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Graph Generative Models

Given a graph, we want to create a model that generates novel but similar graphs.

Why novel graphs?

▶ Test scalability & robustness of models and algorithms.

▶ Study networks under privacy.

▶ Drug discovery.

How similar?

▶ Match the input graph’s structure and statistics as well as possible. . .

▶ But not to the point of reproducing the same edges!

How can we analyze the inherent trade-off between expressiveness and variety?
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Quantifying Graph Variety

To concretize variety, prior work defines the overlap of a random graph model G:

Ov(G) := EG1,G2∼G |E (G1) ∩ E (G2)|
EG∼G |E (G )|

.
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Consider common edge-independent graph models: some probability matrix P ∈ [0, 1]n×n and
the distribution G on graphs where each edge is added independently with probability Pij .

It is shown that edge-independent models with low overlap are inherently limited in representing
dense subgraph structure: the max expected triangle count shrinks cubically in overlap!

This is very constraining. In this work, we explore what happens beyond edge independence.
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A Nested Hierarchy of Edge Dependence

We introduce the node independent model: Each node is given an independent distribution over
representation vectors.

Definition (Node Independent Graph Model)

Distribution over A = σ(XY⊤) for some random node representation matrices X and Y ,
where [X ;Y ]’s rows are mutually independent.
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Bounds for Edge Dependent Graph Models

We can prove bounds on the capabilities of models with edge dependency:

Model Upper Bound on ∆/n3

Edge Independent Ov(A)3.0

Node Independent Ov(A)1.5

Fully Dependent Ov(A)1.0

Examples

SBM, NetGAN
VGAE

GraphVAE, ERGM

Note that these bounds match the {edge/node/graph} activation random graph families.
This means the above bounds are tight!
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Empirical Contributions

We further explore empirical implications of our theoretical work:

▶ We motivate evaluation of graph generative models using not only error on matching
graph statistics, but also overlap.

▶ We introduce three simple baselines inspired by {edge/node/graph} activation.

▶ We compare our baselines against modern deep-learning based models, and we find
they are often competitive at matching graph statistics at the same levels of overlap.
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