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Unlearnable Examples
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Existing Countering/Defense Unlearnable Examples

Training-time defense

Pre-training processing

Adversarial Training
Adversarial Augmentations
Progressive Staged Training

Cutout
Cutout-mix

Mix up

JPEG Compression
Bit depth decrease
Grayscale

Purify with diffusion model

Not strong performance
Time-consuming

Modify the standard model training
protocol

Efficient
Slightly modify the standard model training

protocol

Efficient

No need to modify the standard model
training protocol

Not strong performance

Effect on the visual quality

Superior performance (around 4-5% drop)
Efficient

No need to modify the standard model
training protocol

Need clean data to train the diffusion, thus

not practical ZEEE NANYANG
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A VAE CAN EFFECTIVELY MITIGATE THE IMPACT OF POISON PATTERNS
WITH ITS CONSTRAINED REPRESENTATION CAPACITY

Lvae = Y |l — 2|5 +X- max(KLD(2, (0, I)), Kldiimi),
\ / N - )
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THEORETICAL ANALYSIS AND INTRINSIC CHARACTERISTICS

Given that the feature extractor’s function in mapping input data to the latent space is pivotal for the
classification process conducted by DNNs, we conduct our analysis on the latent features v.

Hyperplane shift caused by poisoning attacks. Consider the following binary classification prob-
lem with regards to the features extracted from the data v = (v.,v%) consisting of a predictive
feature v of a Gaussian mixture G. and a non-predictive feature v* which follows:

y “NT{0,1}, ve ~ N (pE Be), vs ~ N0, B, ve Lwg, Priy=0)=Priy=1). @

Proposition 1 For the features v = (v, vt) following the distribution (4), the optimal separating
hyperplane using a Bayes classifier is formulated by:

pet ey _
T) —0,

The proof is provided in Appendix[A.]. Subsequently, we assume that a malicious attacker modifies
v? to v, of the following distributions G, to make it predictive for training a Bayes classifier:

y “R7{0,1}, vs~N(uY, ), vl vs. (6)

w, (v: — where we = 3. (pe — He). 5)
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Perturbations which create strong attacks tend to have a larger inter-
class distance and a smaller intra-class variance

Theorem 1 Consider features from the training data for the Bayes classifier is modified from v =
(v, vt) in Eq. 4 to v = (v.,vy) in Eq. |6, the hyperplane is shifted with a distance given by:

0,,,1
lwd (ws = 52|

d = 2
”'wcuz

, wherew, = X7 (e — pe), ws = 37 (g — ps).- (7)

The proof is provided in Appendix[A.2. When conducting evaluations on the testing data that follows
the same distribution as the clean data v = (v, v%), with the term v, in Eq. [] replaced by v, it
leads to a greater prediction error if ||w;||, > ||we||,. Theorem [l indicates that perturbations which
create strong attacks tend to have a larger inter-class distance and a smaller intra-class variance.
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Error when aligning with a normal distribution

Error when aligning with a normal distribution. Consider a variable v = (v1,...,v4) following
a mixture of two Gaussian distributions G:

y “~"0,1}, v~N(W",X), wv; llv;, Prly=0)=Pr(y=1),
vi v N (1}, 03), o, (v) = [N (v; i, 00) + N (v; 15, 04)] /2.
Each dimensional feature v; 1s also modeled as a Gaussian mixture. To start, we normalize each

feature through a linear operation to achieve a distribution with zero mean and unit variance. The
linear operation and the modified density function can be expressed as follows:

8)

Vi — [ v) +p1(v e 2
“= 2 - =, P=:(v) = ol )2p1( ), po(v) = N(v; —8;,64), p1(v) = N(v; i, 6:)
0 1 0 1
I ol R ST il . A B S )2 V2 5 — o )2 )2
where i = KETHL g, = |2 G = 5\ (00) + (002, 61 = 03/ (00)? + (80)°,
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Perturbations that make strong attacks tend to suffer from larger errors
when estimating with distributions subject to the constraint on the KLD

Theorem 2 Denote r; = %h > 0, the Kullback—Leibler divergence between p,.(v) in (B) and a
standard normal distribution N (v; 0, 1) is bounded by:

% In (1 + (r;)*) — In2 < KLD(p., (v) |\ (v;0,1)) < % In (1 + (r:)?), (10)
and observes the following property:
tri = 158(ri)=KLD(pz; (v)||N(v;0,1)). (11)

The proof for Eq.[8 and Theroem 2 is provided in Appendix [A.3.

Remark 1 Consequently, if we aim to estimate a normalized Gaussian mixture distribution z; ~

p.. (v) using P subject to KLD(P||N'(0,1)) < €. Then for features v; € {V|ry < S~1(e)}, we
can employ an identical mapping P = p.. (v) to estimate the distributions of z;, resulting in zero
estimation error. However, for features v; ¢ {V|ry < S~1(€)}, an estimation error, denoted as
o [P(v) — ps, (v)]2dv, is inevitable, and is proportional to (r,, — S~ (€)). And the estimated P

is constrained to have a smaller r, making it less predictive for classification.
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Class-conditional entropy of the perturbations is comparatively low,

indicating that the perturbations can be reconstructed by
representations with limited capacities

Proposition 2 The conditional entropy of a Gaussian mixture v, of G in Eq. |8 is given by:

dim(vs 1
H(waly) = P02 (1 4 1n(2m) + £ n (), (12)
where dim(v,) is the dimensions of the features. If each feature v¢ is independent, then:
. dim(vs)
dim(v
H(ws|ys) = im(vs) (1+Wn@r)+ Y ol (13)
2 d=1
As the inter-class distance A = || — pl||, is constrained to ensure the invisibility of the poison

patterns, most availability poison patterns exhibit a relatively low intra-class variance. Proposition 2
suggests that the class-conditional entropy of the perturbations is comparatively low. Adversarial
poisoning (Fowl et all, 2021) could be an exception since they can maximize latent space shifts with
minimal perturbation in the RGB space. However, the preference to be removed by VAE still holds.
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D-VAE: VAE with perturbations disentanglement

EM

o

M LSP OPS NTGA
ik .y Uy EM REM LSP OPS NTGA
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Figure 1. A visual depiction of D-VAE is presented, containing two components. One component generates reconstructed images &,
preserving the primary content of poisoned inputs . The auxiliary decoder maps a trainable class-wise embedding u,, and latents z to
disentangled perturbations p. Here, @ is clean data, and p denote added perturbations. Perturbations are normalized for better views.

Lovae= Y ll&—&|2+ | (z— &) — pl|2 +X - max(KLD(z, N'(0, I)), Kldimi),

z,yeP N .
distortion recover poison patterns rate constraint

(14)
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Purify UEs with D-VAE

Algorithm 1 Two-stage purification framework of unlearnable examples with D-VAE

Input: poisoned dataset PO D-VAE (Eg, Do, Dgp, Uy ), Kldjimic: kld1, kldo

# First stage: recover and remove heavy perturbations by training D-VAE with small kld;
Randomly initialize (¢, 0., 0, u,), and using Adam to minimize Eq. 14 on PO with kld;
Inference with trained VAE on PY, and save a new dataset P! with sample 2! = 20 — p°
# Second stage: generate purified data by training D-VAE with larger kld,

Randomly initialize (¢, 6., 0,,, u,,), and using Adam to minimize Eq. 14 on Pl with kld,

Inference with trained VAE on P, and save a new dataset P2 with sample x> = &' — p"

Inference with trained VAE on P2, and save a new dataset P> with sample z° = &>
Return purified dataset P3
u,

u, 1 Encoder Decoder a1 2
xt— —'.—vé—' —pl—Xx
o _ Encoder . é Decoder 1 ~N Eg Dy,
Ey Dy, o0 subtract
-
(V]

subtract , Encoder . Decoder
X< ” ’
E ) DGC
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Validate the effectiveness of the disentanglement

P = {(Bi+xi, y)|(xi, ;) € T}

Table 1. Testing accuracy (%) of models trained on reconstructed

poisoned dataset P.

Datasets TestSet | EM REM NTGA LSP AR OPS
T 9.7 19.8 29.2 15.1 13.09 18.5

CIFAR-10 D 9.6 19.5 28.6 15.3 12.9 18.7
P 91.3 999 99.9 999 100.0 99.7

T 1.4 6.4 - 4.2 1.6 11.2

CIFAR-100 D 1.3 7.6 - 4.0 1.6 10.7
P 08.8 964 - 99.1 100.0 99.5
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Experimental results on UEs purification

Table 2. Clean test accuracy (%) of models trained on the unlearnable CIFAR-10 dataset and with our proposed method Vs. other defenses.

Our results on additional classifiers are at the rightmost. RN, DN, and MN denote ResNet, DenseNet, and MobileNet, respectively.

Norm | UEs / Countermeasures | wlo | AT AA | BDR Gray JPEG AVA. LFU | Ours || RN-50 DN-121 MN-v2

| Clean (no poison) | 94.57 | 85.17 9227 | 8895 92.74 8547 89.61 86.78 | 93.29 || 93.08 93.73 83.61

NTGA (Yuan & Wu, 2021) 11.10 | 83.63 77.92 | 57.80 65.26 78.97 80.72 82.21 | 89.21 || 88.96 89.28 78.72

EM (Huang et al., 2021) 12.26 | 8443 67.11 | 8191 19.50 85.61 89.54 65.17 | 9142 || 91.62 91.64 81.10

by = 22—5 TAP (Fowl et al., 2021) 25.44 | 83.89 55.84 | 80.18 21.50 84.99 89.13 53.46 | 90.48 || 90.50 90.51 81.28
REM (Fu et al., 2022) 2243 | 86.01 6499 | 3236 6235 8440 86.06 33.81 | 86.38 || 85.91 86.74 79.27

SEP (Chen et al., 2023) 6.63 | 8348 61.07 | 81.21 847 8497 89.56 74.14 | 90.74 || 90.86 90.76 80.98

0o = 1.0 LSP (Yu et al., 2022a) 13.14 | 84.56 80.39 | 40.25 73.63 7991 81.15 87.76 | 91.20 || 90.15 91.10 80.26
2= = AR (Sandoval-Segura et al., 2022) | 12.50 | 82.01 49.14 | 29.14 36.18 84.97 89.64 23.51 | 91.77 || 90.53 90.99 82.26
bh=1 | OPS (Wu et al., 2023) ‘ 22.03 | 948 64.02 | 19.58 1943 7733 71.62 86.46 | 88.95 || 88.10 88.78 81.40
Mean (except clean) ‘ 15.69 | 74.68 65.06 | 52.80 38.29 82.64 84.67 63.19 | 90.01 || 89.58 89.98 80.66

Table 3. Performance on CIFAR-100.

UEs | w/o | AT AA | ISS AVA. LFU | Ours

Clean|77.61|59.65 69.09|71.59 61.09 33.12|70.72

Table 4. Performance on 100-class
ImageNet-subset.

EM
TAP
REM
SEP
LSP

AR
OPS

12.30
13.44
16.80
4.66
291
2.71
12.56

59.07 42.89
57.91 35.10
59.34 50.12
57.93 27.77
58.93 53.28
58.77 26.77
7.28 36.78

61.91 61.09 29.54
57.33 60.47 29.90
58.13 60.90 31.06
57.76 59.80 32.03
53.06 52.17 34.61
56.60 60.33 30.09
54.45 44.24 30.40

68.79
65.54
68.52
64.02
67.73
63.73
65.10

UEs | w/o | AT AA | ISS | Ours

Clean |80.52|55.94 71.56|76.92|76.78

EM

1.08 |56.74 3.82 |72.44|74.80

TAP [12.56|55.36 71.38|73.24|76.56
REM | 2.54 |59.34 20.92|58.13|72.56
LSP | 2.50 [58.93 46.58(53.06|76.06

Mean | 9.34 |51.32 38.96|57.03 57.00 31.09|66.20

Mean | 4.67 |57.59 35.68|64.21|75.00

Table 5. Performance on unlearnable CIFAR-10

with larger bounds: £o, = 5o and £, = 4.0.

UEs | w/o | AT AA | ISS AVA. LFU | Ours

EM [10.09|84.02 49.23|83.62 85.61 78.78(91.06
TAP |18.45(83.46 52.92|84.98 89.43 22.23(90.55
REM (23.22(35.41 50.92|75.50 52.26 83.10|79.18
SEP |12.05(83.98 56.71|85.00 88.96 70.49(90.93
LSP [15.45|79.10 59.10|41.41 41.70 44.48|86.43

Mean|15.85|73.19 53.77|74.10 71.59 59.81|87.63
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Comparison of existing defenses & Ablation Study

Table 6. Comparison of existing defenses and our method. Perfor-
mance drop is on CIFAR-10 compared to clean one.

Characteristics | AT AA ISS AVA. LFU Ours
Pre-training purification X X v v v v
Training-phase interventions v v X X v X
No external clean data v v v X v v
Consistence on various UEs X X X v X v
UEs types that can be disentangled | 0/8 0/8 0/8 0/8 2/8  6/8

Mean performance drop (%) | |19.89 29.51 11.93 9.90 31.38 4.56

Table 7. Ablation study on the two-stage purification framework.

s1/s2 denote the 1st and 2nd stage. 11/i2/13 denote the 1st, 2nd
and 3th inference. ® is a method where, after s1, we execute an
operation same to 13, employing the D-VAE trained in s1.

Method |[NTGA EM TAP REM SEP LSP AR OPS |[Mean

@w/osl | 78.62 91.85 90.97 82.06 90.76 66.76 91.39 51.71|80.52
@w/o0i2in s2| 87.44 91.18 90.70 85.21 90.79 90.63 91.31 84.92|89.02
@w/os2 | 12.78 78.96 21.12 25.44 4.83 93.47 11.49 41.57|36.21
@w/oi3 | 13.87 80.77 23.02 23.84 5.29 93.58 14.23 66.39|40.12
® 80.98 83.37 84.14 83.48 83.32 83.91 84.22 84.06|83.44
Ours 89.21 91.42 90.48 86.38 90.74 91.20 91.77 88.95/90.01
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Partial poisoning and UEs detection & Increasing the amounts of UEs

Table 8. Performance of detecting UEs or increasing UEs with Table 9. Clean testing accuracy (%) of models trained on the poi-

various poisoning ratios on CIFAR-10. soned CIFAR-10 dataset with different poisoning ratios.
UEs ’ Detecting UEs H Increasing UEs Ratio ‘ Counter | EM TAP REM SEP LSP AR OPS
Attacks | Ratio | Acc. Recall Precision Fl-score || Ratio | Test Acc. 0.2 JPEG | 85.03 85.1 84.64 8534 8522 8531 85.12
' Ours 93.50 90.55 92.24 90.86 93.20 92.77 93.15
EM 0.2 0918 1.0 0.709 0.830 0.01 0.1009
LSP : 0.777 1.0 0.472 0.641 : 0.1558 04 JPEG | 85.31 85.60 84.90 85.22 85.34 85.29 84.89
' Ours 93.03 90.78 92.51 90.63 92.85 91.83 93.29
EM 0.939 1.0 0.869 0.930 0.1011
isP | % 10905 10 0807 0893 | 992 | (1633 06 | JPEG |8540 8492 8462 8506 84.26 8533 84.43
' Ours 93.02 9093 92.23 91.04 92.16 9141 92.13
EM 0.961 1.0 0.938 0.968 0.1229
isP | 90 (0941 0999 0912 0954 || 994 | (1405 0g | JPEG |8531 8534 8497 8506 8302 84.87 83.01
' Ours 92.26 91.10 90.86 91.79 92.16 91.70 92.16
EM 0.8 0.982 1.0 0.978 0.989 0.08 0.1001
LSP ® 10973 1.0 0.968 0.984 ' 0.1763
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Thanks for listening!
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