Payoffs: $\mathbb{E}[\mathbb{1}\{h(x^h) = y\}] \mathbb{E}[\mathbb{1}\{h(x^h) = 1\}]$

• Best response:
$$x^h = \Delta_h(x) = \operatorname{argmax} h(x') - c(x, x')$$

- Solve equilibrium ⇔ solve learning
- Holds in idealized setting; trickier as becomes more realistic (finite data, partial information, weaker assumptions, ...)
- **Still**: SC = fundamental ML task + basic economic questions

play order is **crucial modeling choice** – choose with care! [NGTR'21, [ZMSJ'21]

strategic classification as an interface between machine learning and game theory:

revisit old questions + tackle new ones

Learning aspects

of strategic classification
optimization generalization ML SC loss functions regularization model selection tobustness uncertainty *learning objective:*

$$\operatorname{argmin}_{h} \frac{1}{m} \sum_{i=1}^{m} \ell\left(y_{i}, h\left(\widetilde{\Delta}_{h}(x_{i})\right)\right)$$

s.t. $\Delta_h(x) = \underset{x'}{\operatorname{argmax}} h(x') - c(x, x')$

nasty nested min-argmax problem!

ask: how to optimize objective?

 $\underset{h}{\operatorname{argmin}} \frac{1}{m} \sum_{i=1}^{m} \ell\left(y_i, h\left(\widetilde{\Delta}_h(x_i)\right)\right)$

s.t. $\widetilde{\Delta}_h(x) \approx \Delta_h(x)$ and is *differentiable*

ask: how to optimize objective?

optimization generalization Ioss functions regularization model selection robustness uncertainty

ask: how to optimize objective?

learning objective:

$$\operatorname{argmin}_{h} \frac{1}{m} \sum_{i=1}^{m} \ell\left(y_{i}, h\left(\widetilde{\Delta}_{h}(x_{i})\right)\right)$$

s.t. $\widetilde{\Delta}_h(x) \approx \Delta_h(x)$ and is *differentiable*

LR ICML21

optimization generalization loss functions regularization model selection tobustness uncertainty

ask: how to optimize objective?

learning objective:

s.t. $\widetilde{\Delta}_h(x) \approx \Delta_h(x)$ and is *differentiable*

LR ICML21

s.t. $\widetilde{\Delta}_h(x) \approx \Delta_h(x)$ and is *differentiable*

- For common case where: $h(x) = w^{\top}x$ $c(x, x') = ||x' - x||_2$ (or squared, or PSD)
- Admits simple closed-form solution:

$$\Delta_{w}(x) = \begin{cases} x & w^{\mathsf{T}}x \ge 0 \text{ or } \operatorname{dist}(x;w) > 2\\ \operatorname{proj}^{+}(x;w) & \operatorname{o.w.} \\ & = x - \min\left\{0, \frac{w^{\mathsf{T}}x + b}{\|w\|_{2}^{2}}\right\} \text{ differentiable!}$$

Just replace hard-if with soft-if (e.g., sigmoid)
$$\mathsf{LR} \mathsf{ICML22}$$

$$\operatorname{argmin}_{h} \frac{1}{m} \sum_{i=1}^{m} \ell\left(y_{i}, h\left(\widetilde{\Delta}_{h}(x_{i})\right)\right)$$

s.t. $\widetilde{\Delta}_h(x) \approx \Delta_h(x)$ and is *differentiable*

- Otherwise, when: • $h(x) = w^{T}\phi(x) + \psi(x)$ (for some non-linear ϕ, ψ) • Δ applies to $z = \phi(x)$
 - \succ *c* is convex (in *z*)
- Then can use **plato:** [LR ICML21]

implements Δ as concave optimization layer [AABBDK'19]

Code: <u>https://plato.codes/</u>

e.g., if Δ is LP:

accuracy (concave in x, z) accuracy accuracy Benchmark SERM Blind

credit

varied costs:

Accuracy for various datasets and cost scales

fraud

spam

ö

fin. distress

s.t. $\widetilde{\Delta}_h(x) \approx \Delta_h(x)$ and is differentiable

- Otherwise, when: \succ $h(x) = w^{\top} \phi(x) + \psi(x)$ (for some non-linear ϕ, ψ)
 - $\blacktriangleright \Delta$ applies to $z = \phi(x)$
 - \succ c is convex (in z)
- Then can use **plate:** [LR ICML21]

implements Δ as concave optimization layer [AABBDK'19]

Code: https://plato.codes/

• Code: <u>https://plato.codes/</u>

$$\operatorname{argmin}_{h} \frac{1}{m} \sum_{i=1}^{m} \ell\left(y_{i}, h\left(\widetilde{\Delta}_{h}(x_{i})\right)\right)$$

s.t. $\widetilde{\Delta}_h(x) \approx \Delta_h(x)$ and is *differentiable*

- Otherwise uncharted territory
- Idea: borrow methods from adversarial learning literature (e.g., FGSM [GSS'15] or PGD [MMSTV'18])
- Essentially, optimize objective by alternating between:
 - fixing features x^h and updating heta
 - fixing parameters θ and updating x^h
- Technically possible but hasn't been done yet in strategic learning
- \blacktriangleright More on strategic \leftrightarrow adversarial connection to follow!

 $\operatorname{argmin}_{h} \frac{1}{m} \sum_{i=1}^{m} \ell\left(y_{i}, h(\Delta_{h}(x_{i}))\right)$

- **Q** will strategic behavior:
 - 1. increase overfitting?
 - *2. reduce* overfitting?
 - 3. make no difference?
- **Rephrase:** how does behavior affect sample complexity?

ask: how does behavior affect generalization?

Underfitting

Balanced

Overfitting

 $\operatorname{argmin}_{h} \frac{1}{m} \sum_{i=1}^{m} \ell\left(y_{i}, h(\Delta_{h}(x_{i}))\right)$

- SC = model-dependend distribution shift
- In typical distriubtion shift, $p_{\rm test}$ is assumed to be "close" to $p_{\rm train}$ (e.g., in ball)
- Contrarily, in strategic shift:
 - 1. only points in "band" before h move
 - 2. entire region moves <u>on</u> decision boundary
 - 3. moving region determined by choice of h

 $\operatorname{argmin}_{h} \frac{1}{m} \sum_{i=1}^{m} \ell\left(y_{i}, h(\Delta_{h}(x_{i}))\right)$

- SC = model-dependend distribution shift
- In typical distriubtion shift, $p_{\rm test}$ is assumed to be "close" to $p_{\rm train}$ (e.g., in ball)
- Contrarily, in strategic shift:
 - 1. only points in "band" before *h* move
 - 2. entire region moves on decision boundary
 - 3. moving region determined by choice of h

 $\operatorname{argmin}_{h} \frac{1}{m} \sum_{i=1}^{m} \ell\left(y_{i}, h(\Delta_{h}(x_{i}))\right)$

- Generalization theory typically relies on discrepency measures $d(p_{\text{train}}, p_{\text{test}})$ [MMR ICML09]
- ⇒ bounds are **shift** (and so **dsitribution**) **dependent**
- Interestingly, strategic shifts admit distribution-<u>in</u>dependent generalization bounds

 $\operatorname{argmin}_{h} \frac{1}{m} \sum_{i=1}^{m} \ell\left(y_{i}, h\left(\Delta_{h}(x_{i})\right)\right)$

optimization generalization ML SC loss functions regularization model selection robustness uncertainty

- Induced class: $H_{\Delta} = \{h(\Delta_h(x)) : h \in H\}$
- Strategic VC: $SVC(H) = VC(H_{\Delta})$
- **Result**: for standard setting, recover non-strategic bounds (almost!)
- But **cost form matters!** [SVXY'23] show:
 - instance-invariant costs:
 c(x x') ⇒ SVC ≈ VC (for linear h)
 i.e., learning is not harder
 - instance-wise costs: =individualized
 c_x(x') ⇒ unlearnable! (in the worst case)
 i.e., learning is impossible

instance-invariant:

instance-wise:

 $\operatorname{argmin}_{h} \frac{1}{m} \sum_{i=1}^{m} \ell\left(y_{i}, h(\Delta_{h}(x_{i}))\right)$

• Also: regret analys for online strategic classification

standard hinge: $\max\{0, 1 - yw^{\mathsf{T}}x\}$

ask: can we just use conventional proxies?

max-margin classifier

- selection criterion
- good generalization

LR ICML22

- tractable

max-margin classifier

- selection criterion
- good generalization

naive max-margin classifier

- vacous criterion
- unclear if generalizes

strategic max-margin classifier

- regain selection criterion
- comparable generalization

LR ICML22

- reasonably tractable

strategic max-margin classifier

conclusion: strategic robustness requires rethinking fundamental learning concepts

- regain selection criterion
- comparable generalization

LR ICML22

- reasonably tractable

Economic aspects

of strategic classification

$$\Delta_h(x) = \underset{x'}{\operatorname{argmax}} \ \frac{h(x')}{h(x')} - c(x, x')$$

$$\Delta_h(x) = \underset{x'}{\operatorname{argmax}} \underbrace{u(x') - c(x, x')}_{= \begin{cases} +1 & \hat{y} = +1 \\ -1 & \hat{y} = -1 \end{cases}}$$

$$\Delta_h(x) = \underset{x'}{\operatorname{argmax}} \begin{array}{c} u(x') - c(x, x') \\ & & \downarrow \end{array} = \begin{cases} +1 & \hat{y} = +1 \\ -1 & \hat{y} = -1 \end{cases}$$

generalized SC:

$$\Delta_h(x) = \underset{x'}{\operatorname{argmax}} \frac{u(x')}{u(x')} - c(x, x')$$

1. arbitrary **utility function**

LR, ICML22

$$\Delta_h(x) = \underset{x'}{\operatorname{argmax}} \begin{array}{c} u(x') - c(x, x') \\ & \\ \end{array} = \begin{cases} +1 & \hat{y} = +1 \\ -1 & \hat{y} = -1 \end{cases}$$

generalized SC:

$$\Delta_h(x) = \underset{x'}{\operatorname{argmax}} \frac{u(x';z)}{u(x';z)} - c(x,x')$$

- 1. arbitrary **utility function**
- 2. can depend on **private information**

LR, ICML22

$$\Delta_h(x) = \underset{x'}{\operatorname{argmax}} \begin{array}{c} u(x') - c(x, x') \\ & \\ \end{array} \rightarrow = \begin{cases} +1 & \hat{y} = +1 \\ -1 & \hat{y} = -1 \end{cases}$$

generalized SC:

$$\Delta_h(x) = \underset{x'}{\operatorname{argmax}} \frac{\tilde{u}(x';z)}{\tilde{u}(x';z)} - c(x,x')$$

- 1. arbitrary utility function
- 2. can depend on **private information**
- 3. act on **perceived utility** (*≠* true utility)

LR, ICML22

generalized SC:

$$\Delta_h(x) = \underset{x'}{\operatorname{argmax}} \ \tilde{u}(x';z) - c(x,x')$$

- **Q**: how to learn?
- A: generalize strategic margins and hinge!

standard hinge:

 $\max\{0, 1 - yw^{\mathsf{T}}x\}$ = $\max\{0, 1 - \operatorname{sign}(yw^{\mathsf{T}}x)|w^{\mathsf{T}}x|\}$ correctness distance

➤ naïve hinge:

 $\max\{0,1-\operatorname{sign}(yw^{\mathsf{T}}\Delta_{h}(x,z))|w^{\mathsf{T}}\Delta_{h}(x,z)|\}$

generalized strategic hinge: (gs-hinge)

 $\max\{0, 1 - \operatorname{sign}(yw^{\mathsf{T}}\Delta_h(x, z))d_{\Delta}(x, z; w)\}$

generalized SC:

$$\Delta_h(x) = \underset{x'}{\operatorname{argmax}} \ \tilde{u}(x';z) - c(x,x')$$

reinterpretation of "margin":

 admits convenient tractable form for several known special cases

> generalized strategic hinge: (gs-hinge) $\max\{0, 1 - \operatorname{sign}(yw^{\mathsf{T}}\Delta_{h}(x, z))d_{\Delta}(x, z; w)\}$

L**R**, ICML22

classification *about* humans

system wants: correct predictions
users want: positive predictions

incentive-aligned:

ask: can learning (implicitly) coordinate cooperation?

classification *for* humans (as a *service*)

system wants: correct predictions
users want: correct predictions

incentive-aligned:

classification *for* humans (as a *service*)

system wants: correct predictions users want: correct predictions

incentive-aligned:

classification *for* humans (as a *service*)

system wants: correct predictions users want: correct predictions

actions

strategically linearly separable
incentive-aligned:

classification *for* humans (as a *service*)

system wants: correct predictions users want: correct predictions

classification *against* humans (?)

system wants: correct predictions
users want: wrong predictions

ask: can strategic modeling help make adversarial training *less conservative*?

A note on strategic vs. adversarial learning:

- From SC perspective, adversarial is "special case"
- But only in a narrow sense many distinctions in practice
- E.g., in adversarial learning (vs. strategic learning):
 - attack proxy loss (e.g. log-loss) vs. 0-1
 - focus on non-linear models
 - focus on complex modalities (e.g. images) -
 - \Rightarrow best-responses are approximate
 - vulnerabilities mostly in latent space
 - maximize utility under budget constraints
 - \Rightarrow features always modified and to the max
 - \Rightarrow optimize minimax objective

much potential for synergy! will return to this

- vs. modify minimally and only if needed
- vs. nested min-argmax

GNETR ICML21

SCHUFA

- Price of OPacity: (POP)
 - $err(h, \hat{h}) err(h, h)$
- Main result: can be arbitrarily bad
 ⇒ transparency is often in best interest of system!

- Price of OPacity: (POP)
 - $err(h, \hat{h}) err(h, h)$
- Main result: can be arbitrarily bad
 ⇒ transparency is often in best interest of system!

$$\operatorname{argmin}_{h} \frac{1}{m} \sum_{i=1}^{m} \ell\left(y_{i}, h\left(\Delta_{h}(x_{i})\right)\right)$$

$$uncertainty$$

$$unknown user response:$$

$$\operatorname{argmin}_{h} \frac{1}{m} \sum_{i=1}^{m} \ell\left(y_{i}, h\left(\Delta_{?}(x_{i})\right)\right)$$

ask: how can learning contend

with uncertain user behavior?

$$\operatorname{argmin}_{h} \frac{1}{m} \sum_{i=1}^{m} \ell\left(y_{i}, h(\Delta_{h}(x_{i}))\right)$$

uncertainty
$$\operatorname{unknown} \operatorname{user} \operatorname{response:}_{h} \int_{m}^{m} \frac{1}{m} \sum_{i=1}^{m} \ell\left(y_{i}, h(\Delta_{?}(x_{i}))\right)$$

1) infer Δ over time (more on this later)

ask: how can learning contend with uncertain user behavior?

$$\operatorname{argmin}_{h} \frac{1}{m} \sum_{i=1}^{m} \ell\left(y_{i}, h\left(\Delta_{h}(x_{i})\right)\right)$$
uncertainty unknown user response:

$$\operatorname{argmin}_{h} \frac{1}{m} \sum_{i=1}^{m} \ell\left(y_{i}, h\left(\Delta_{i}(x_{i})\right)\right)$$

1) infer Δ over time (more on this later)

ask: how can learning contend with uncertain user behavior?

$$\operatorname{argmin}_{h} \frac{1}{m} \sum_{i=1}^{m} \ell\left(y_{i}, h\left(\Delta_{h}(x_{i})\right)\right)$$
uncertainty unknown user response:

$$\operatorname{argmin}_{h} \frac{1}{m} \sum_{i=1}^{m} \ell\left(y_{i}, h\left(\Delta_{i}(x_{i})\right)\right)$$

1) infer Δ over time (more on this later)

ask: how can learning contend with uncertain user behavior?

 $\operatorname{argmin}_{h} \frac{1}{m} \sum_{i=1}^{l} \ell\left(y_{i}, h\left(\Delta_{h}(x_{i})\right)\right)$

unknown user response:

$$\operatorname{argmin}_{h} \frac{1}{m} \sum_{i=1}^{m} \ell\left(y_{i}, h\left(\Delta_{?}(x_{i})\right)\right)$$

(public) policy problems:

1) infer Δ over time (more on this later)

2) *robust learning* – *unkonwn costs:*

$$\underset{h}{\operatorname{argmin}} \max_{c \in C} \frac{1}{m} \sum_{i=1}^{m} \ell\left(y_{i}, h\left(\Delta_{h}^{c}(x_{i})\right)\right)$$
$$\underbrace{uncertainty set}$$

- "One shot" can deploy only once
- **Goal**: learn to be doubly-robust:
 - vs. strategic behavior
 - vs. worst-case cost $c \in C$
- Hardness: not knowing *c* can be catastrophic
- Convexification: updated ad-hoc s-hinge
- Algorithm: effective, converge to opt. min-max

- Robustness via penalizing deserving sub-population
- Main result is negative: increased accuracy ⇒ increased social burden
- However, results apply to certain monotone setting
- In more general settings, there is reason for optimism!

ask: when and how can we reduce social harm?

= "social burden" [MMDH'19]

$$\operatorname{burden}(h) = \mathbb{E}[\min_{x':h(x')=1} c(x, x') \mid y = 1]$$

LR ICML21

- **Conjecture**: many good models, vary in burden
- Learning objective underspecified can exploit!
- Regularize for **generalization**:

- **Conjecture**: many good models, vary in induced burden
- Learning objective underspecified **can exploit!**
- Regularize for **sparsity**:

- **Conjecture**: many good models, vary in induced burden
- Learning objective underspecified **can exploit!**
- Regularize for... **social good?**

- **Conjecture**: many good models, vary in induced burden
- Learning objective underspecified can exploit!
- Regularize for... social good?

LR ICML21

- **Conjecture**: many good models, vary in induced burden
- Learning objective underspecified can exploit!
- Regularize for... **social good!**

- **Conjecture**: many good models, vary in induced burden
- Learning objective underspecified **can exploit!**
- Regularize for... **social good!**

_R ICML21

- Applies to other social good metrics (utility, recourse, ...)
- Similarly underspecified similar pareto fronts!

$$\Delta_h(x) = \underset{x'}{\operatorname{argmax}} \begin{array}{l} h(x') - c(x, x') \\ utility \end{array} \quad cost$$

ask: where do costs come from?

(ask first: what are features?)

Market Stall

Market Stall

ask: can learning anticipate and account for the markets it induces?

strategic *modification*:

$$\operatorname{argmin}_{h} \frac{1}{m} \sum_{i=1}^{m} \ell\left(y_{i}, h(\Delta_{h}(x_{i}))\right)$$

s.t.
$$\Delta_h(x) = \underset{x'}{\operatorname{argmax}} h(x') - c(x, x')$$

ask: what other actions can users take?

strategic *modification*:

$$\operatorname{argmin}_{h} \frac{1}{m} \sum_{i=1}^{m} \ell\left(y_{i}, h\left(\Delta_{h}(x_{i})\right)\right)$$

strategic *participation*:

s.t.
$$a_h(x) = 1$$
{worthwhile to apply}

ask: what other actions can users take?

HSKR ICML24

strategic *modification*:

$$\operatorname{argmin}_{h} \frac{1}{m} \sum_{i=1}^{m} \ell\left(y_{i}, h\left(\Delta_{h}(x_{i})\right)\right)$$

strategic *participation*:

$$\operatorname{argmin}_{h} \frac{1}{m} \sum_{i=1}^{m} a_{h}(x_{i}) \ell(y_{i}, h(x_{i}))$$

s.t. $a_h(x) = \mathbb{1}$ {worthwhile to apply}

ask: what other actions can users take?

HSKR ICML24

strategic participation:

test

y = 1y = 0

(interview, trial period, ...)

strategic participation:

ask: how does learning affect applications?

• **Observation:** learning rule determines **self-selection**

main result: learning has capacity
to fully determine applications!

strategic participation:

- **Observation:** learning rule determines **self-selection**
- Implications: can create *false appearance* of fairness,

discriminates by making application too costly/risky

† †

ask: how does learning affect applications?

strategic participation:

- **Observation:** learning rule determines **self-selection**
- Implications: can create *false appearance* of fairness,

discriminates by making application too costly/risky

ask: how does learning affect applications?

Beyond

the standard setup

revisit old fronts + tackle new ones!

revisit old fronts + tackle new ones!

1) Causality

vanilla SC

	₩ AT&T 🗢 🧐	9:06 AM	≁ 9 ∦ 96%	Ì
	WELI	LS FAI	RGO (2
	AVAILABLE CASH	682	MANAG	έE
	CHECKING ACCOUNT \$3,402	LAST T	RANSACTIONS 0.00 ▼-\$241.81	>
$\langle \rangle$	savings account \$28,180	LAST T ▲ \$8,00	RANSACTIONS 00.00 ▼- \$20.00	>
	credit card \$7,289	LAST T ▲ \$20	RANSACTIONS 0.00 ▼-\$428.56	>

superficial changes \Rightarrow gaming

1) Causality

- **Standard SC:** changing *x* does <u>not</u> affect *y* (=gaming)
- More realistic: changing x can also change y
- Assume exists underlying *causal graph* [Pearl 2009]:

ask: can we learn in causal strategic settings?

(taken from Miller et al. 2020)

• Lots of challenges:

- graph not necessarily known
- key variables not necessarily observed (e.g., confounders)
- > structure determines interactions (i.e., what affects what)
- Causal SC is inherently difficult as hard as causal inference [MMH ICML20]

Causal SC as distribution shift

- **Q1**: How does causality affect learning?
- Simplifying assumption: causal vs. correlative features
- A1: Entails different types of distribution shift:
 - correlative \rightarrow *strategic* shift \rightarrow gaming
 - only causal \rightarrow *covariate* shift \rightarrow missinformation
 - both \rightarrow *mixture* shift \rightarrow interactions
- Corollary: choose your battles!

h

 $x_{\rm corr}$

Incentivizing improvement

- Q1: How does causality affect learning?
- Q2: How does causality affect social outcomes?
- A2: Causal SC has potential for improvement:

$\mathbb{E}_{x}\left[\mathbb{E}[p(y \mid do(\Delta)) - p(y) \mid x]\right]$

- Goal: learn h that (also) promotes improvement
- Has long and rich history in economics (e.g., see [KR 19])
- Also considered in (online) SC (e.g., [SEA'20, BLWZ'21, CWL'21, HNSHW'22, MDW'22])

Incentivizing improvement

- Q1: How does causality affect learning?
- Q2: How does causality affect social outcomes?
- A2: Causal SC has potential for improvement:

$\mathbb{E}_{x}\left[\mathbb{E}[p(y \mid do(\Delta)) - p(y) \mid x]\right]$

- Goal: learn h that (also) promotes improvement
- Has long and rich history in economics (e.g., see [KR 19])
- Also considered in (online) SC (e.g., [SEA'20, BLWZ'21, CWL'21, HNSHW'22, MDW'22])
- But changing x can also **impair** outcomes!

Incentivizing improvement

- Q1: How does causality affect learning?
- Q2: How does causality affect social outcomes?
- A2: Causal SC has potential for improvement:

$\mathbb{E}_{x}\left[\mathbb{E}[p(y \mid do(\Delta)) - p(y) \mid x]\right]$

- **Goal**: learn *h* that (also) promotes improvement
- Has long and rich history in economics (e.g., see [KR 19])
- Also considered in (online) SC (e.g., [SEA'20, BLWZ'21, CWL'21, HNSHW'22, MDW'22])
- But changing x can also **impair** outcomes!
- Solution: learn safe models by "looking ahead"

causal effect:

uncertainty:

RHRP NeurIPS20

- Standard SC: responses are <u>independent</u> ($\Delta_f(x)$ depends only on x) find
- More realistic: responses are interdependent
- Reason #1: limited resources
 - Actually, all common examples have limit on # of $\hat{y} = 1$
 - This means that users **compete**

limited teaching capacity

limited qualified personell

- Standard SC: responses are <u>independent</u> ($\Delta_f(x)$ depends only on x)
- More realistic: responses are interdependent
- Reason #1: limited resources
 - Actually, all common examples have limit on # of $\hat{y} = 1$
 - This means that users compete
 - Reasonable approach:

learn to rank, then set $\hat{y} = 1$ only for top-k

- Turns out to be *exceedingly hard* [LGB ICML22]
- Still major goal!

- Standard SC: responses are independent
- More realistic: responses are interdependent
- Reason #1: limited resources
- **Reason #2:** model-induced dependencies

graph-dep. embedding

social network

GNN

- Standard SC: responses are independent
- More realistic: responses are interdependent
- **Reason #1:** limited resources
- **Reason #2:** model-induced dependencies

- Standard SC: responses are independent
- More realistic: responses are interdependent
- Reason #1: limited resources
- **Reason #2:** model-induced dependencies

- Standard SC: responses are independent
- More realistic: responses are interdependent
- **Reason #1:** limited resources
- **Reason #2:** model-induced dependencies
- **Reason #3:** economic graph structure

strategic content creators

main result: can use graph to incentiveize diversity

3) Learning over time

- **Standard SC:** batch setting: train → deploy → test
- Assumes access to clean data (otherwise, chicken & egg!)
- More realistic: data is dirty (i.e., result of some behavior)
- **One solution:** iterated deployments over time: train \rightarrow deploy \rightarrow train \rightarrow deploy \rightarrow train \rightarrow ...
- Three main aproaches: \rightarrow lots of research; will present here only in brief
 - online learning (e.g., bandits) (e.g., [DRSWW NeurIPS17, CSSVZ ICML23, HPW NeurIPS23, SBM NeurIPS23, ABBN EC21, ...])
 - 2. performative prediction (retraining revisited) [PZMH ICML20]
 - 3. dynamical systems

3) Learning over time

- **Standard SC:** batch setting: train → deploy → test
- Assumes access to clean data (otherwise, chicken & egg!)
- More realistic: data is dirty (i.e., result of some behavior)
- One solution: iterated deployments over time: train \rightarrow deploy \rightarrow train \rightarrow deploy \rightarrow train \rightarrow ...
- **Pros**: less restrictive
 - (1) does <u>not</u> require clean data
 - (2) does not assume known Δ_h (or even best-response)
 - (3) permits causal Δ_h (under additional assumptions)
- Cons: each deployment is social "experiment"
 - in some cases, exploration is reasonable
 - in other cases it is very much <u>not</u>

Opportunities & challenges

open questions

- Strategic learning is exiting new field with much potential for growth
- But it is also young so that many challenges still lie ahead:
- **1. Learning aspects**:

- Strategic learning is exiting new field with much potential for growth
- But it is also young so that many challenges still lie ahead:
- **1. Learning aspects**:
 - labels beyond binary
 - regression
 - multiclass
 - multilabel
 - sequences
 - structured (e.g., graphs)

- Strategic learning is exiting new field with much potential for growth
- But it is also young so that many challenges still lie ahead:

1. Learning aspects:

- labels beyond binary
- inputs beyond vectors
 - images
 - text
 - graphs
 - ...

- Strategic learning is exiting new field with much potential for growth
- But it is also young so that many challenges still lie ahead:

1. Learning aspects:

- labels beyond binary
- inputs beyond vectors
- models beyond linear
 - neural nets (behavior in latent space)
 - tree-based
 - text-based (prompts)
 - ...

- Strategic learning is exiting new field with much potential for growth
- But it is also young so that many challenges still lie ahead:

1. Learning aspects:

- labels beyond binary
- inputs beyond vectors
- models beyond linear
- settings beyond classification
 - unsupervised and semi-supervised
 - generative
 - RL and MARL

- ...

- Strategic learning is exiting new field with much potential for growth
- But it is also young so that many challenges still lie ahead:
- **1. Learning aspects**
- 2. Econ/GT aspects:
 - information
 - power
 - control
 - selective release/withold
 - ...

Open questions

- Strategic learning is exiting new field with much potential for growth
- But it is also young so that many challenges still lie ahead:
- **1. Learning aspects**
- 2. Econ/GT aspects:
 - information

- ...

- other economic settings
 - markets, auctions, contracts, ...
 - competition (between classifiers)
 - cooperation (between users)
 - monopolistic behavior

Open questions

- Strategic learning is exiting new field with much potential for growth
- But it is also young so that many challenges still lie ahead:

1.	Learning aspects			cor	firmatio	n bias
2.	 Econ/GT aspects: information other economic settings behavior Bayesian non-rational "behavioral" (=biase 	future discounting		decoy e	causal fallacy coy effect primacy/recency g endowment effect oice overload availability bias	
		bounded rationality and risk aversion/seeking s) k-level reasoning		choring choice quantal i		
		bas	base rate		bandw ning/prin	agon effect ning

Open questions

- Strategic learning is exiting new field with much potential for growth
- But it is also young so that many challenges still lie ahead:
- **1. Learning aspects**
- 2. Econ/GT aspects
- 3. "In the wild":
 - evaluation [BBK 20, HHP 23, CIALRM 23]
 - measuring utility/welfare
 - estimating costs
 - monitoring and regulation

Why supervised learning?

- Most human-centric tasks are policy problems (vs. prediction problems)
- So supervised learning is clearly the wrong tool to use
- But it is also by far the most prevelant, accessible, and easy to use
- Vision for the future:

- Goal: make integrating human agency as seemless as possible
- Not so easy! And requires much caution and deliberation (c.f. fairness)

Summary

Summary

- SC captures natural tension between learning systems and their users
- Appealing interface between ML and GT many open question!
- Original setup is clean and simple, but likely to narrow
- Nonetheless, flexible and modular: easy to extend, relax, and generalize

Summary

- SC captures natural tension between learning systems and their users
- Appealing interface between ML and GT many open question!
- Original setup is clean and simple, but likely to narrow
- Nonetheless, flexible and modular: easy to extend, relax, and generalize
- > A call to rethink the design of learning algorithms for social settings
- > An opportunity to revise foundations using economic and behavioral modeling
- High potential for real impact much more work needed!

• "users game system"

- "users game system"
- "system exploits users"

- "users game system"
- "system exploits users"
- "system exploits users unintentionally"

- "users game system"
- "system exploits users"
- "system exploits users unintentionally"
- "... as long as there is transparency"

- "users game system"
- "system exploits users"
- "system exploits users unintentionally"
- "... as long as there is transparency"
- "potential for cooperation..."

Recommended for you:

- "users game system"
- "system exploits users"
- "system exploits users unintentionally"
- "... as long as there is transparency"
- "potential for cooperation..."
- "its just a market"

- "users game system"
- "system exploits users"
- "system exploits users unintentionally"
- "... as long as there is transparency"
- "potential for cooperation..."
- "its just a market"

. . .

Robert J. Shiller Winne - of the Nobe leconomics **How Stories Go** Viral & Drive Major Economic Events

