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Introduction }IE UP/A\I

® Domain incremental learning (DIL) is a subset of continual learning that
addresses the challenge of acquiring knowledge from new domains or tasks in an
incremental manner.

® Catastrophic forgetting, phenomenon wherein the network forgets information
about previous tasks, makes learning new domains challenging.

e Though different approaches like experience replay, regularization, and
architecture expansion have been proposed to mitigate catastrophic forgetting,
they don’t explicitly address representation drift caused by the weight updates.



Motivation NEUKA

® Representation drift at task boundaries are caused by the disruption of clustered
representations corresponding to previously learned tasks while learning a new
task/domain’.

® Representation drift is directly correlated with performance drop on old tasks
and confributes significantly to catastrophic forgetting and it remains
unexplored in DIL literature.

® To address this, we suggest a three-stage training process to gradually adapt the
learning model to new domain sample representations.

Caccia, Lucas, et al. "New insights on reducing abrupt representation change in online continual learning." arXiv preprint arXiv:2104.05025 (2021). 3
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Experience replay has been shown to effectively mitigate catastrophic forgetting. However, it lacks
mechanism to explicitly address drift in representations at task boundaries.

We adopt a two-classifier architecture which learns on the first task similar to other experience
replay methods* using cross-entropy loss (L,) and consistency loss on predicted logits (L,).

Buzzega, Pietro, et al. "Dark experience for general continual learning: a strong, simple baseline." Advances in neural information processing systems 33 (2020): 15920-15930. 4
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DARE proposes a novel three-stage training process (Divergence, Adaptation, and REfinement) to
adapt the representations of new domain samples into the feature space spanned by the old domains

while learning new domains.

The ‘Divergence’ stage aims to tighten the decision boundaries of the two classifiers around the
representation space spanned by the samples of already learned tasks. This involves maximizing the

divergence between the two classifiers (L,). 5
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Then, the ‘Adaptation’ stage aims to adapt the encoder g so that the representations of the new task
samples are adapted within the subspace spanned by the already learned representations of previous
tasks.

The goal is to learn a consolidated representation space that supports the samples of the new tasks
while remaining close to the optimal representations for the previously learned tasks. This is achieved
by freezing the classifiers, and minimizing the discrepancy between their predictions (L ). 6
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‘Refinement’ stage aims to refine the encoder and classifiers to effectively consolidate the new task
information with the previously learned knowledge such that the consolidated representation space
and decision boundary perform well on all the tasks.

We iterate through the three stages multiple times while learning each task to consolidate the
information in a structured manner.
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Reservoir Sampling* is a popular strategy to sample data points from tasks using uniform
distribution and store them in the memory buffer.

There is a nontrivial probability that logits are stored in the buffer at the very beginning or
end of learning a task, leading to suboptimal performance.

To improve this, we propose the “Intermediary Reservoir Sampling (IRS)” strategy, which
employs a normal distribution over the learning trajectory of each task. The mean of the
distribution is set to the infermediate stages, and the buffer is populated accordingly.

This incentivizes the storage of logits with more “dark knowledge” about the current task,
which in turn propagates the knowledge across future tasks through distillation.

Vitter, Jeffrey S. "Random sampling with a reservoir." ACM Transactions on Mathematical Software (TOMS) 11.1 (1985): 37-57. 8



Experimental Results

Buffer Method iCIFAR-20 DN4IL

Size #P | BWT 1 Last Accuracy T | #P | BWT 1 Last Accuracy 1

Joint 11.18 - 79.61+0.13 11.22 - 59.93+1.07

) SGD 11.18 -43.72+107 49.40+053 11.22  -42.42+000 21.63+042

ER 11.18 -42.03+027 50.23 1094 11.22  -36.11+026 24.24 1034

DER++ 11.18 -40.63+0.49 52.68+1.10 11.22  -29.05+135 28.08+0.99

50 DARE 11.19 -34.98+152 53.66-0.59 11.27  -22.98+0.62 32.32+053

CLS-ER | 33.57 - 63.01 050 33.81 - 37.90+1.15

DUCA 33.57 - 61.48+025 33.81 - 38.91+212

DARE++ | 22.38 - 62.43+037 22.54 - 40.51+0.17

ER 11.18 -41.88+059 50.85+073 11.22  -35.28+120 24.67 +05s6

DER++ 11.18 -37.33+t147 55.32+0.69 11.22  -27.78+0.90 32.06+1.05

100 DARE 11.19  -33.20+0.09 56.01+022 11.27  -19.37+043 37.16+062

CLS-ER | 33.57 - 64.31+043 33.81 - 39.30+074

DUCA 33.57 - 62.59-+027 33.81 - 43.09-+0.14

DARE++ | 22.38 - 64.59+024 22.54 - 43.27 1037

ER 11.18 -38.98+074 52.57+079 11.22  -32.35+0s51 27.45+094

DER++ 11.18 -33.61+064 58.39+038 11.22  -23.991074 35.74+0.67

200 DARE 11.19  -30.22+154 58.53+125 11.27  -14.69+0.19 40.59+073

CLS-ER | 33.57 - 66.40-0s1 33.81 - 41.70+1.41

DUCA 33.57 - 66.04+036 33.81 - 44.45 1018

DARE++ | 22.38 - 65.79+092 22.54 - 44.11+0.98

NEUKA

DARE archives:

consistent improvements in
last accuracy and BWT
across different buffer sizes

DARE++, which includes an
EMA model, is more
memory  efficient  than
CLS-ER and DUCA while
being competitive

DARE and DARE++
outperform their
counterparts with smaller
buffers



Intermediary Reservoir Sampling Strategy

NEUKA

Reservoir

Metric Method X IRS
Sampling
BWT DER++ | -23.99+t074 -22.69+3.71
DARE -15.77+069 -14.69+0.19
LastAssinaey DER++ | 35.74+0.67 37.60+1.21
DARE 36.17+038  40.59+0.73

e IRS helps the method achieve better last accuracy and backward transfer.

e Storing the samples in the intermediate stages helps store more information about the task

being learned in the buffer.

e Replaying samples stored in such manner helps the model consolidate more knowledge

about old tasks.

10
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Left: Epoch-wise accuracy on Task 1 samples, while learning future tasks (shaded regions indicate new tasks). Right: Iteration-wise
drifts for buffered samples for CL methods trained with a buffer size of 50. It is evident that DARE effectively reduces representation
drift compared to other methods.
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Task recency bias and model calibration analyses of different CL approaches learned with buffer size 200. Left: Logit norm
analysis shows that DARE predicts logits with magnitudes smaller than DER++ (less overconfident) for recent task samples.

Right: DARE has a lower calibration error compared to DER++ on samples belonging to different tasks

12



Conclusions NEUKA

® We proposed a novel method to address representation drift in domain-incremental
learning.

® Our proposed method, DARE

o outperforms existing methods across different DIL benchmarks

o mitigates representation drift at task boundaries and effectively assimilates new
domain information into the feature space of old task samples

o exhibits efficient memory and computational usage

® The inclusion of an effective buffer sampling strategy (IRS) allows the preservation of the
knowledge learned on old tasks.

13
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