On the Role of Edge Dependency in Graph Generative Models

Sudhanshu Chanpuriya, Cameron Musco, Konstantinos Sotiropoulos, Charalampos Tsourakakis

Given a graph, we want to create a model that generates novel but similar graphs.

Why novel graphs?

- ► Test scalability & robustness of models and algorithms.
- ► Study networks under privacy.
- Drug discovery.

How similar?

- ▶ Match the input graph's structure and statistics as well as possible...
- ▶ But not to the point of reproducing the same edges!

Given a graph, we want to create a model that generates novel but similar graphs.

Why novel graphs?

- ▶ Test scalability & robustness of models and algorithms.
- Study networks under privacy.
- Drug discovery.

How similar?

- ▶ Match the input graph's structure and statistics as well as possible. . .
- ▶ But not to the point of reproducing the same edges!

Given a graph, we want to create a model that generates novel but similar graphs.

Why novel graphs?

- ▶ Test scalability & robustness of models and algorithms.
- Study networks under privacy.
- Drug discovery.

How similar?

- ▶ Match the input graph's structure and statistics as well as possible. . .
- ▶ But not to the point of reproducing the same edges!

Given a graph, we want to create a model that generates novel but similar graphs.

Why novel graphs?

- ▶ Test scalability & robustness of models and algorithms.
- Study networks under privacy.
- Drug discovery.

How similar?

- ▶ Match the input graph's structure and statistics as well as possible. . .
- ▶ But not to the point of reproducing the same edges!

Quantifying Graph Variety

To concretize *variety*, prior work defines the **overlap** of a random graph model G:

$$\mathsf{Ov}(\mathcal{G}) \coloneqq rac{\mathbb{E}_{G_1,G_2 \sim \mathcal{G}} | E(G_1) \cap E(G_2) |}{\mathbb{E}_{G \sim \mathcal{G}} | E(G) |}.$$

Quantifying Graph Variety

To concretize *variety*, prior work defines the **overlap** of a random graph model G:

$$\mathsf{Ov}(\mathcal{G}) \coloneqq rac{\mathbb{E}_{G_1,G_2 \sim \mathcal{G}} | E(G_1) \cap E(G_2) |}{\mathbb{E}_{G \sim \mathcal{G}} | E(G) |}.$$

Consider common **edge-independent** graph models: some probability matrix $P \in [0,1]^{n \times n}$ and the distribution \mathcal{G} on graphs where each edge is added independently with probability P_{ij} .

It is shown that edge-independent models with low overlap are inherently limited in representing dense subgraph structure: the max expected triangle count **shrinks cubically in overlap**!

Quantifying Graph Variety

To concretize *variety*, prior work defines the **overlap** of a random graph model G:

$$\mathsf{Ov}(\mathcal{G}) \coloneqq rac{\mathbb{E}_{G_1,G_2 \sim \mathcal{G}} | E(G_1) \cap E(G_2) |}{\mathbb{E}_{G \sim \mathcal{G}} | E(G) |}.$$

Consider common **edge-independent** graph models: some probability matrix $P \in [0,1]^{n \times n}$ and the distribution \mathcal{G} on graphs where each edge is added independently with probability P_{ij} .

It is shown that edge-independent models with low overlap are inherently limited in representing dense subgraph structure: the max expected triangle count **shrinks cubically in overlap**!

This is very constraining. In this work, we explore what happens beyond edge independence.

Edge Activation

Node Activation

Graph Activation

Edge Activation

Pr(-) = p

Node Activation

$$Pr(-) = p$$

Graph Activation

$$Pr(-) = p$$

Edge Activation

Overlap = p

Node Activation

Overlap = p

Graph Activation

Overlap = p

Edge Activation

Overlap =
$$p$$

 $Pr(\Delta) = p^3$

Node Activation

Overlap = p $Pr(\Delta) = p^{1.5}$

Graph Activation

Overlap =
$$p$$

 $Pr(\Delta) = p^1$

We introduce the *node independent* model: Each node is given an independent distribution over representation vectors.

Definition (Node Independent Graph Model)

We introduce the *node independent* model: Each node is given an independent distribution over representation vectors.

Definition (Node Independent Graph Model)

We introduce the *node independent* model: Each node is given an independent distribution over representation vectors.

Definition (Node Independent Graph Model)

We introduce the *node independent* model: Each node is given an independent distribution over representation vectors.

Definition (Node Independent Graph Model)

Bounds for Edge Dependent Graph Models

We can prove bounds on the capabilities of models with edge dependency:

Model	Upper Bound on Δ/n^3	Examples
Edge Independent Node Independent Fully Dependent	$ ext{Ov}(\mathcal{A})^{3.0} ext{Ov}(\mathcal{A})^{1.5} ext{Ov}(\mathcal{A})^{1.0}$	SBM, NetGAN VGAE GraphVAE, ERGM

Note that these bounds match the {edge/node/graph} activation random graph families. This means the above bounds are tight!

Bounds for Edge Dependent Graph Models

We can prove bounds on the capabilities of models with edge dependency:

Model	Upper Bound on Δ/n^3	Examples
Edge Independent Node Independent Fully Dependent	$egin{array}{l} Ov(\mathcal{A})^{3.0} \ Ov(\mathcal{A})^{1.5} \ Ov(\mathcal{A})^{1.0} \end{array}$	SBM, NetGAN VGAE GraphVAE, ERGM

Note that these bounds match the $\{edge/node/graph\}$ activation random graph families. This means the above bounds are tight!

Bounds for Edge Dependent Graph Models

We can prove bounds on the capabilities of models with edge dependency:

Model	Upper Bound on Δ/n^3	Examples
Edge Independent Node Independent	$\operatorname{Ov}(\mathcal{A})^{3.0}$ $\operatorname{Ov}(\mathcal{A})^{1.5}$	SBM, NetGAN VGAE
Fully Dependent	$Ov(\mathcal{A})^{1.0}$	GraphVAE, ERGM

Note that these bounds match the {edge/node/graph} activation random graph families. This means the above bounds are tight!

Empirical Contributions

We further explore empirical implications of our theoretical work:

- ▶ We motivate evaluation of graph generative models using not only error on matching graph statistics, but also overlap.
- ▶ We introduce three simple baselines inspired by {edge/node/graph} activation.
- ▶ We compare our baselines against modern deep-learning based models, and we find they are often competitive at matching graph statistics at the same levels of overlap.

On the Role of Edge Dependency in Graph Generative Models

Sudhanshu Chanpuriya, Cameron Musco, Konstantinos Sotiropoulos, Charalampos Tsourakakis