
Understanding MLP-Mixer 
as a Wide and Sparse MLP

Tomohiro Hayase
Cluster Metaverse Lab

Ryo Karakida
AIST



Abstract



In this work, we reveal that sparseness is a key mechanism underlying
the MLP-Mixer [I. Tolstikhin, et al., 2021].



First, the Mixers have an effective expression as a wider MLP with Kronecker-
product weights, clarifying that the Mixers efficiently embody several sparseness 
properties explored in deep learning.



In the case of linear layers, the effective expression elucidates an implicit sparse 
regularization caused by the model architecture,



and a hidden relation to Monarch matrices[T. Dao, et al., 2022], which is also 
known as another form of sparse parameterization.



For general cases, we empirically demonstrate quantitative similarities between 
the Mixer and unstructured sparse-weight MLPs, such as the CKA (centered 
kernel alignment) similarity.



Following a guiding principle proposed by Golubeva, Neyshabur, and Gur-Ari 
(2021), which fixes the number of connections and increases the width and 
sparsity, the Mixers can demonstrate improved performance.



Theory



The blocks of MLP-Mixer are written by right and left multiplication of weights. To 
know the similarity with sparse weight matrices, we vectorize feature tensors. In 
that case, right or left multiplication is equal to a block sparse matrix.



We introduce a commutation matrix, which is a representation of the transpose 
operator of feature tensors. The commutation matrix also commutes with the 
activation. Note that the right and left multiplication of a weight matrix is 
exchanged by the commutation matrix.



Then the mixer layer is a composition of the commutation matrix and the 
Kronecker product.



In the case of linear activation, the mixing layer is equal to having a sparse weight 
of a Kronecker product of weights. Then, L2 regularization on mixing layers 
implicitly induces L1 regularization.



Moreover, the representation of the mixing layer is equal to the Monarch Matrix 
except for the weight sharing. In fact, they show similarity in the test error.



In the general case, there is a guiding hypothesis by Golubeva, Neyshabur, and 
Gur-Ari (2021): increasing the width up to a certain point, while keeping the 
number of weight parameters fixed, results in improved test accuracy. In our case, 
consider the average number of weight connections per layer:



Following the guiding principle, which fixes the number of connections and 
increases the width and sparsity, in fact, SW-MLP and MLP show a similar 
tendency in accuracy with respect to increasing sparseness.



In much wider cases, to continue comparing MLP-Mixer and sparse-weight MLP, 
we need an alternative to static Mask MLP because of its huge computational 
costs, memory requirements, and ill behavior on the spectrum. Thus we introduce 
the alternative to SW-MLP, called the random permuted (RP) Mixer.



Under the averaged connections are fixed, results in improved test accuracy for 
SW-MLP, MLP-Mixer, and RP-Mixer. They share similar tendency in performance.
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Notably, in the case of Mixers, the maximum width is achieved when  C=S.



In experiments, the test errors are lowest around the points S=C. 



This work provides novel insight into how the MLP-Mixer effectively behaves as a 
wide MLP with sparse weights. The analysis in the linear activation case 
elucidates the implicit sparse regularization through the Kronecker-product 
expression and reveals a connection to Monarch matrices.

Conclusion: Novel insight into how the MLP-Mixer effectively behaves as a wide 
MLP with sparse weights.

1. Linear Case Results
a. Implicit L1 regularization.
b. Similarity to Monarch Matrices without weight sharing.



The SW-MLP and Mixers exhibit quantitative similarity in performance trends, 
verifying that sparsity is the key mechanism underlying the MLP-Mixer. 

Conclusion: Novel insight into how the MLP-Mixer effectively behaves as a wide 
MLP with sparse weights.

1. Linear Case Results
a. Implicit L1 regularization.
b. Similarity to Monarch Matrices without weight sharing.

2. General Case Results
a. Similarity in features (CKA).
b. Similarity in a performance trend.
c. A foundation for exploring designs of architectures. (Maximizing the effective width.)



Maximizing the effective width and sparsity leads to improved performance. We 
expect that this will serve as a foundation for exploring further designs of 
MLP-based architectures.

Conclusion: Novel insight into how the MLP-Mixer effectively behaves as a wide 
MLP with sparse weights.

1. Linear Case Results
a. Implicit L1 regularization.
b. Similarity to Monarch Matrices without weight sharing.

2. General Case Results
a. Similarity in features (CKA).
b. Similarity in a performance trend.
c. A foundation for exploring designs of architectures. (Maximizing the effective width.)


