

ProtoGate: Prototype-based Neural Networks with Global-to-local Feature Selection for Tabular Biomedical Data

Xiangjian Jiang, Andrei Margeloiu, Nikola Simidjievski, Mateja Jamnik

Department of Computer Science and Technology University of Cambridge

: xj265@cam.ac.uk

<u>ProtoGate</u>: Prototype-based Neural Networks with <u>Global-to-local Feature Selection</u> for <u>Tabular Biomedical Data</u>

Xiangjian Jiang, Andrei Margeloiu, Nikola Simidjievski, Mateja Jamnik

Department of Computer Science and Technology University of Cambridge

: xj265@cam.ac.uk

Motivation

02

04

ONTENTS

What are the rationales behind this study?

03 Methodology

What is the proposed method?

What has been done to evaluate ProtoGate?

Background

What task are we interested in?

Sample names	Gene 1	Gene 2	Gene 3	Gene 4	•••	Gene D
Sample 1	1	0	1	0		1
Sample 2	1	1	0	0	••••	0
Sample 3	0	1	0	1		1
Sample 4	1	1	1	1		1
Sample <i>N</i>	0	1	1	1	••••	1

Table 1: An example biomedical dataset of genetic mutations.

≻ Task

• Classification on tabular biomedical data

> Challenges

- High-dimensional and low-sample-size $(D \gg N) \rightarrow$ curse of dimensionality
- Heterogeneity across samples \rightarrow locally important features

> Solution

• Local feature selection: select informative features on an instance-wise basis

Sample names	Gene 1	Gene 2	Gene 3	Gene 4	•••	Gene D
Sample 1	1		1			1
Sample 2		1		0		0
Sample 3	0	1	0	1		
Sample 4			1			1
	••••	•••	••••			•••
Sample <i>N</i>	0			1		

Table 2: An example of local feature selection on biomedical dataset. Colored cells denote dropped features.

> Task

• Classification on tabular biomedical data

> Challenges

- High-dimensional and low-sample-size $(D \gg N) \rightarrow$ feature selection
- Heterogeneity across samples \rightarrow locally important features

> Solution

• Local feature selection: select informative features on an instance-wise basis

Motivation

What are the rationales behind this study?

(c) Disjoint in-model selection (ProtoGate)

Figure 1: Overview of different paradigms.

Figure 2: Illustration of co-adaptation problem.

> Joint in-model selection

x susceptible to co-adaptation problem x insufficient explainability for predictions

Disjoint post-hoc selection

cannot provide in-model feature importance
insufficient explainability for predictions

- Disjoint in-model selection
 - ✓ in-model feature importance
 - Co-adaptation avoidance
 - V human-understandable predictions

Methodology

What is the proposed method?

Methodology | Model Design

Figure 3: The model architecture of ProtoGate.

> Model Architecture

04

- Global-to-local Feature Selection (*Figure 5A*)
 - Soft global selection highlights globally important features
- Non-parametric Prototype-based Prediction (*Figure 5C*)
 - Differentiable prototype-based predictor encodes clustering assumption into selection
 - Non-parametric predictor mitigates co-adaptation problem
 - Prototypical explanations provides explainable predictions

Methodology | Example inference on the colon dataset

Figure 4: Illustration of the global-to-local feature selection.

Figure 5: Illustration of the prototype-based prediction.

Experiments

What has been done to evaluate ProtoGate?

Figure 6: Predictive performance evaluation on seven real-world high-dimensional and low-sample-size datasets.

Results

- ProtoGate achieves higher accuracy and sparser selection with higher computation efficiency
- ProtoGate selects features with a better trade-off for fidelity
- ProtoGate provides **easy-to-interpret prototypical predictions**, which resembles human behaviour

Figure 7: Fidelity evaluation of selected features on three synthetic datasets. "Rank difference" refers to the difference between the ranks of $F1_{select}$ (feature selection correctness) and ACC_{pred} (classification accuracy).

> Results

- ProtoGate achieves higher accuracy and sparser selection with higher computation efficiency
- ProtoGate selects features with a better trade-off for fidelity
- ProtoGate provides **easy-to-interpret prototypical predictions**, which resembles human behaviour

Thanks

For more details, please refer to our paper and code! Or reach out via <u>xj265@cam.ac.uk</u> 😺

