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Background

What task are we interested in?




IR\ Background

Sample names Gene 1 Gene 2 Gene 3 Gene 4 Gene D
Sample 1 1 0 1 0 1
Sample 2 1 1 0 0 0
Sample 3 0 1 0 1 1
Sample 4 1 1 1 1 1
Sample N 0 1 1 1 1

Table 1: An example biomedical dataset of genetic mutations.

» Task
* (lassification on tabular biomedical data
»> Challenges

* High-dimensional and low-sample-size (D > N) — curse of dimensionality
* Heterogeneity across samples — locally important features

> Solution

* [ocal feature selection: select informative features on an instance-wise basis



VA Background

Sample names Gene 1 Gene D
Sample 1 1 1
Sample 2 0
Sample 3 _
Sample 4 . 1
Sample N _

Table 2: An example of local feature selection on biomedical dataset. Colored cells denote dropped features.

» Task
* (lassification on tabular biomedical data
»> Challenges

* High-dimensional and low-sample-size (D > N) — feature selection
* Heterogeneity across samples — locally important features

> Solution

* [ocal feature selection: select informative features on an instance-wise basis



Motivation

What are the rationales behind this study?




XA\ Motivation
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(c) Disjoint in-model selection (ProtoGate)



Methodology

What is the proposed method?




YA\ Methodology | Model Design
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Figure 3: The model architecture of ProtoGate.

» Model Architecture
* Global-to-local Feature Selection (Figure 5A)
* Soft global selection highlights globally important features

* Non-parametric Prototype-based Prediction (Figure 5C)

» Differentiable prototype-based predictor encodes clustering assumption into selection

* Non-parametric predictor mitigates co-adaptation problem
* Prototypical explanations provides explainable predictions

Classes

1

1_,0

0

Prediction for
y=Class 1

Nearest
prototypes

1
.

Prototypical
explanations
fory



n\ Methodology | Example inference on the colon dataset
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Figure 4: Illustration of the global-to-local feature selection.
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F1gure 5: llustration of the prototype -based prediction.



Experiments

What has been done to evaluate ProtoGate?
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Figure 6: Predictive performance evaluation on seven real-world high-dimensional and low-sample-size datasets.

> Results

* ProtoGate achieves higher accuracy and sparser selection with higher computation efficiency

* ProtoGate selects features with a better trade-off for fidelity

* ProtoGate provides easy-to-interpret prototypical predictions, which resembles human behaviour
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Figure 7: Fidelity evaluation of selected features on three synthetic datasets. “Rank difference” refers to the difference
between the ranks of Fl e (feature selection correctness) and ACCeq (classification accuracy).

> Results

* ProtoGate achieves higher accuracy and sparser selection with higher computation efficiency
* ProtoGate selects features with a better trade-off for fidelity
* ProtoGate provides easy-to-interpret prototypical predictions, which resembles human behaviour



For more details, please refer to our
paper and code! A
Or reach out via xj265@cam.ac.uk & EI |
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