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Want to understand how underlying data generating mechanisms change over time
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Goal: recover change point locations {7,},_;" from {x;,y, and estimate signals {f#"}7"
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Scaling regime: n,p — oo, n/p — fixed constant o
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penalised maximum np — 0o

likelihood e.g., LASSO

[Zhang et al. 2015, Leonardi and Buhlmann 2016, Lee et al. 2016, Rinaldo et al. 2021]
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Sparse prior: penalised maximum likelihood + partitioning
[Zhang et al. 2015, Leonardi and Buhlmann 2016, Lee et al. 2016, Rinaldo et al. 2021]
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Sparse prior: penalised maximum likelihood + partitioning
[Zhang et al. 2015, Leonardi and Buhlmann 2016, Lee et al. 2016, Rinaldo et al. 2021]

Sparse difference prior: complementary sketching
[Wang et al. 2021, Gao and Wang 2022]

Limitations: We address these limitations via:
o Restricted to certain signal priors Approximate Message Passing (AMP)
e Provide point estimates, without uncertainty ‘Donoho et al. 2009, Bayati and Montanari 2011, Rangan
T . 92011, Berthier et al. 2019 Celentano and Montanari 2022,
quantification Feng et al. 2022, Gerbelot and Berthier 2023]
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Aside: AMP for sparse recovery

iid |

entries of f ~ pj;
y=Xp+e id |

entries of X ~ N(0,1/n) |

modified residual: ' =y — X" + btrf—l

signal estimate: gl =4 (ﬁ’ + X ' Ht)

thres
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Aside: AMP for sparse recovery

iid |

entries of f ~ pp ;
Y = Xﬂ TE entries of X < N(,1/n) |

modified residual: ' =y — X" + btrf—l

signal estimate: gl =4 (ﬁ’ + X ' Ht)

thres

distribution of entries of

B+ X"r —p — N(O, )
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AMP for change point inference

T T
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Bayes-optimal
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infer change points
; iid
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AMP for change point inference

T T
Signal1s B = |p0 ... p®»

| b

g’ explicitly uses
prior info about
change points 7 ~ p; |

produce residual R

infer change points

, Proposition (informal)

dy ('19 ﬁ((")t’y))/n =

~ pp and define O := XB.

— B!

Bt+1 — XTRt

(B |

produce signal estimate B!

: ét :ft

(Hausdorft distance dy)

“y1,6 [dH (n, 1(Ovg + GL, 5(0O, ﬂ)))/n]

Similar result in terms of posterior p( | @', y)

6/10



Hausdorff distance

Hausdorff distance
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Comparison with other algorithms
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Computational cost: LASSO+partitioning: O(n“p?), O(n°)
AMP: O(np)
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Ground truth
signals:

Estimated signals
after 10 AMP

1terations:

Experiments on real images
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Summary

First work to apply AMP algorithms to change point inference:

3 { |
12.569

« Bayesian approach to choosing denoisers g/, f’

« Near-optimal computational complexity: O(np)

e Lixact asymptotic performance ouarantees (e.g., Hausdoril distance, posterior)

Future work:
oeneralised linear models,
beyond 1d Gaussian X matrices,

online change point detection...
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Hausdorff distance

sup inf d(zx,
xE)Iz' yeYy ( y)

For X, Y C metric space (M, d),

dy(X,Y) := max { supd(x, Y), sup d(X, y) } :

xeX yeyY

where d(a, B) := inf d(a, b)
beB

L

sup inf d(z,
yey reX y)



