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Motivation: Emergency Department (ED) Crowding

A crucial factor affecting throughput is the laboratory testing process, where patients often face 
lengthy waits for tests to be ordered and completed, delaying diagnosis and treatment decisions.



MIMIC-ED-Assist Benchmark Objectives

● Critical outcome: if the patient is transferred to ICU or there is an inpatient 
mortality. Identifying patients with critical outcome allows clinicians to prioritize 
treatment and resources for them.

● Lengthened ED Stay: if the length of stay (LOS) exceeds 24 hours. Lengthened ED 
stay is typically correlated with the complexity of a patient’s case. 



MIMIC-ED-Assist Benchmark Curation

Data Preprocessing: Exclude patients that miss triage 
results and perform same tests multiple times.

Triage Feature Selection: Include demographics, 
medical history, vital signs, and chief complaint.

Laboratory Test Selection: Categorize 67 available 
laboratory tests in ED into 12 distinct groups.



ED-Copilot for Diagnostic Assistance

We proposes a ED-Copilot system to offer (time) cost-effective diagnostic assistance by 
selecting informative tests and improving outcome for high-risk patients.



Preliminary

● As laboratory results and triage information are stored in a tabular format, we first 
linearize this information for PLM via textual template: 

test name : test value | test name : test value ……
●

● Apply PLM to obtain hidden representations for the text sequence and use two MLP on 
tokens [EOS] to predict the next laboratory group and outcome.



Methodology (Stage 1)

Supervised Fine-tuning: To predict the next laboratory group and final outcome, we use a 
standard auto-regressive loss function. ED clinicians can use the fine-tuned PLM to 
suggest a sequence of laboratory groups and predict outcomes.



Methodology (Stage 2)

Reinforcement Learning: We introduce the notion of time-cost effectiveness to the 
fine-tuned PLM  by selecting laboratory groups that maximize predictive accuracy while 
minimizing time-cost.



Experiments: Overall Performance

Sensitivity and specificity are true positive and true negative rates. We report results 
averaged over three random seeds alongside standard deviations.



Experiments: Ablation Study

● Linearization Technique 

● Feature Importance

● PLM Backbone



Experiments: Hyperparameter-control

● (α, β) control the trade-off between prediction accuracy and time-cost in training. 

● Increasing α trades off sensitivity over specificity, while increasing β trades off 
F1-score over time-cost.



Experiments: Personalized Diagnostic Assistance

● We plot both the fraction of patients receiving each group of tests and the fraction of 
patients predicted by ED-Copilot. After the two most common groups (CHEM and 
CBC), more than half of the patients performed some other tests.

● On average each patient actually performed 4.7 groups and cost-effective ED-Copilot 
suggested 2.4 groups.



Experiments: Personalized Diagnostic Assistance

● We partition patients into three cohorts based on the rarity of laboratory groups they were 
administered to highlight the benefit of personalization from ED-Copilot.

● The middle and rare cohorts have higher severity (positive cases), ED-Copilot achieves 
significantly higher sensitivity than other methods.

The total number of positive (critical)/negative cases and positive rate is shown in parentheses.



Experiments: Unrestricted Lab Group Suggestion

● Since MIMIC-ED-Assist is an offline retrospective benchmark, we restrict ED-Copilot 
during training to only select laboratory groups that patients have received.

● Without restriction to select observed laboratory tests (imputation by zero) for online 
evaluation, ED-Copilot achieved reasonable performance as the maximum allowed time 
and actual laboratory group increase.



Conclusion

● We work with ED clinicians to develop MIMIC-ED-Assist, a publicly accessible benchmark 
designed to advance research in ED diagnostic assistance.

● We develop ED-Copilot, an cost-effective RL-trained language model that enhances ED 
workflow by suggesting informative laboratory groups, flagging high-risk patients and 
minimizing waiting time.

● Experiments demonstrate that ED-Copilot improves accuracy over state-of-the-art classifier 
while reducing ED wait-time by 50%. 


