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Probability Measures
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Several objects of interest can be represented as distributions.



Optimal Transport (OT)
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The natural geometry for probability measures



Optimal Transport

The natural geometry for distribution data
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Cost/Ground Metric
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Optimal Transport
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OT with Graph Metric

For probability measures supported on graph metric:

» Min-cost flow problem via Beckmann formulation.
» Complexity: O(V*2E logV )by Orlin’s algorithm.

» OT with graph metric ground cost is indefinite.

J. B. Orlin. A Polynomial Time Primal Network Simplex Algorithm for Minimum Cost Flows. MP, 1997,



Graph Metric

» Graph metric: length of shortest path between nodes on graph.
» Assumptions: (i) graph is given, (ii) it exist a root node z( (i.e.,
unique shortest path from zg to other nodes).

TL*, T. Nguyen®, D. Phung, V. A. Nguyen. Sobolev transport: a scalable metric for probability measures with graph metrics. AISTATS,
2022. 6



Sobolev Transport

@ Closed-form solution
@ Complexity: O(FE + V)
@ Negative definite

TL*, T. Nguyen®, D. Phung, V. A. Nguyen. Sobolev transport: a scalable metric for probability measures with graph metrics. AISTATS,
2022. /



Graph-based Sobolev Space

» Graph-based Sobolev space: W1P(G, \)
f:G+— R belongs to W1P(G, \)
If there exists h € LP(G, \) such that
f(@) = f(z0) = [, o MW)A(dy) V2 eG

Such function h is unique, called graph derivative of f w.r.t. A

A : nonnegative Borel measure on graph G
p>1

LP(G, \): space of f : G — R such that f@ f(y)PA(dy) < oo

TL*, T. Nguyen®, D. Phung, V. A. Nguyen. Sobolev transport: a scalable metric for probability measures with graph metrics. AISTATS,
2022.



Sobolev Transport

S (nv) = { sup | [z F@)uldz) — [ f(2)(da)]
o s.t. f € Wl’p/(Ga )‘)7 Hf,HLP’(G,A) < L.

A : nonnegative Borel measure on graph GG
p=>1

p’: conjugate of p;
u, v e P(G)

f’: graph derivate of f w.r.t. \

[lle@n = (Jol F@IPAAY))
WLP(G, \): graph-based Sobolev space

1 1
Ly l—1

TL*, T. Nguyen®, D. Phung, V. A. Nguyen. Sobolev transport: a scalable metric for probability measures with graph metrics. AISTATS,
2022.



Sobolev Transport

Sp(p, V)P = Jg [n(A(x)) — v(A(z))[P Mdz)

Discrete case: supports on graph vertices

Sp(p, V)P =Y cp Ae) |n(ve) — v(ve)|”

TL*, T. Nguyen®, D. Phung, V. A. Nguyen. Sobolev transport: a scalable metric for probability measures with graph metrics. AISTATS,
2022. 10



Sobolev Transport (ST)

Sy, (p, v) { >HP [fG ]
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» Definition is based on dual 1-order Wasserstein.

» Coupled with [P geometric structure.

» Challenge: nontrivial to use ST with other prior
geometric structures.

11



Orlicz-Wasserstein (OW)

Wa(u,v) = inf inf [t>0:/@ @(dG(f’Z)>dw(az,z)g1}

7Tel—[(lu“?y) XG

® : N-function on graph (&

» N-function: a strictly increasing and convex function
d :[0,00) — [0, 00)
O(1)

st. lim —= =0 lim —* =40
t—0 ¢ t——+00

» Popular N-functions:
d(t) =tF, 1<p<o O(t) =exp(t?) —1, 1<p<oo
O(t) =exp(t) —t—1 O(t)=(1+t)log(l+1)—t

12



Orlicz-Wasserstein (OW)

Wa(iv) = inf inf [t>0:/@ @(dG(f’Z)>dw(az,z)g1}

WGH(M,V) X (&

OW helps to advance certain ML approaches

» For quantifying the rate of parameter convergence in
infinite Gaussian mixtures |Guha et al, IcML'23]

® OW alleviates raised concerns from the usage of 2-
order Wasserstein.

® OW helps to significantly improve the contraction
rate.

A. Guha, N. Ho, X. Nguyen. On Excess Mass Behavior in Gaussian Mixture Models with Orlicz-Wasserstein Distances. ICML, 2023. 13



Orlicz-Wasserstein (OW)

dg(z, 2)

Wa(u,v) = inf inf [t >0 : / P dr(z,z) < 1}
G

WEH(M,V) XG

OW helps to advance certain ML approaches

» For quantifying the rate of parameter convergence in
infinite Gaussian mixtures |Guha et al, IcML'23]

» Overcome longstanding challenges for proving fast
convergence of hypocoercive differential equations

| Altschuler & Chewi, FOCS'23]

A. Guha, N. Ho, X. Nguyen. On Excess Mass Behavior in Gaussian Mixture Models with Orlicz-Wasserstein Distances. ICML, 2023.
J. M. Altschuler, S. Chewi. Faster High-Accuracy Log-Concave Sampling via Algorithmic Warm Starts. FOCS, 2023.
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Orlicz-Wasserstein (OW)

dg(z, 2)

Wa(u,v) = inf inf [t >0 : / P dr(z,z) < 1}
G

WEH(M,V) XG

OW helps to advance certain ML approaches

» For quantifying the rate of parameter convergence in
infinite Gaussian mixtures |Guha et al, IcML'23]

» Overcome longstanding challenges for proving fast
convergence of hypocoercive differential equations

| Altschuler & Chewi, FOCS'23]

Computational challenge:
» Two-level optimization formula.

A. Guha, N. Ho, X. Nguyen. On Excess Mass Behavior in Gaussian Mixture Models with Orlicz-Wasserstein Distances. ICML, 2023.
J. M. Altschuler, S. Chewi. Faster High-Accuracy Log-Concave Sampling via Algorithmic Warm Starts. FOCS, 2023.
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Graph-based Orlicz-Sobolev Space

» Graph-based Orlicz-Sobolev space: WLg (G, w)
f:G— R belongs to WLe (G, w)
If there exists h € Lg (G, w) such that

F) =S = [ A, veeG
20 L
Such function h is unique, called graph derivative of f w.r.t. A

w : nonnegative Borel measure on graph (5

Ls(G,w): space of f : G — R such that/GCI)(\f(:v)\)w(dx) < 00

TL*, T. Nguyen*, K. Fukumizu. Generalized Sobolev Transport for Probability Measures on a Graph. ICML, 2024
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Generalized Sobolev Transport

GSa (L, V).{SUP |f@ f(x)p(dz) — Jq f(x)u(dx)|

st. f€WLy(G,w), | fllL, <1.

w : nonnegative Borel measure on graph (G
u,v € P(G)

f": graph derivate of f w.r.t. w

WLs(G,w): graph-based Orlicz-Sobolev space

1l =int {501 [ o (L) wan <1},

U(t) =sup|lat — P(a) | a > 0], for t>0.

TL*, T. Nguyen*, K. Fukumizu. Generalized Sobolev Transport for Probability Measures on a Graph. ICML, 2024
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Generalized Sobolev Transport (GST)

GSa(ji,v) = inf ~ (1 + [ @klna) - u(A(x))Dw(da:)) |

k>0 k

Discrete case: supports on graph vertices

GSs(u,v) = inf - [1 + > we(k|u(ve) — V(%)l)} ,

k>0 k
ecll

= Compute GST by simply solving univariate optimization
problem.

TL*, T. Nguyen*, K. Fukumizu. Generalized Sobolev Transport for Probability Measures on a Graph. ICML, 2024 16



Connection to Sobolev Transport

— 1)p—1
<I>(t)::(p ) th,) 1 <p<oo

pp

GSa(p,v) = Sp(p,v)

m GST yields a closed-form expression for this case.

TL*, T. Nguyen*, K. Fukumizu. Generalized Sobolev Transport for Probability Measures on a Graph. ICML, 2024
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Connection to Orlicz-Wasserstein

O(t) =t

G : a tree

gS(I’(M? V) — WCI)(:“? V)

TL*, T. Nguyen*, K. Fukumizu. Generalized Sobolev Transport for Probability Measures on a Graph. ICML, 2024
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Fast computation: GST v.s. OW
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P(t) =t é(t)=exp(t)-t-1 5(t)=exp(t?)-1

TL*, T. Nguyen*, K. Fukumizu. Generalized Sobolev Transport for Probability Measures on a Graph. ICML, 2024
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Empirical Results
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[ OW-4, [ OW-¢,Tree [IGST-¢, []GST-¢, [IIIGST-¢,

Do(t) = t;  (t) = exp(t) — t — 1

Oy (t) = exp(t?) — 1

TL*, T. Nguyen*, K. Fukumizu. Generalized Sobolev Transport for Probability Measures on a Graph. ICML, 2024
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Empirical Results

Orbit (5000/300) MPEG?7 (200/80)

§06 i = 08 I T
© T
-
&‘3 0.4 0.6
Q
& 0.2 0.4 |
Q
>
<

0 —0.2 L
0
c
o
-
§1O4 100}
(/)]
c
o
O
£
i=10° 02—

- OW-¢, - OW-¢ -Tree - GST-¢,

GST-¢, -GST-¢2

Do(t) = t;  (t) = exp(t) — t — 1

Oy (t) = exp(t?) — 1

TL*, T. Nguyen*, K. Fukumizu. Generalized Sobolev Transport for Probability Measures on a Graph. ICML, 2024

21



Thank you
for your attention



