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Humans need to read the 
responses carefully in 
order to make decisions

😥
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Research Question 🤔
● How can we continue improving superhuman models?
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● Observation 1

○ LLMs can continue improving if provided good judgements on response quality
■ Exemplified by the success of iterative RLHF 

● Training a Helpful and Harmless Assistant with Reinforcement Learning from 
Human Feedback

● Llama 2: Open Foundation and Fine-Tuned Chat Models
● Observation 2

○ LLMs can provide good judgements on model generations
■ Exemplified by the line of works that use GPT-4 for evaluation

● Judging LLM-as-a-Judge with MT-Bench and Chatbot Arena
● AlpacaEval: An Automatic Evaluator of Instruction-following Models

https://arxiv.org/pdf/2204.05862.pdf
https://arxiv.org/pdf/2204.05862.pdf
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2306.05685
https://github.com/tatsu-lab/alpaca_eval


Then, how about combining them together? 

● Self-Rewarding LMs come to rescue! 
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What is machine learning?

Machine learning is a subfield of artificial intelligence (AI) that …



Our approach

● Self-rewarding LMs
○ Key idea: train a self-rewarding language model that

■ Has instruction following capability, i.e., given a user instruction, can respond to it 
appropriately

■ Has evaluation capability, i.e.,  given a user instruction, a response, can judge the quality 
of that response

Here is an instruction: Can you explain contrastive learning in machine 
learning in simple terms for someone new to the field of ML?

Here is the model response: <MODEL_RESPONSE>

Can you assign a score (0 to 5) to this response based on the 
following rubrics? <RUBRICS>

<CoT reasoning process>
Therefore, I would assign 3 out of 5 to this response.
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● Hopefully, the model can get better in terms of both instruction following and 
evaluation capabilities in each cycle

Empirically, we have shown that this is possible !



Experiments

● We start from a Llama2-70b (base) model, aiming to improve it through 
iterations of training.
○ Seed Data: We construct seed data for instruction following tasks and evaluation tasks using 

OpenAssistant.
○ Seed Model: We fine-tune Llama2-70b (base) using the SFT seed data (to give M1).
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○ Our model is continuously improved on instruction following tasks through iterative 

training.
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Experiments

● Reward modeling ability on OpenAssistant validation set
○ Our model is continuously improved on reward modeling tasks through iterative training.

Feel free to check out our paper or stop by our poster session (Tue 
Jul 23 Session 1) to see more results and analysis!



Thanks for Listening


