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Want to understand how underlying data generating mechanisms change over time

Stock prices

Vast amounts of  time-ordered, non-stationary data

Gene expression
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For , 

 

i = 1, 2, …, n

xi, β ∈ ℝp
yi = x⊤

i β+εi
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For , 

 

i = 1, 2, …, n

xi, β(l) ∈ ℝp
yi = x⊤

i β(1)+εi
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Scaling regime: , n, p → ∞ n/p → fixed constant δ

2/10

Goal: recover change point locations  from , and estimate signals  {ηl}L*−1
l=1 {xi , yi}n

i=1 {β(l)}L*
l=1

For , 

 

i = 1, 2, …, n

xi, β(l) ∈ ℝp
yi = x⊤

i β(1)+εi

yi = x⊤
i β(2)+εi

i = η1

i = ηL*−1⋮

η := [η1, …, ηL*−1]

 unknown constant,

given 

L*
L* < L
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p ≪ n

̂η1, …, ̂ηL*−1 = arg min
L*

∑
l=1

min
β̃∈ℝp

η̃l

∑
i=η̃l−1+1

(yi − x⊤
i β̃)

2

η̃1 ≤ η̃2 ≤ … ≤ η̃L*−1

Residual Sum of  Squares search through 
different partitioning



p ≪ n
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̂η1, …, ̂ηL*−1 = arg min
L*

∑
l=1

min
β̃∈ℝp

η̃l

∑
i=η̃l−1+1

(yi − x⊤
i β̃)

2

η̃1 ≤ η̃2 ≤ … ≤ η̃L*−1

Residual Sum of  Squares search through 
different partitioning penalised maximum 

likelihood e.g., LASSO
n, p → ∞

[Zhang et al. 2015, Leonardi and Bühlmann 2016, Lee et al. 2016, Rinaldo et al. 2021]



Sparse prior: penalised maximum likelihood + partitioning

[Zhang et al. 2015, Leonardi and Bühlmann 2016, Lee et al. 2016, Rinaldo et al. 2021]
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• Restricted to certain signal priors


• Provide point estimates, without uncertainty 
quantification
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Sparse prior: penalised maximum likelihood + partitioning


Sparse difference prior: complementary sketching

[Wang et al. 2021, Gao and Wang 2022]

[Zhang et al. 2015, Leonardi and Bühlmann 2016, Lee et al. 2016, Rinaldo et al. 2021]

We address these limitations via:

[Donoho et al. 2009, Bayati and Montanari 2011, Rangan 
2011, Berthier et al. 2019, Celentano and Montanari 2022, 
Feng et al. 2022, Gerbelot and Berthier 2023]

Approximate Message Passing (AMP)

Limitations:



Aside: AMP for sparse recovery

entries of β ∼ pβ̄y = Xβ + ε
entries of  X ∼ N(0,1/n)

iid

iid
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rt = y − Xβt +btrt−1

βt+1 = η (βt + X⊤rt; θt)
modified residual:

signal estimate: soft 
thres

βt + X⊤rt



       
rt = y − Xβt +btrt−1

βt+1 = η (βt + X⊤rt; θt)
modified residual:

signal estimate: soft 
thres

βt + X⊤rt

entries of β ∼ pβ̄
iid

y = Xβ + ε
entries of  X ∼ N(0,1/n)iid

Aside: AMP for sparse recovery

→ N(0, κt)
distribution of  entries of  

 βt + X⊤rt −β
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deterministic 
scalar recursion

κt

t

debias term



AMP for change point inference
Signal is   and define .B =

↑ ↑
β(1) … β(L)

↓ ↓
∼ pB̄ Θ := XB

Theorem (informal) Bt ≃ B+Gt
B

Θt ≃ Θ+Gt
Θ

ℙ

ℙ iid rows of Gt
Θ ∼ N(0, κt

Θ)

iidrows of Gt
B ∼ N(0, κt

B)

Θt = XB̂t − Rt−1 (Ft)⊤ Bt+1 = X⊤Rt − B̂t (Ct)⊤

Rt = gt (Θt, y) B̂t = f t (Bt)

infer change points
produce residual Rt produce signal estimate B̂t
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 explicitly uses 
prior info about 
change points 

gt

η ∼ pη̄
f t (Bt) = 𝔼 [B̄ | B̄+Gt

B = Bt]
Bayes-optimal



AMP for change point inference

Θt = XB̂t − Rt−1 (Ft)⊤ Bt+1 = X⊤Rt − B̂t (Ct)⊤

Rt = gt (Θt, y) B̂t = f t (Bt)

infer change points

Proposition (informal)

produce residual Rt produce signal estimate B̂t

dH (η, ̂η(Θt, y))/n ≃ 𝔼Vt
Θ,Θ̄ [dH (η, ̂η(Θ̄νt

Θ + Gt
Θ, ȳ(Θ̄, η)))/n]ℙ

(Hausdorff  distance )dH

Similar result in terms of  posterior p(η |Θt, y)

Signal is   and define .B =
↑ ↑

β(1) … β(L)

↓ ↓
∼ pB̄ Θ := XB
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 explicitly uses 
prior info about 
change points 

gt

η ∼ pη̄



Simulation results
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Posterior

2 chgpts at [0.2n, 0.8n]

2 chgpts at [0.3n, 0.7n]

Hausdorff distance



Comparison with other algorithms
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LASSO+partitioning: , 

AMP: 

O(n2p2) O(n3)
O(np)

Computational cost:



Experiments on real images

Ground truth 
signals:

Estimated signals 
after 10 AMP 

iterations:

β(1) β(2) β(3)
Posterior:
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Summary

• Bayesian approach to choosing denoisers 


• Near-optimal computational complexity: 


• Exact asymptotic performance guarantees (e.g., Hausdorff  distance, posterior)

gt, f t

O(np)
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Future work: 

generalised linear models,

beyond iid Gaussian  matrices,

online change point detection…

X

First work to apply AMP algorithms to change point inference:

   ( , )n, p → ∞ n/p → δ



Hausdorff distance

For ,


,


where 

X, Y ⊂ metric space (M, d)

dH(X, Y ) := max {sup
x∈X

d(x, Y ), sup
y∈Y

d(X, y)}
d(a, B) := inf

b∈B
d(a, b)


