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« Antibodies are central proteins in adaptive immune responses,
responsible for protecting against viruses and other pathogens.

« The framework regions of antibodies exhibit high conservation, their
complementarity-determining regions (CDRs) are variable, mainly
determining the binding affinity and specificity to antigens

« Therefore, the primary objective of rational antibody design is to optimize
the CDRs for effective binding to the targeted antigen.
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» The scarcity of available antibody-antigen complex
data poses a significant challenge for these
diffusion-based generative models.

* For the case of antibody design, the widely-used
SAbDab database of antibody-antigen complexes
comprises only thousands of non-redundant
samples, leading to a high risk of overfitting.
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 We develop AbX, a new score-based diffusion model that is guided by
evolutionary, physical, and geometric constraints.

» These constraints serve as sequence and structure priors, narrowing
the exploration to a more plausible space and mitigating the risk of
overfitting.
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« Evolutionary Constraints:

Recognizing the superiority of general protein language models in enhancing the evolutionary
plausibility of antibody designs. We have integrated ESM-2 (3B) as our evolutionary constraint in
the score network.

 Geomtric Constraints:

The geometric constraint is specifically formulated to accurately depict the rigidity and flexibility
inherent in antibody structures. For the CDRs structures, we incorporate the FAPE loss, distogram
loss and IDDT-Ca loss, aiming to generate more rational structure. The geometric constraint is

thus defined as:
£Geometric - EFAPE + 0-5£distogram + O-]-‘CIDDT-

* Physical Constraints:
To guide the generation of antibodies with high binding affinity to target antigens, we included a
structural violation loss to prevent violations in covalent peptide bond angles and lengths among
neighboring residues, and a van der Waals loss to approximate the van der Waals forces within
neighboring non-bonded backbone atoms.

Lphysical = 0.03Lyaw + 0.03Lyiolation-
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- Experiment 1: Sequence and Structure Co-design
— Dataset: RAbD test dataset

— Conclusion
» AbX outperforms other methods in each metric.

» AbX exhibits a significant improvement in IMP and Plausibility, indicating the
efficacy of the introduced constraints in generating more plausible
antibodies capable of binding to target antigens.

Results

Table 2. Evaluation of de novo designed CDRs across each CDR in RAbD test dataset.

Table 1. Evaluation of de novo designed CDRs in RAbD test CDR  Method  AAR(%)1T RMSD(A)] CDR  Method AAR(%)T RMSD(A) ]|
dataset. DiffAb 70.01 0.88 DiffAb 61.07 0.85
Metrics DiffAb dyMEAN AbX H1 dyMEAN 75.71 1.09 L1 dyMEAN 75.55 1.03
AbX 80.72 0.85 AbX 79.37 0.78
IMP(%)t 12.07 0.00 18.64 DiffAb 3852 0.78 DiffAb 58.58 0.55
Plau51b111ty T -1.38 -1.21 -1.01 H2 dyMEAN 68.48 1.11 L2 dyMEAN 83.09 0.66
Loop AART  21.25 2225  30.80 AbX 70.73 0.76 AbX 84.53 0.45
Loop RMSD/ 345 514 3.24 DiffAb 28.05 2.86 DiffAb 47.57 1.39
H3 dyMEAN 37.50 3.88 L3 dyMEAN 52.11 1.44
AbX 45.18 2.50 AbX 65.92 1.18
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- Experiment 2: Antibody Optimization
— Dataset: DiffAb test dataset

— Conclusion

» The antibodies optimized by AbX consistently exhibit higher binding affinity
than those optimized by DiffAb across different noise scales. This highlights
the superior efficacy of AbX in antibody optimization.
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Figure 3. Binding energy of designed antibody-antigen complex in

different noise scales. Binding energy is used as an approximation

for binding affinity in antibody-antigen interactions.
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- Experiment 3: Ablation Studies
— Dataset: DiffAb test dataset

— Conclusion

« ltillustrates that the inclusion of geometric, physical, and evolutionary
constraints significantly contributes to the enhanced performance of AbX.

Table 4. Ablation studies for AbX in DiffAb test dataset.

Geometric Physical Evolutionary s H3 H3
Constraint Constraint Constraint IME' (%)  Flawsibility AAR(%) RMSD

v v v 54.82 -0.67 49.17 2.68
46.50 -0.77 45.32 319

v V4 X
X X o 19.36 -0.70 53.21 3.62
"4 X v 52.02 -0.69 53.84 2.86
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- Experiment 4: Case Studies on Trajectories of Antibody
Design
— Case: 5TLJ

— Conclusion
* The binding energy decreases progressively during the inference process
for all models.
» AbX consistently yields antibodies with higher evolutionary plausibility.
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- Experiment 4: Case Studies on Trajectories of Antibody
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Figure S2. Visualization of generated antibody-antigen complexes during the generative process. The heavy, light, and antigen chains of

CDRs in Heavy Chain
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CDRs in Light Chain
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the antibody-antigen complex (PID:5TLJ) are denoted as D, C, and X.
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