

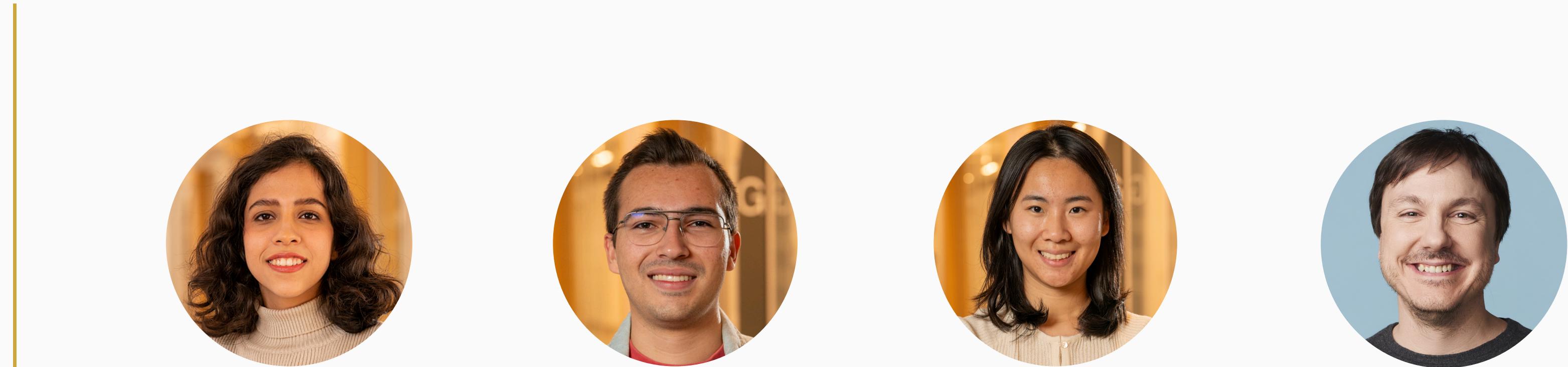
On PI controllers for updating Lagrange multipliers in constrained optimization

Today's agenda

- ▶ Constrained optimization
- ▶ Dynamics of gradient descent-ascent
- ▶ The ν PI controller
- ▶ Applications of ν PI in constrained optimization

"If I had been rich, I probably would not have devoted myself to mathematics."

Collaborators



Motahareh
Sohrabi*

Juan
Ramirez*

Helen
Zhang

Simon
Lacoste-Julien

Constrained optimization

minimize $f(x)$
 x

subject to $g(x) \leq \mathbf{0}_m$ and $h(x) = \mathbf{0}_n$

Feasible set

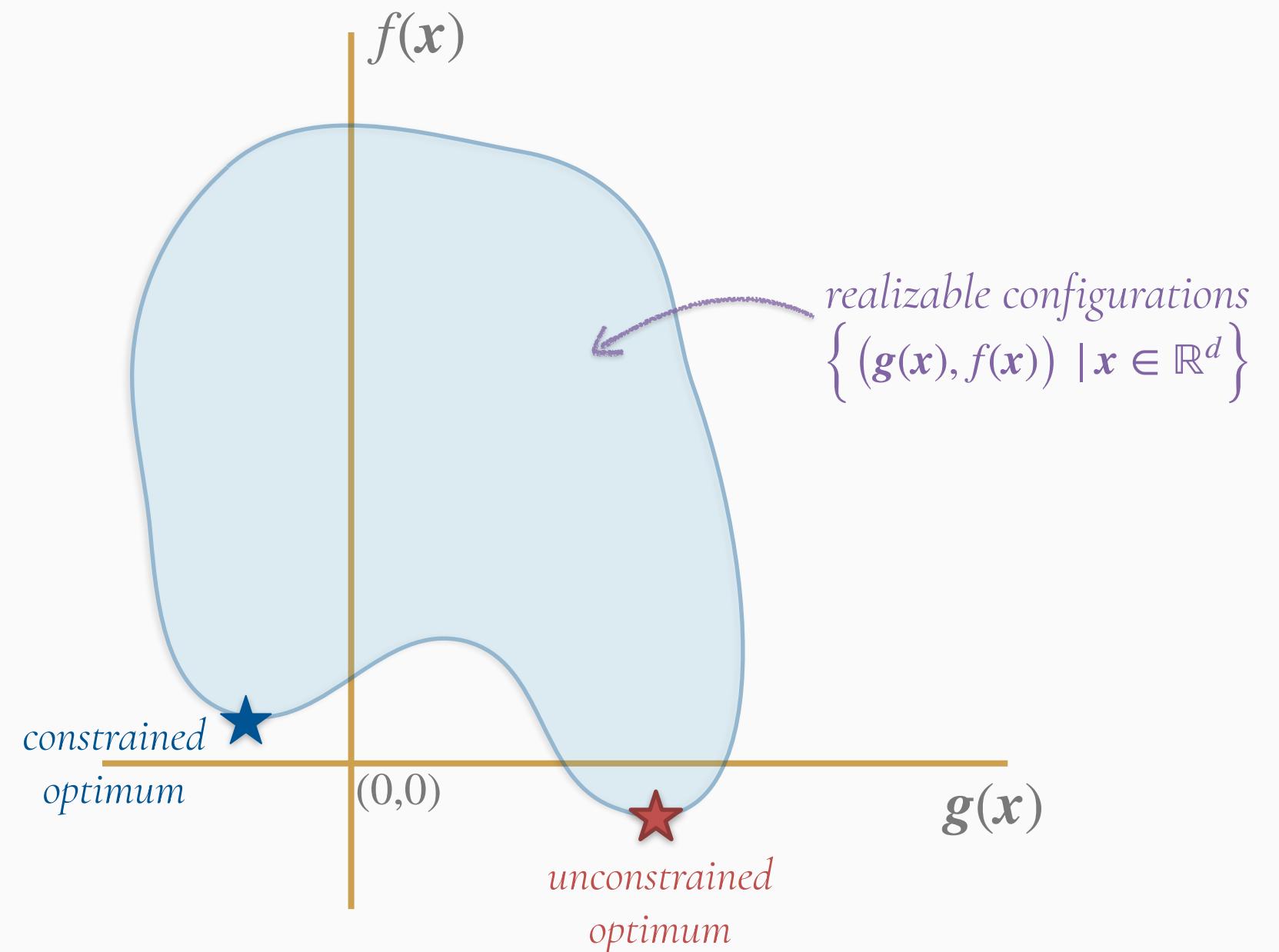
$$\mathcal{X} = \{x \in \mathbb{R}^d \mid g(x) \leq \mathbf{0} \text{ and } h(x) = \mathbf{0}\}$$

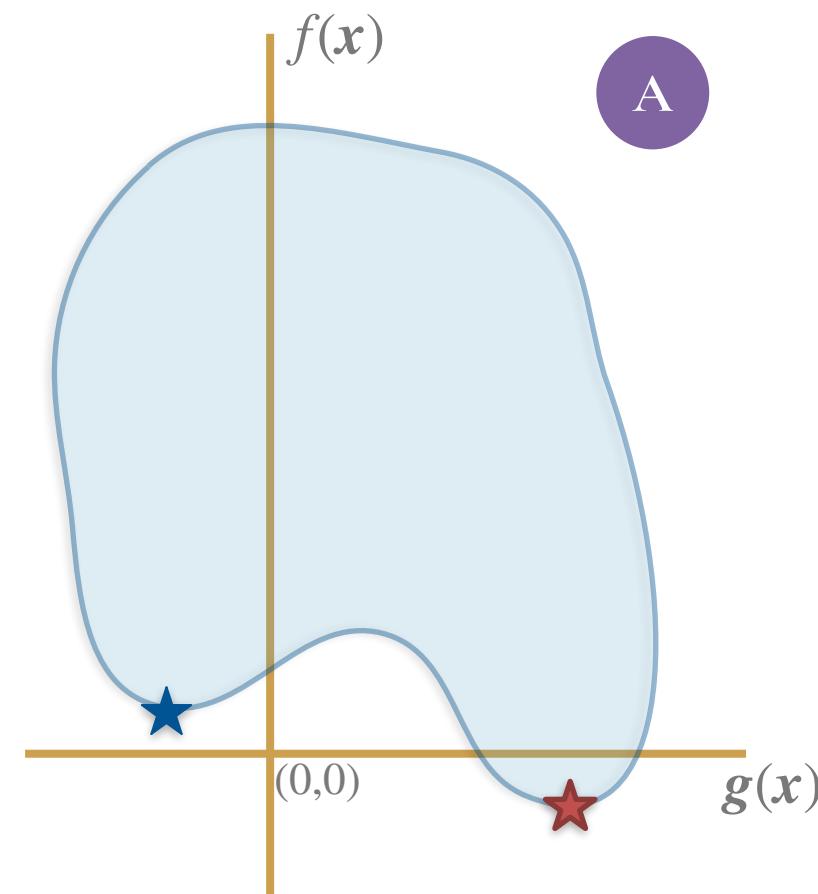
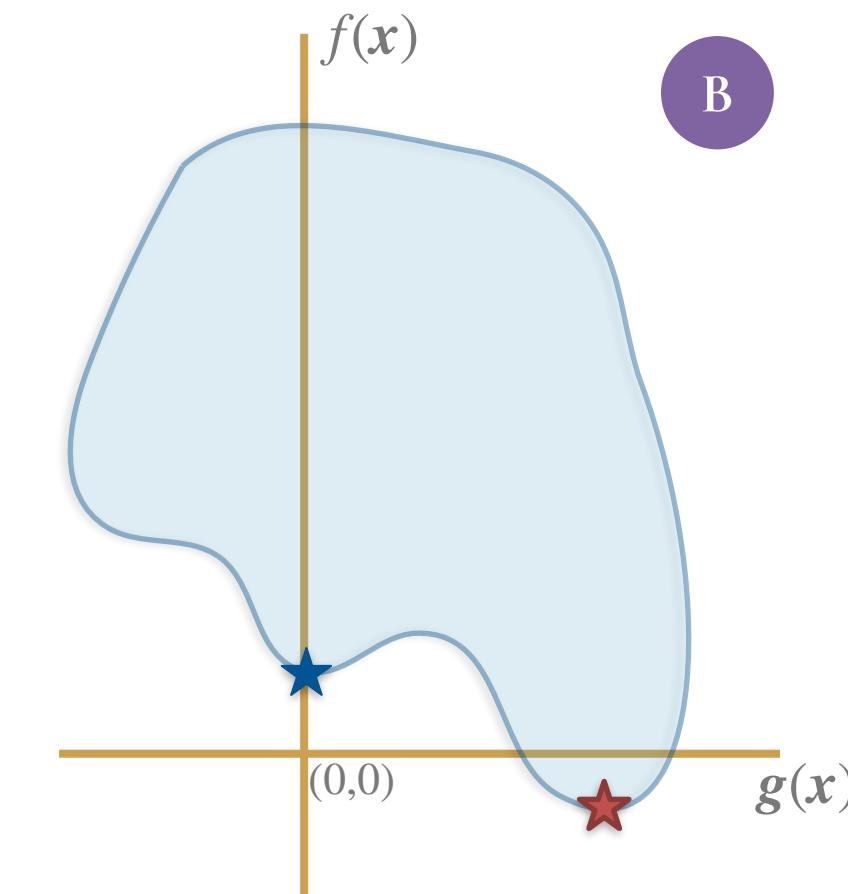
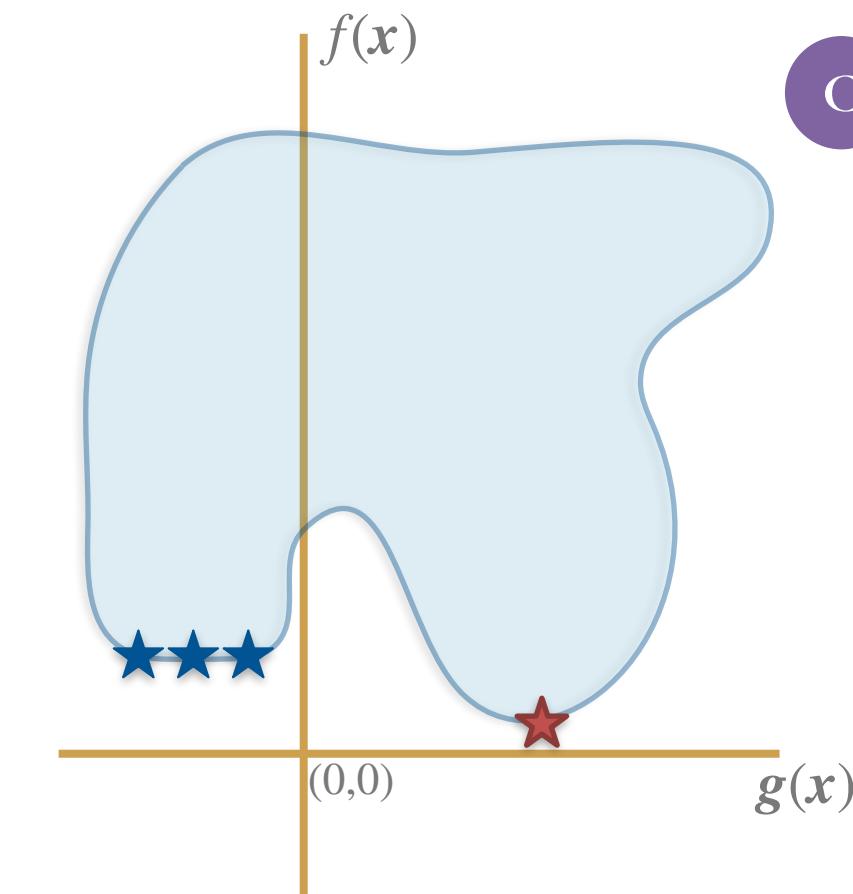
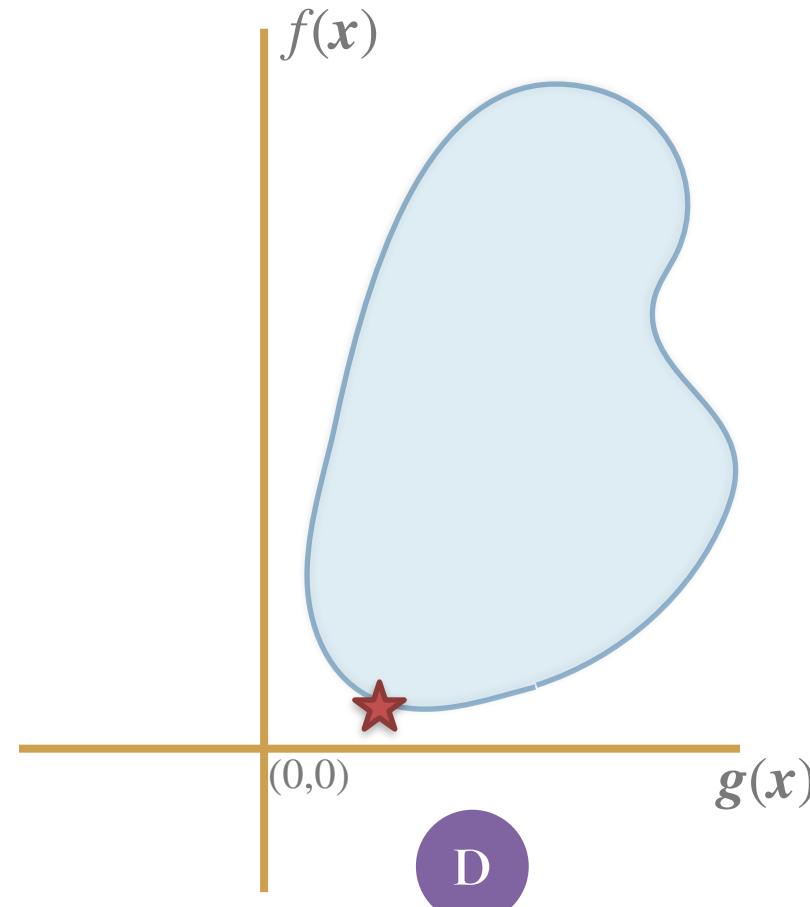
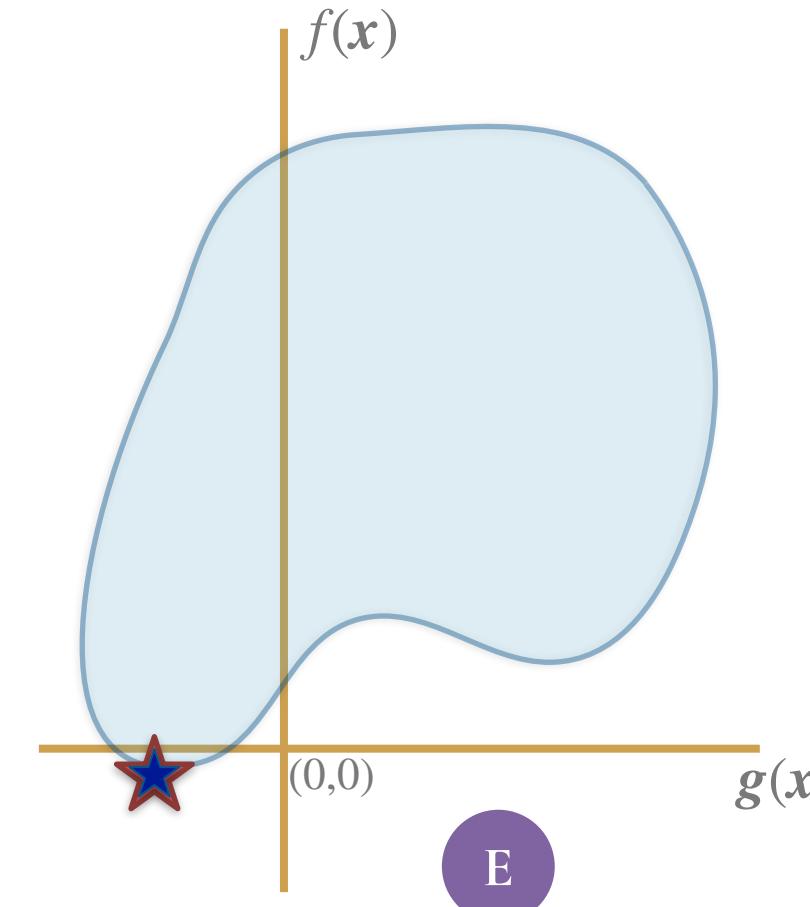
Optimality condition (necessary)

If x^* is a local minimum of f over \mathcal{X} , then

$$\nabla f(x^*)^\top z \geq 0 \quad \forall z \in \mathcal{F}(x^*)$$

↗ feasible directions at x^*





4

Lagrangian problem

$$\begin{array}{c} \min_x f(x) \\ \text{subject to } g(x) \leq \mathbf{0}_m \text{ and } h(x) = \mathbf{0}_n \end{array} \quad \Leftrightarrow$$

Lagrangian

$$\min_x \max_{\lambda \geq \mathbf{0}, \mu} \mathfrak{L}(x, \lambda, \mu) \triangleq f(x) + \lambda^\top g(x) + \mu^\top h(x)$$

 “Lagrange multipliers” or “dual variables”

Role of the multipliers (cf. Karush-Kuhn-Tucker necessary conditions)

$$\nabla f(x^*) + \sum_{i=1}^m \lambda_i^* \nabla g_i(x^*) + \sum_{i=1}^n \mu_i^* \nabla h_i(x^*) = \mathbf{0}$$

Algorithmic approach

Saddle points of the Lagrangian correspond to constrained optima. Find them!

Gradient Descent-Ascent (GDA)

Lagrangian
$$\min_x \max_{\lambda \geq 0, \mu} \mathfrak{L}(x, \lambda, \mu) \triangleq f(x) + \lambda^\top g(x) + \mu^\top h(x)$$

Algorithm

Initialize $x_0, \lambda_0 = 0$ and $\mu_0 = 0$

Repeat

$$\mu_{k+1} \leftarrow \mu_k + \alpha_d \nabla_\mu \mathfrak{L}(x_k, \lambda_k, \mu_k) = \mu_k + \alpha h(x_k)$$

$$\lambda_{k+1} \leftarrow [\lambda_k + \alpha_d \nabla_\lambda \mathfrak{L}(x_k, \lambda_k, \mu_k)]^+ = [\lambda_k + \alpha g(x_k)]^+$$

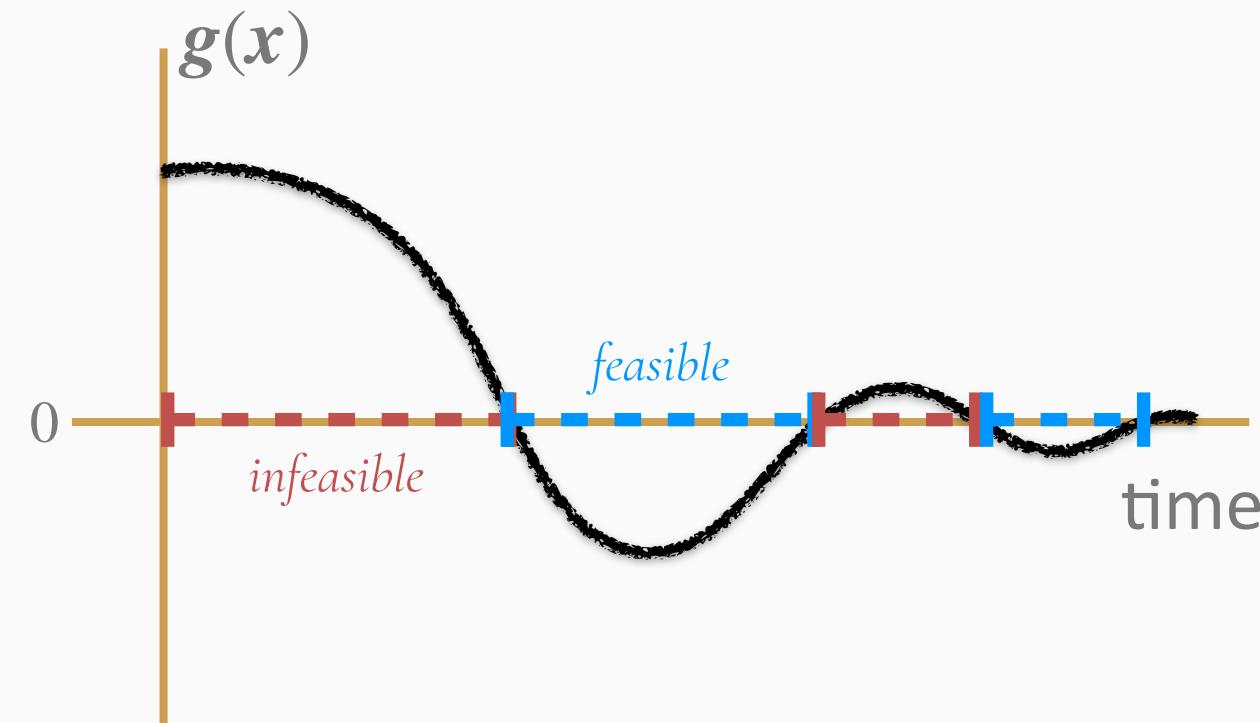
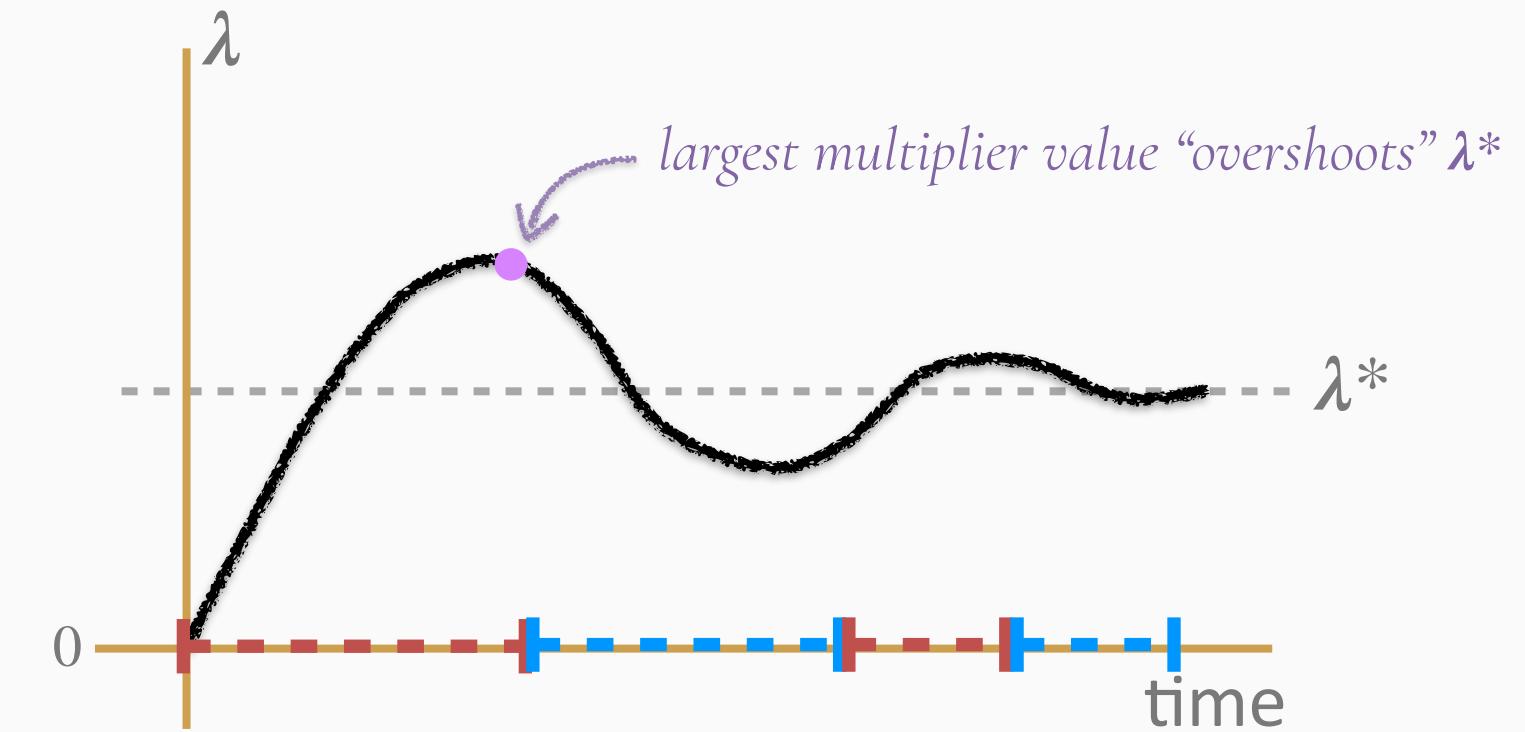
$$x_{k+1} \leftarrow x_k - \alpha_p \nabla_x \mathfrak{L}(x_k, \lambda_k, \mu_k)$$

If convergence check satisfied; **stop**

*projected gradient ascent
maintains non-negativity
of inequality multipliers*

Dynamics of GDA

$$\lambda_{k+1} = [\lambda_k + \alpha_d \nabla_\lambda \mathfrak{L}(x_k, \lambda_k, \mu_k)]^+ = [\lambda_k + \alpha g(x_k)]^+$$



The multiplier accumulates/integrates the sequence of observed constraint violations

What we are looking for

Shortcomings of GDA

- GDA may result in overshoot and oscillations (Gidel et al. 2019; Stooke at al. 2020)
- Especially problematic in safety-related applications

Goal and scope

- **Reliable and robust** approach for solving Lagrangian optimization problems
- That **does not modify** training “recipe” for primal variables

Achieving this goal enables wider adoption of Lagrangian optimization in deep learning!

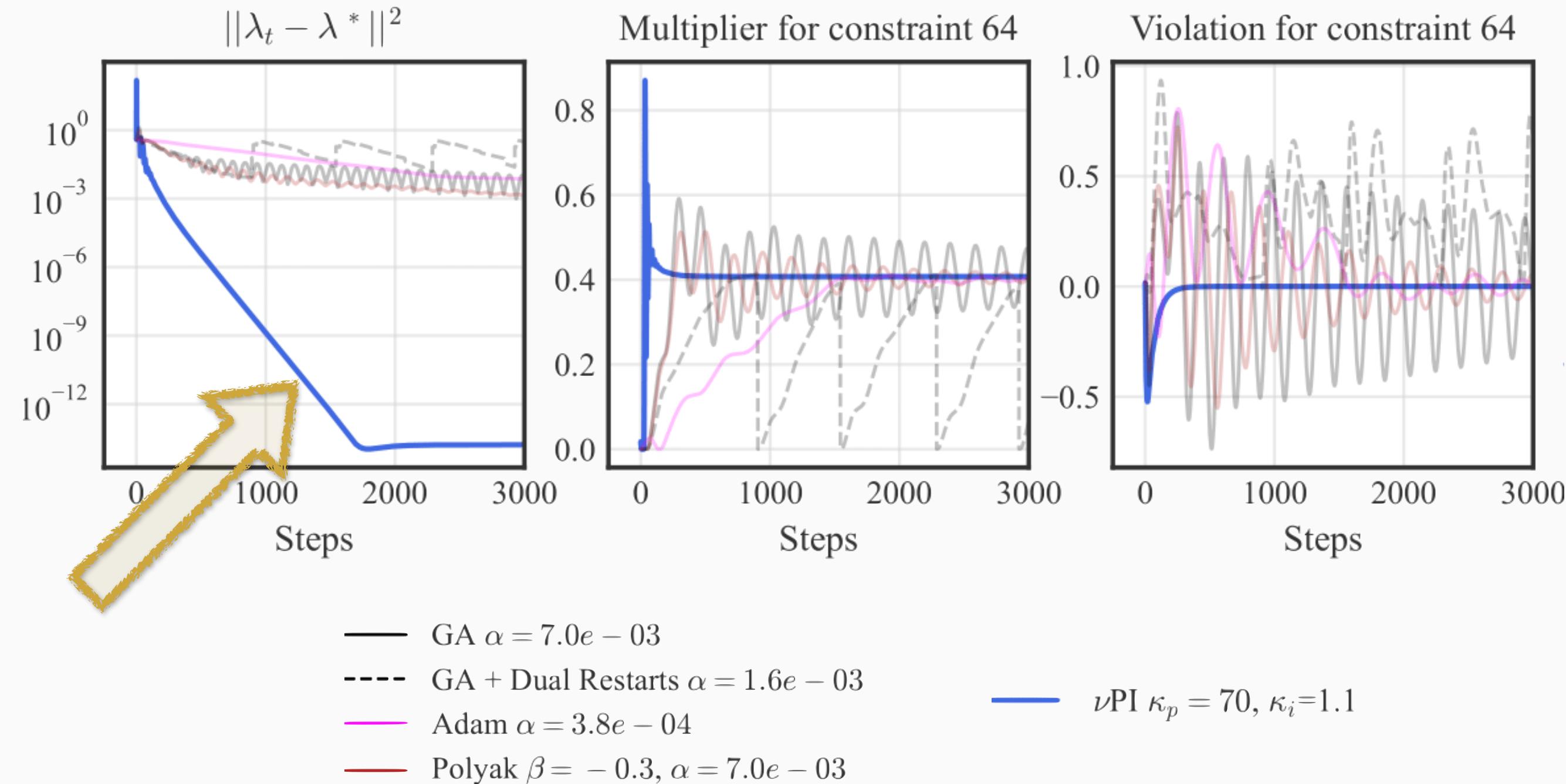
Gidel, G., Askari, R., Pezeshki, M., LePriol, R., Huang, G., Lacoste-Julien, S., and Mitliagkas, I. *Negative Momentum for Improved Game Dynamics*. In AISTATS, 2019.
Stooke, A., Achiam, J., and Abbeel, P. *Responsive Safety in Reinforcement Learning by PID Lagrangian Methods*. In ICML, 2020.

TLDR of our paper

- Stooke et al. (2020) propose **updating the Lagrange multipliers based on PID control**, improving stability on RL tasks with safety constraints.
- We provide an **optimization-oriented analysis of ν PI**, our proposed PI controller
 - ν PI yields stable dynamics and allows for monotonic control on the degree of overshoot
 - Conceptual insights explaining **why** using ν PI helps
 - Experimental evidence in SVMs and sparsity-constrained ResNets
- We prove that **ν PI generalizes standard optimization techniques** (including momentum)
 - We provide insights as to why momentum methods may aggravate the issues of GDA

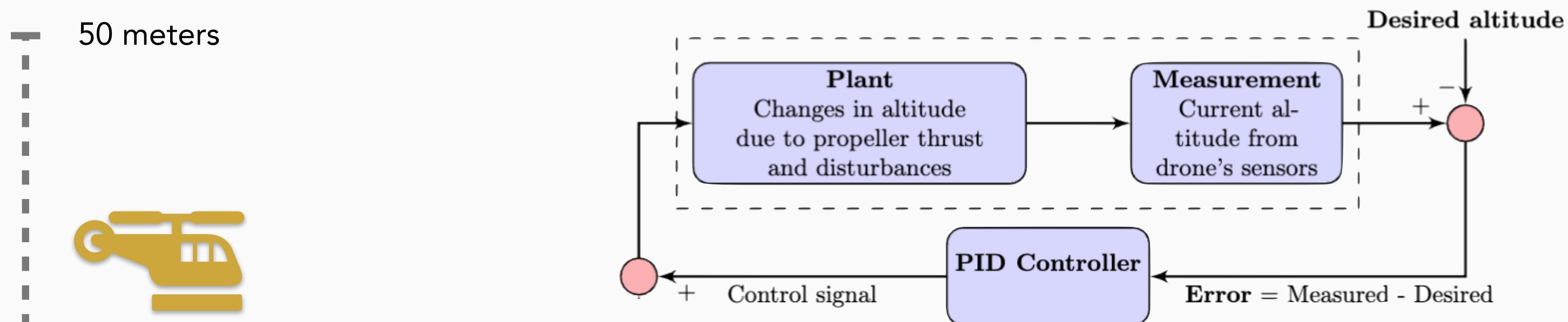
Overview of results

Of all attempted optimizers*, **only ν PI converged successfully to the true solution!**



Showing best hyperparameters for each optimizer after grid-search aiming to minimize the distance to λ^ after 5.000 iterations

PID control in one slide



Continuous-time (Analog)

$$u_t = \kappa_p e_t + \kappa_i \int_0^t e_\tau d\tau + \kappa_d \frac{de_t}{dt}$$

Discrete-time (Digital)

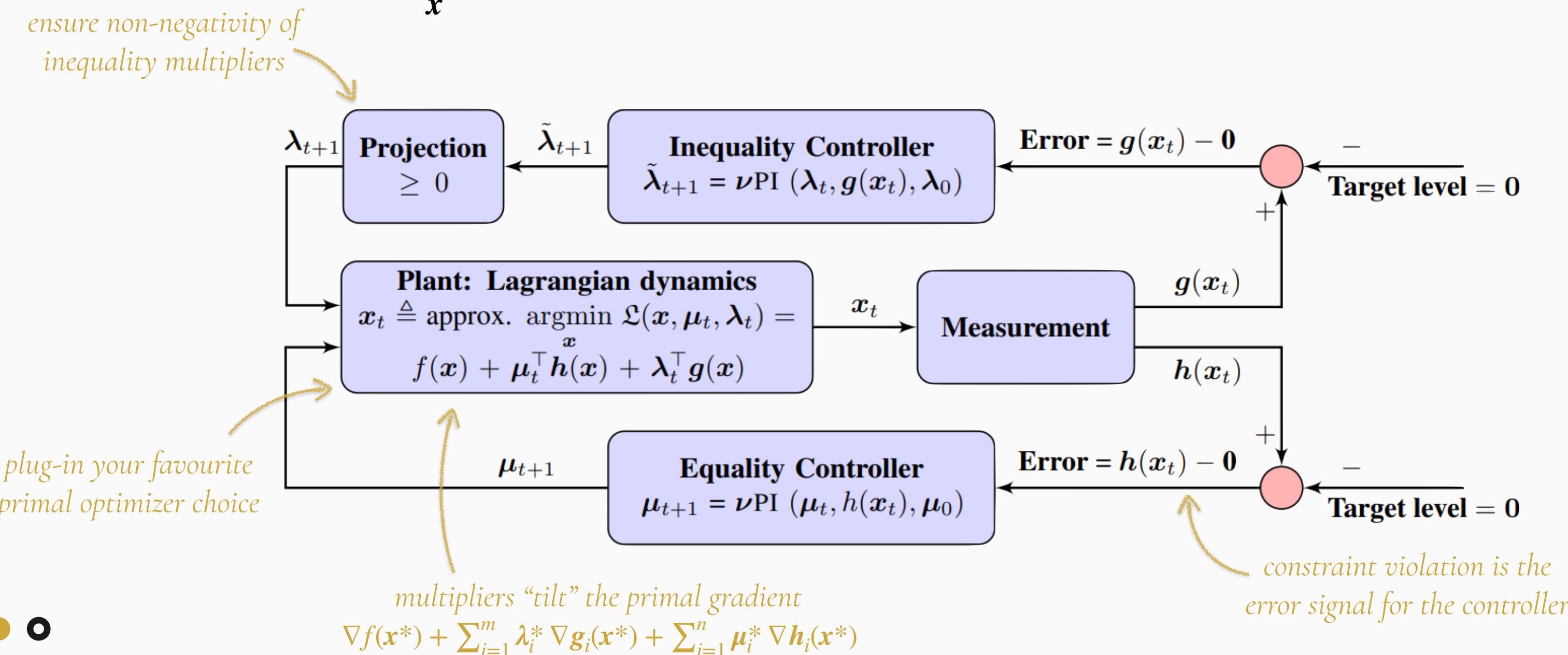
$$u_t = \kappa_p e_t + \kappa_i \sum_{\tau=0}^t e_\tau + \kappa_d (e_t - e_{t-1})$$

The *Understanding PID Control* playlist by Matlab on YouTube provide an excellent, much more detailed introduction to PID control.

A control theory view of constrained optimization

Dynamical system's view of CO

$$\min_x f(x) \quad \text{subject to } g(x) \leq 0 \text{ and } h(x) = 0$$



ν PI control for constrained optimization

Algorithm: ν PI update on parameter θ

Args: EMA coefficient ν , proportional (κ_p) and integral (κ_i) gains; initial conditions ξ_0 and θ_0

1. Measure the current system error e_t

2. $\xi_t \leftarrow \nu \xi_{t-1} + (1 - \nu) e_t$ (for $t \geq 1$)

3. $\theta_{t+1} \leftarrow \theta_0 + \kappa_p \xi_t + \kappa_i \sum_{\tau=0}^t e_{\tau}$

Recursively, $\theta_1 \leftarrow \theta_0 + \kappa_p \xi_0 + \kappa_i e_0$

$\theta_{t+1} \leftarrow \theta_t + \kappa_i e_t + \kappa_p (\xi_t - \xi_{t-1})$

General case

like ∇ -ascent

*new term looks at
change in constraint
satisfaction!*

$\theta_{t+1} \leftarrow \theta_t + \kappa_i e_t + \kappa_p (e_t - e_{t-1})$

Case $\nu = 0$

Two low-hanging fruits

$$\theta_{t+1} \leftarrow \theta_t + \kappa_i e_t + \kappa_p (\xi_t - \xi_{t-1}) = \theta_t + \kappa_i e_t + \kappa_p (1 - \nu) (e_t - \xi_{t-1})$$

Suppose that the error signal is the negative gradient of a loss function f : $e_t = -\nabla_{\theta} f$

Gradient descent: $\kappa_p = 0$

$$\theta_{t+1} \leftarrow \theta_t + \kappa_i e_t$$

Optimistic gradient method (Popov, 1980): $\kappa_p = \kappa_i$; $\nu = 0$

$$\theta_{t+1} \leftarrow \theta_t + \kappa_i [e_t + (e_t - e_{t-1})]$$

The updates of ν PI

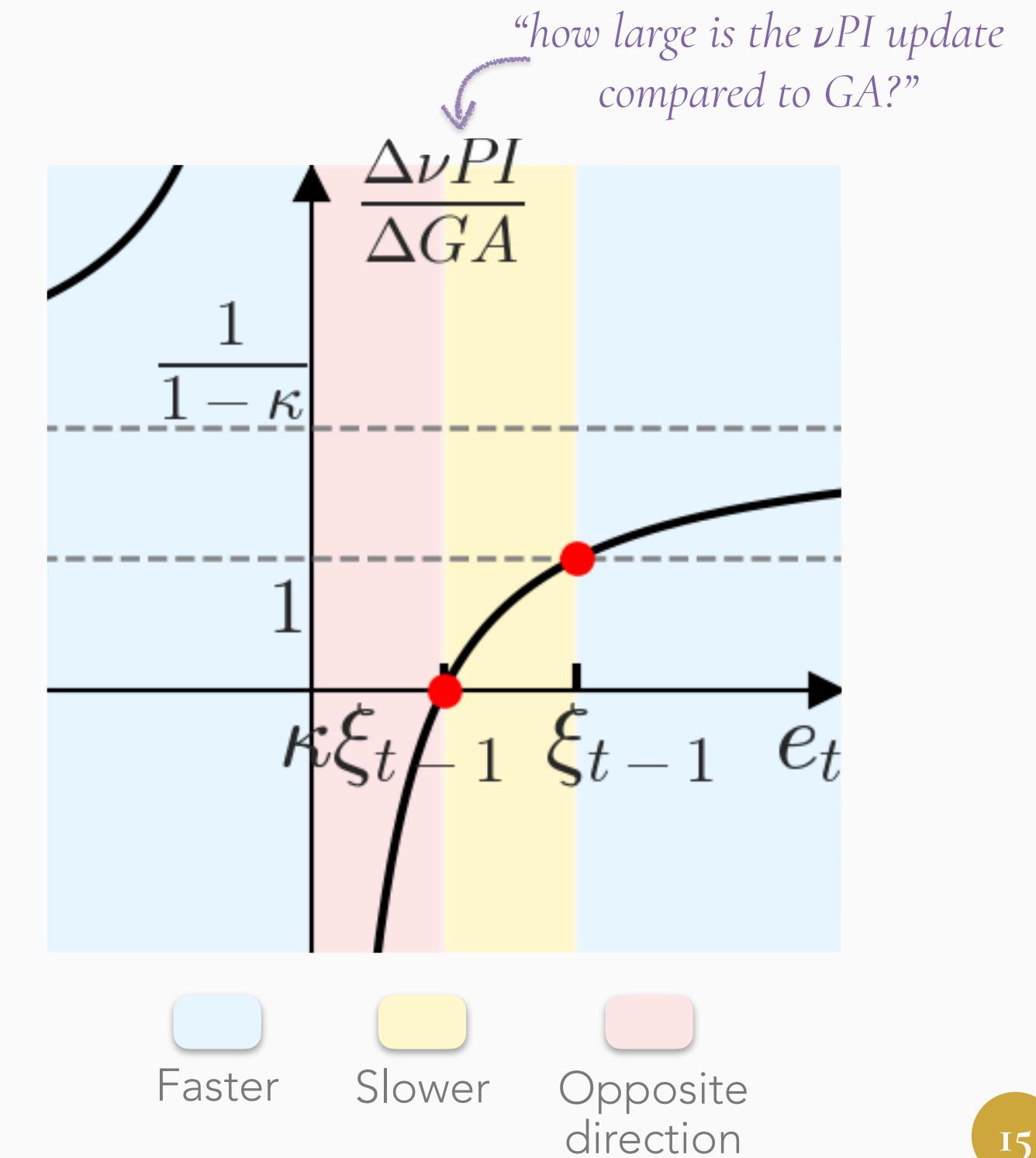
The entries of θ can be **updated in parallel**,
but **evolve collectively**!

$$\theta_{t+1}^{\nu\text{PI}} \leftarrow \theta_t + \kappa_i e_t + \kappa_p(1 - \nu)(e_t - \xi_{t-1})$$

$$\theta_{t+1}^{\text{GA}} \leftarrow \theta_t + \kappa_i e_t$$

$$\frac{\Delta \nu\text{PI}}{\Delta \text{GA}} = \frac{\theta_{t+1}^{\nu\text{PI}} - \theta_t}{\theta_{t+1}^{\text{GA}} - \theta_t} = \frac{1}{1 - \kappa} \left[1 - \frac{\kappa \xi_{t-1}}{e_t} \right]$$

constant that
depends on κ_i and κ_p



ν PI generalizes momentum methods

Theorem 1

Under the same initialization θ_0 , UnifiedMomentum($\alpha, \beta \neq 1, \gamma$) is a special case of the ν PI algorithm with the hyperparameter choices:

$$\nu \leftarrow \beta$$

$$\xi_0 \leftarrow (1 - \beta)e_0$$

$$\kappa_i \leftarrow \frac{\alpha}{1 - \beta}$$

$$\kappa_p \leftarrow -\frac{\alpha\beta}{(1 - \beta)^2}[1 - \gamma(1 - \beta)]$$

Polyak $\gamma = 0$; Nesterov $\gamma = 1$

ν PI generalizes momentum methods

Algorithm	ξ_0	κ_p	κ_i	ν
UNIFIEDMOMENTUM(α, β, γ)	$(1 - \beta)\mathbf{e}_0$	$-\frac{\alpha\beta}{(1 - \beta)^2} [1 - \gamma(1 - \beta)]$	$\frac{\alpha}{1 - \beta}$	β
POLYAK(α, β)	$(1 - \beta)\mathbf{e}_0$	$-\frac{\alpha\beta}{(1 - \beta)^2}$	$\frac{\alpha}{1 - \beta}$	β
NESTEROV(α, β)	$(1 - \beta)\mathbf{e}_0$	$-\frac{\alpha\beta^2}{(1 - \beta)^2}$	$\frac{\alpha}{1 - \beta}$	β
PI	\mathbf{e}_0	κ_p	κ_i	0
OPTIMISTICGRADIENTASCENT(α)	\mathbf{e}_0	α	α	0
ν PI (κ_i, κ_p, ν) in practice	0	κ_i	κ_p	ν
GRADIENTASCENT(α)	—	0	α	0

ν PI generalizes momentum methods

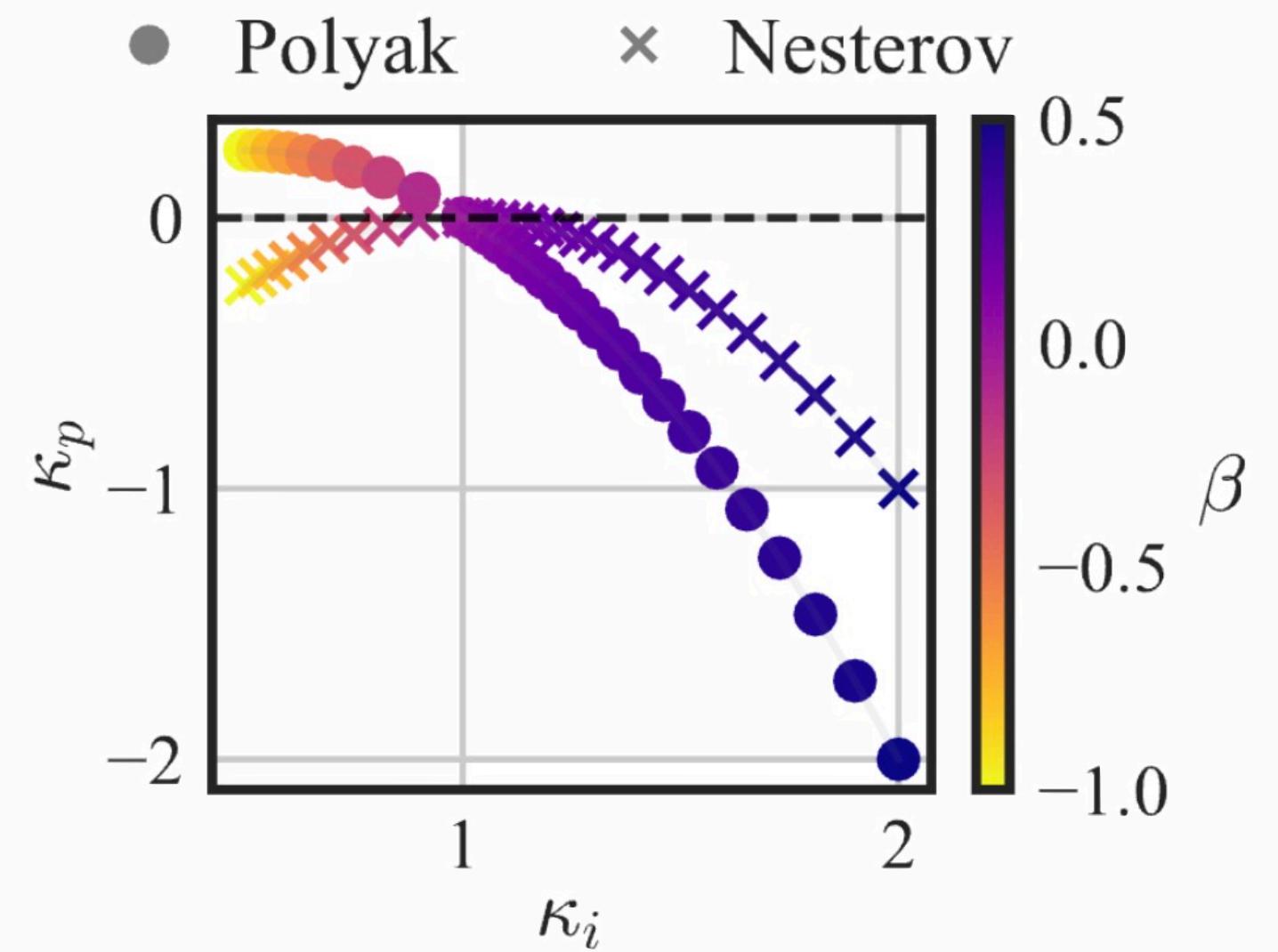
$$\kappa_i \leftarrow \frac{\alpha}{1 - \beta}$$

Note the sign of the κ_p coefficient for Polyak and Nesterov:

$$\kappa_p^{\text{Polyak}} \leftarrow -\frac{\alpha\beta}{(1 - \beta)^2}$$

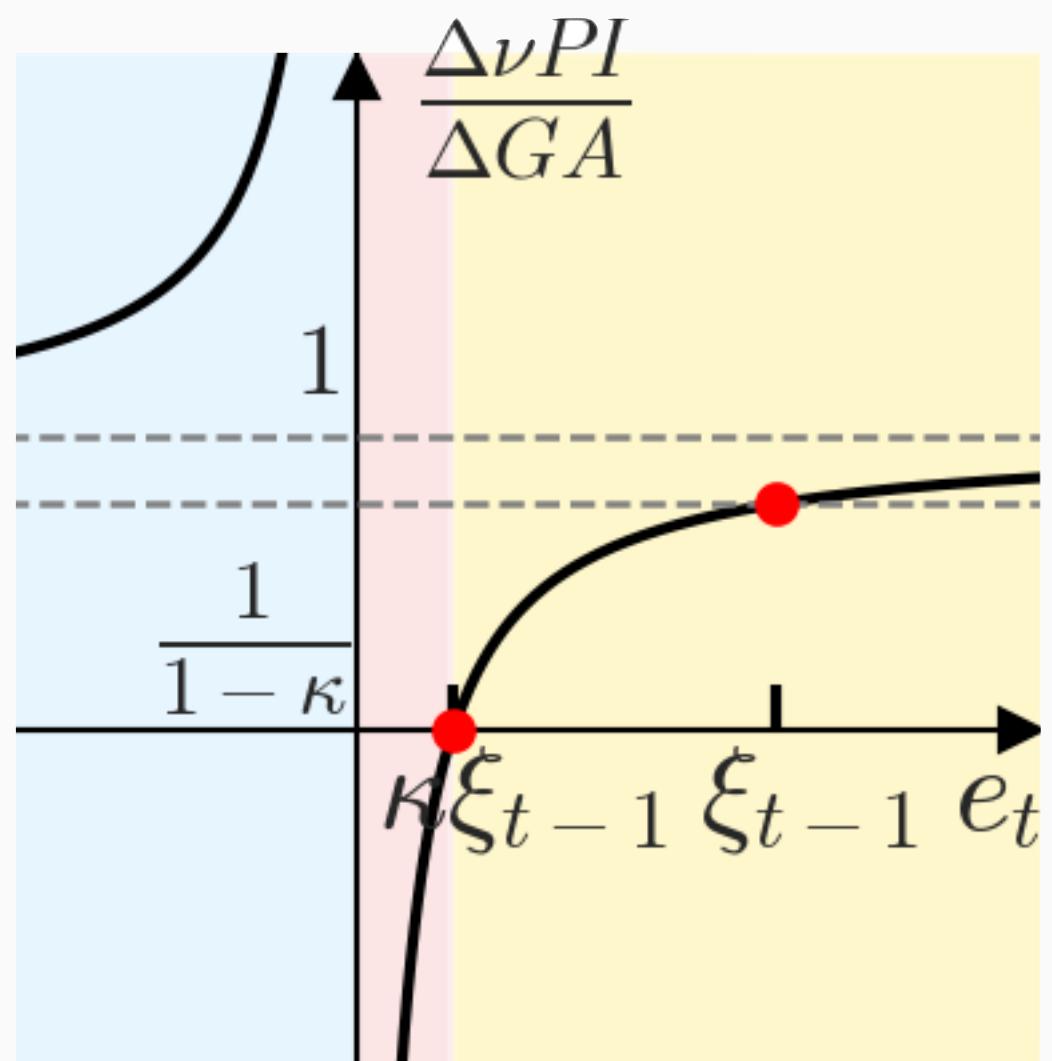
$$\kappa_p^{\text{Nesterov}} \leftarrow -\frac{\alpha\beta^2}{(1 - \beta)^2} \leq 0$$

non-positive for both positive and negative momentum

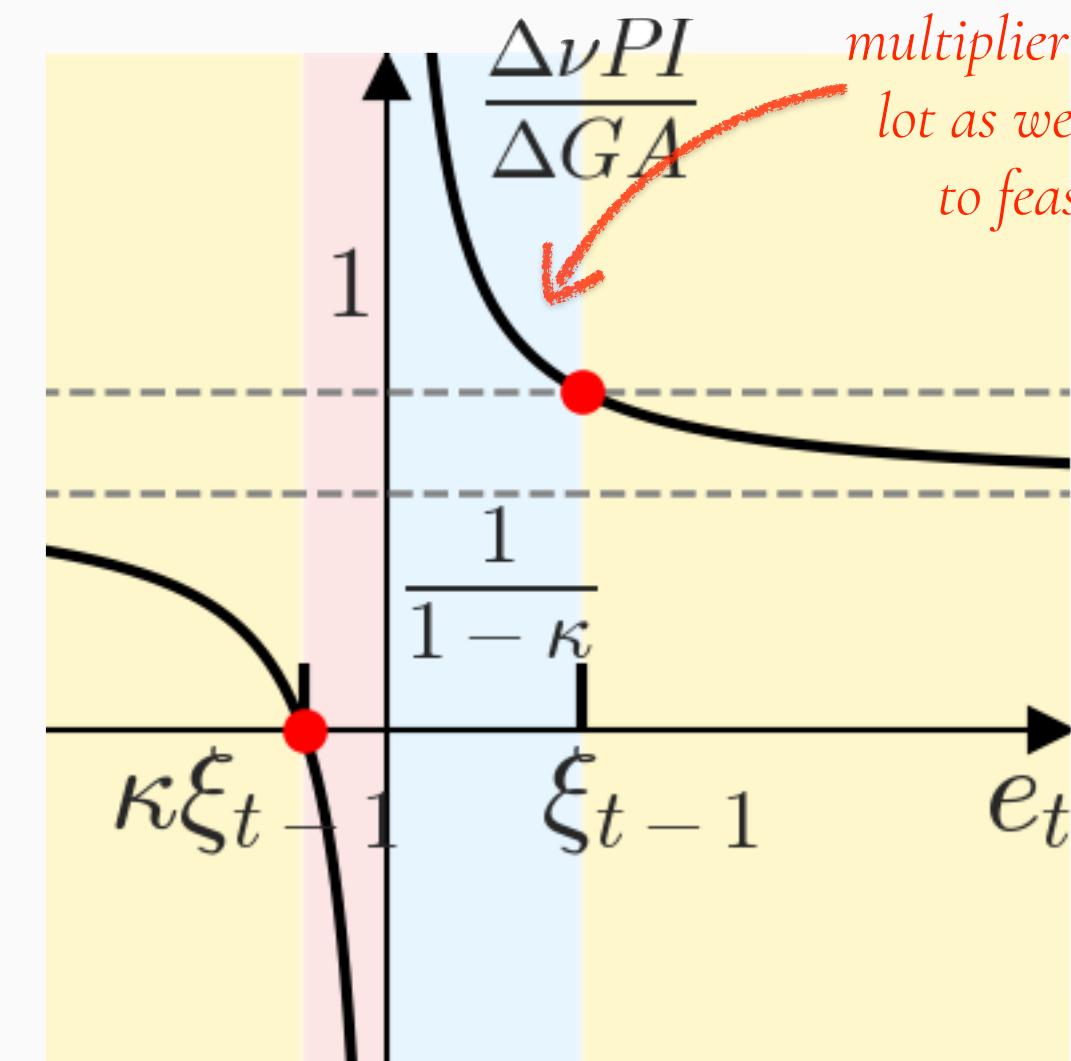


Spanned κ_i and κ_p coefficients for fixed α and changing β

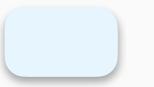
The (undesirable?) effect of momentum



Polyak $\nu = -0.3$



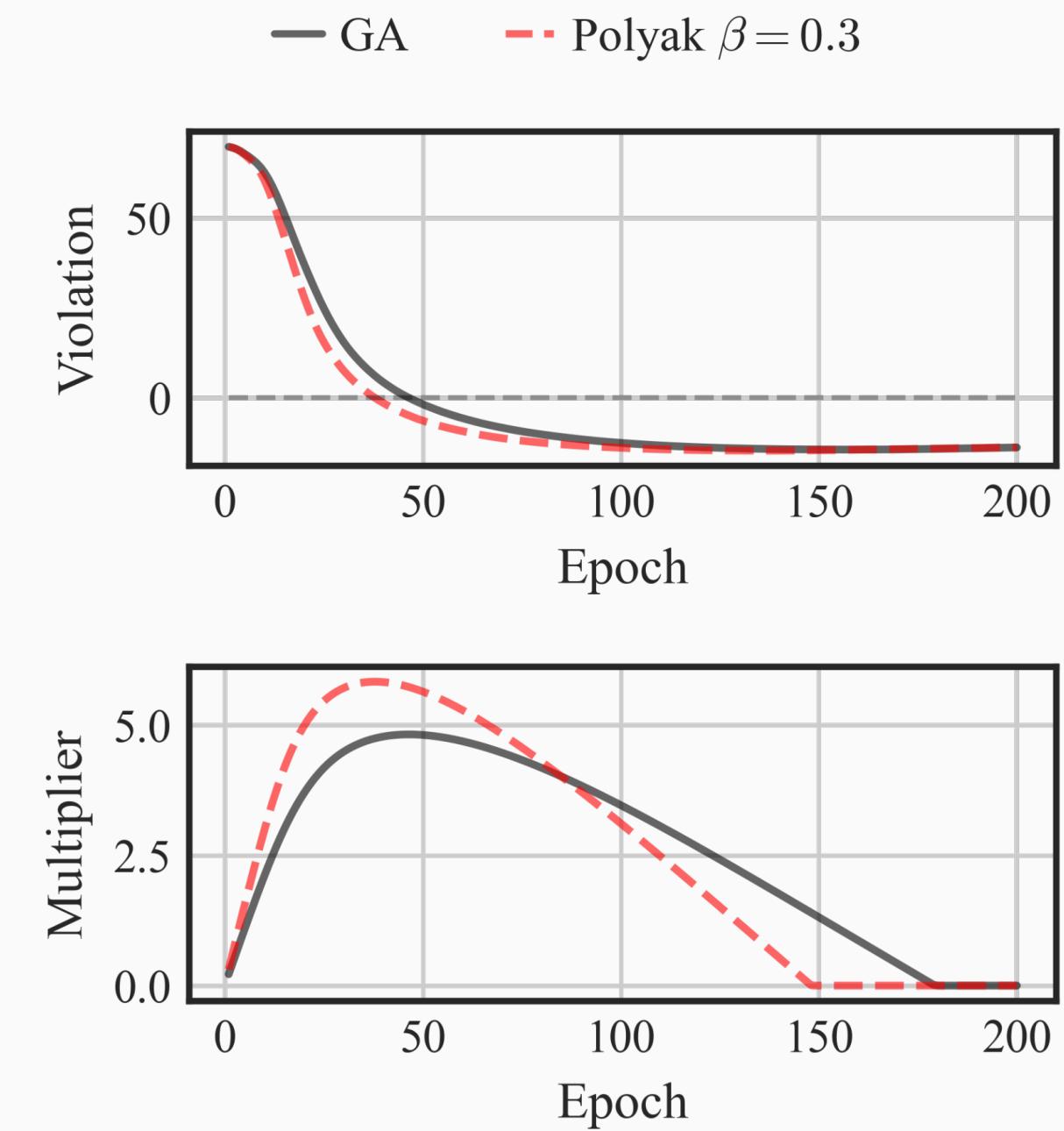
Polyak $\nu = +0.3$

 Faster
 Slower
 Opposite direction

ν PI in context

Positive momentum

- ▶ Is a special case of ν PI
- ▶ Induces a negative κ_p
- ▶ Has been shown to be counterproductive for (bi-linear) games
- ▶ **Makes overshoot problem worse**

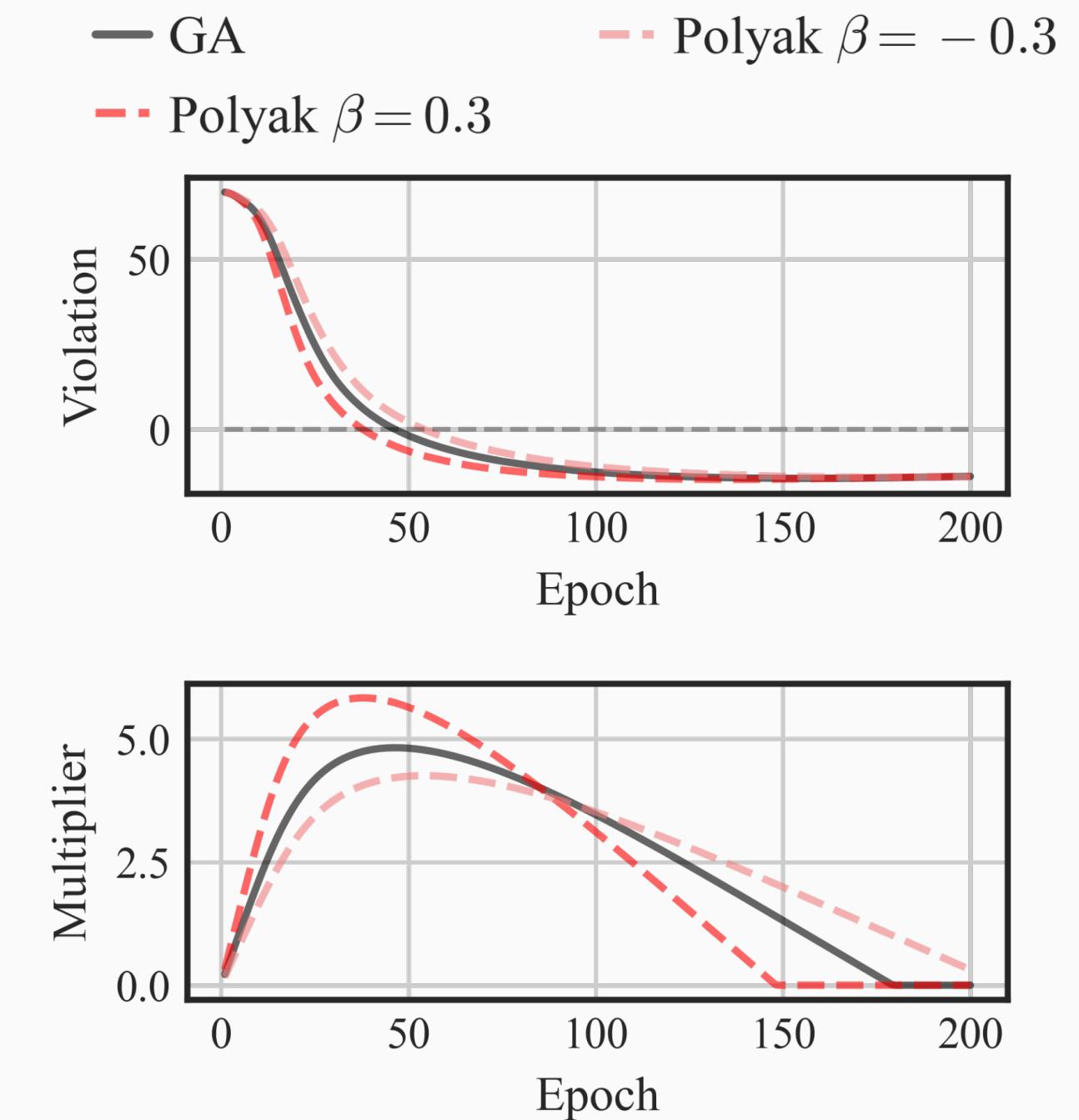


Negative momentum

- ▶ Is a special case of ν PI
- ▶ Induces a positive κ_p
- ▶ Suboptimal for strongly convex games

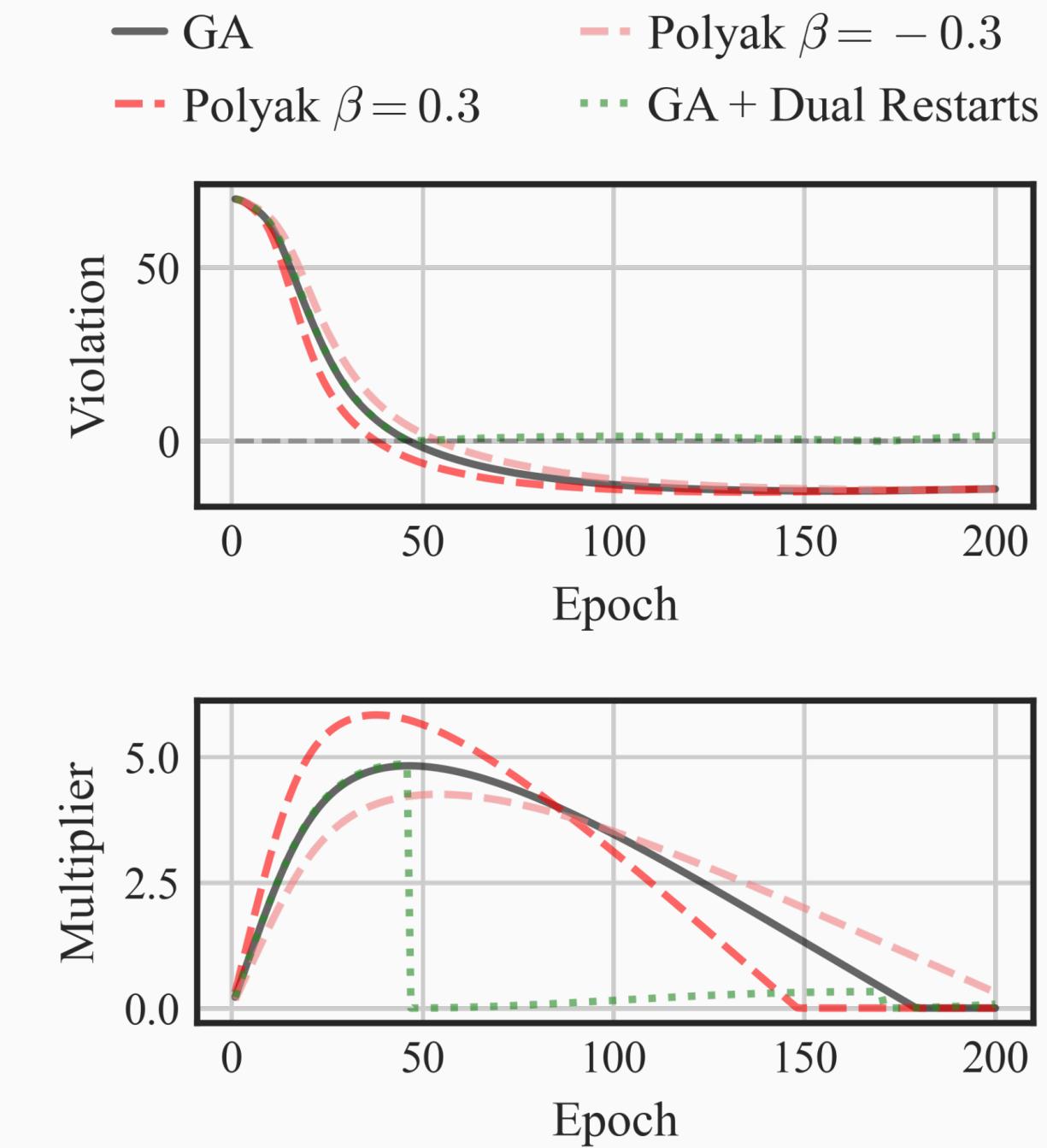
(Zhang et al., 2021)

- ▶ Alleviates multiplier overshooting, but not “over-enforcement” of the constraint



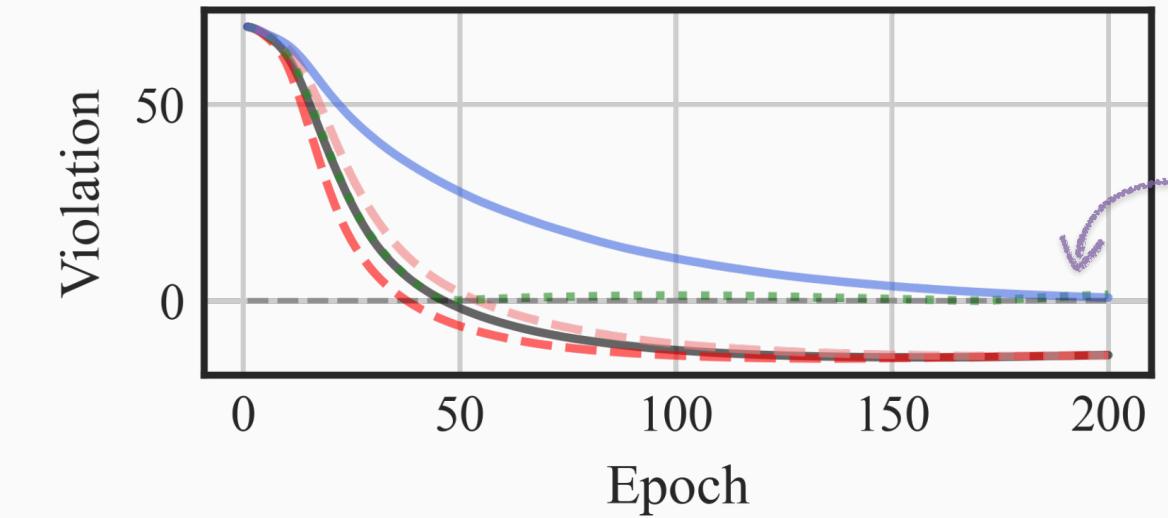
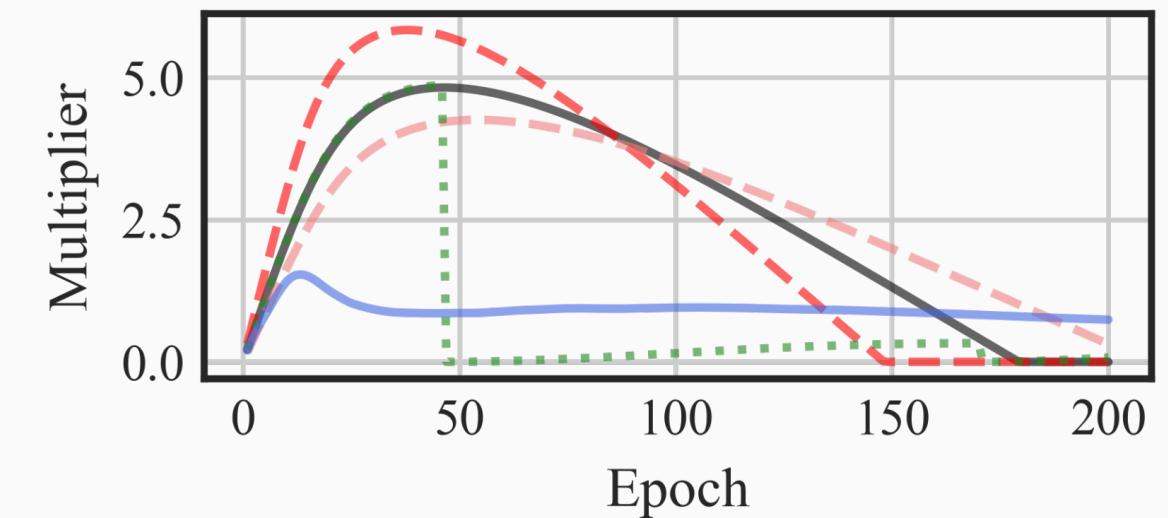
Dual restarts

- Once a constraint is strictly satisfied, set its corresponding multiplier to zero (Gallego-Posada et al., 2022)
- Only applicable to (strictly feasible) inequality constraints.
- Relies on exact assessment of constraint satisfaction
 - Stochasticity; numerical precision; “temporary satisfaction”



ν PI controller

- Natural generalization of the optimistic gradient method, which is (near) optimal for games (Mokhtari et al., 2020)
- Monotonic effect of κ_p on the degree of overshoot
- One fewer degree of freedom than full PID



Experiments

Hard-margin SVMs

$$\min_{\mathbf{w}} \frac{1}{2} \|\mathbf{w}\|^2 \text{ subject to } y_i (\mathbf{w}^\top \mathbf{x}_i + b) \geq 1 \text{ for } i = 1, \dots, N$$

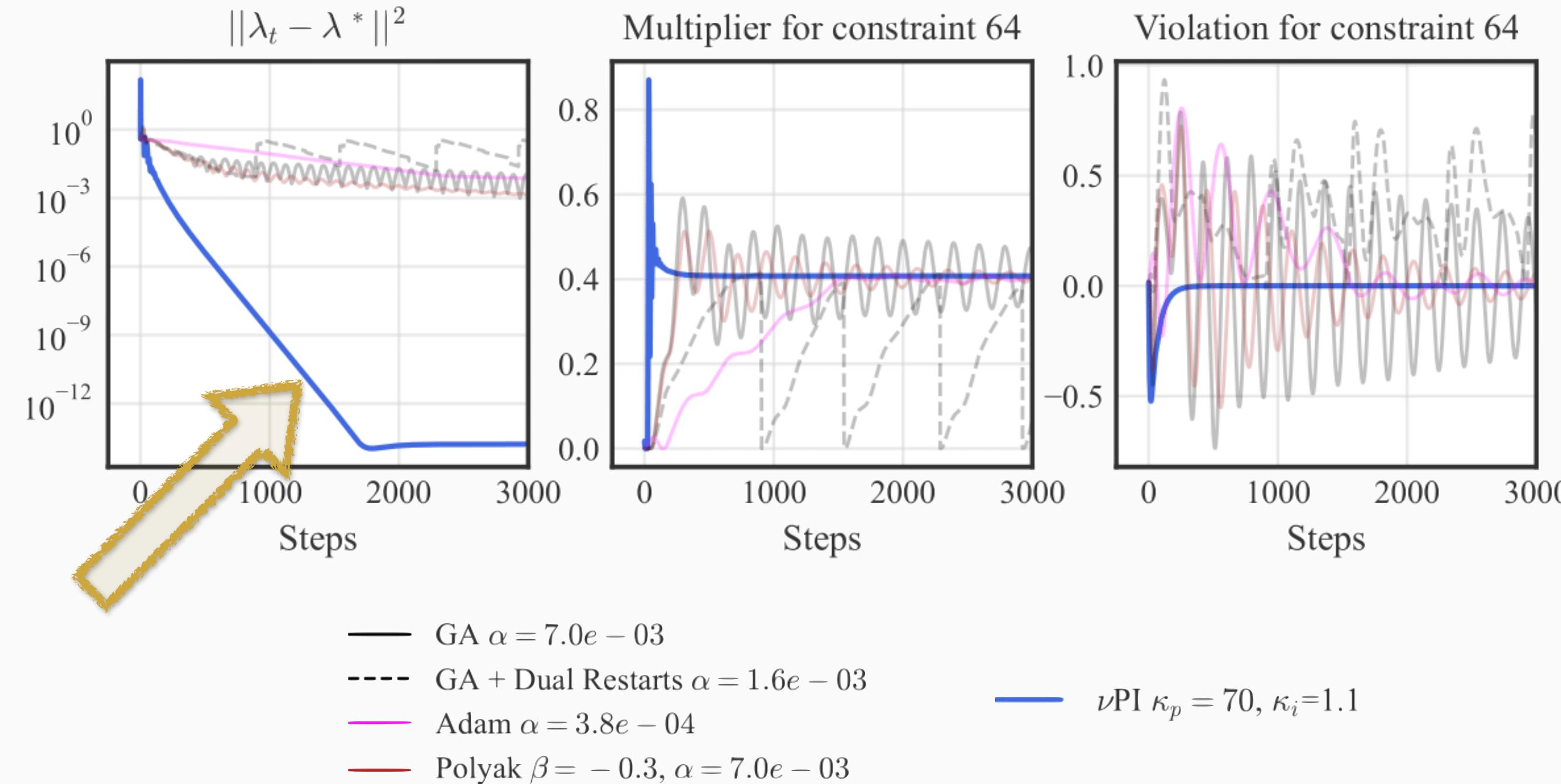
Motivation

- Simple, well behaved convex problem with unique* KKT tuple
- Specialized solvers exist for QCQPs, we use this task for illustration
- Cheap experiment allows fine grid-search to test influence of hyperparameters of different algorithms

Experimental setup

- Linearly-separable subset of the Iris dataset
- 70 training samples \Rightarrow 70 inequality constraints

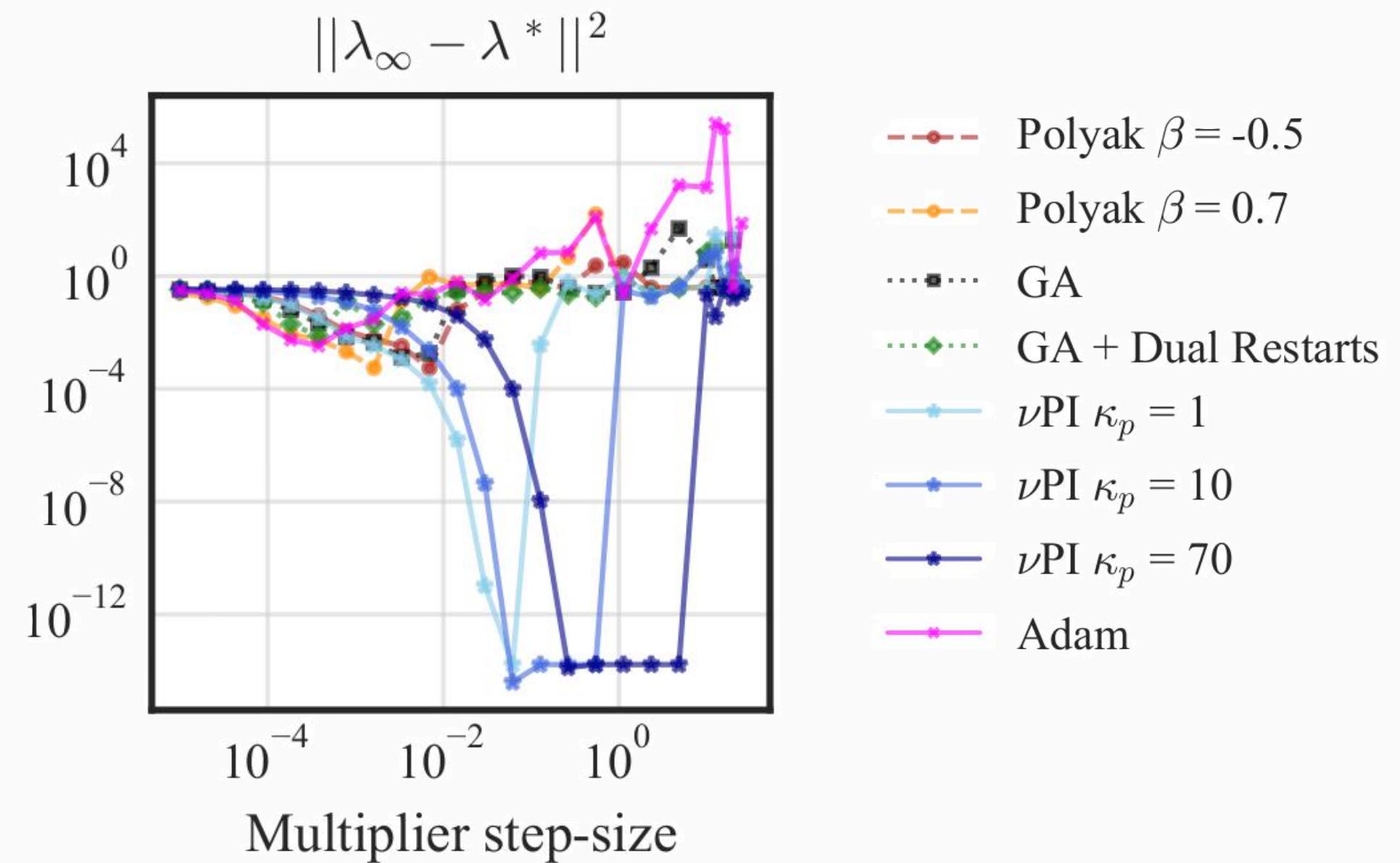
Of all attempted optimizers*, **only ν PI converged successfully to the true solution!**

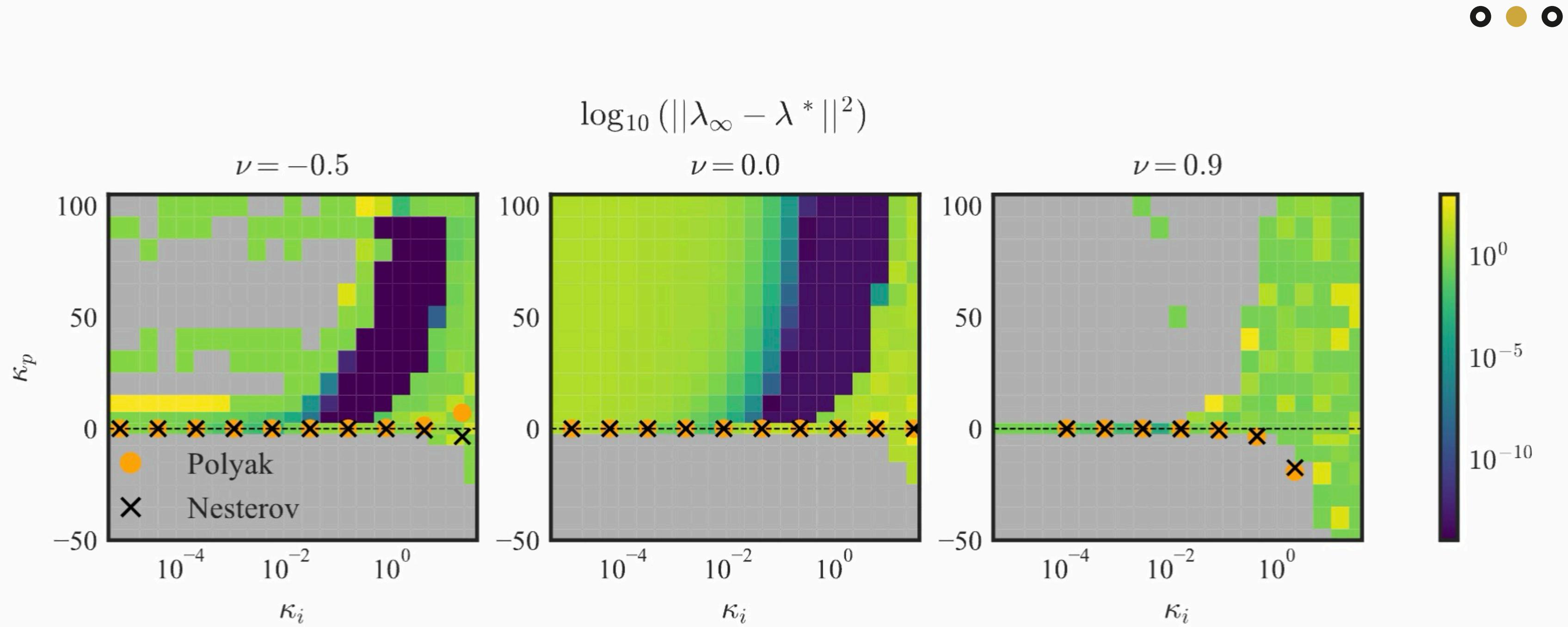


Showing best hyperparameters for each optimizer after grid-search aiming to minimize the distance to λ^ after 5.000 iterations

Robustness

Higher values of κ_p allow for choosing **larger values of κ_i** (multiplier step-size) and **over a wider range**, while still achieving convergence.





ν PI provides additional flexibility compared to Polyak and Nesterov which is crucial for achieving convergence in this task.

Training sparse ResNets

$$\min_{x, \phi} \mathbb{E}_{z|\phi} [L(x \odot z | \mathcal{D})] \text{ subject to } \frac{\mathbb{E}_{z|\phi} [| | z | |_0]}{\#(x)} \leq \epsilon$$

Motivation

- More realistic deep application with non-convex constraints
- In our prior work we document the issue of overshoot and propose “dual restarts” heuristic

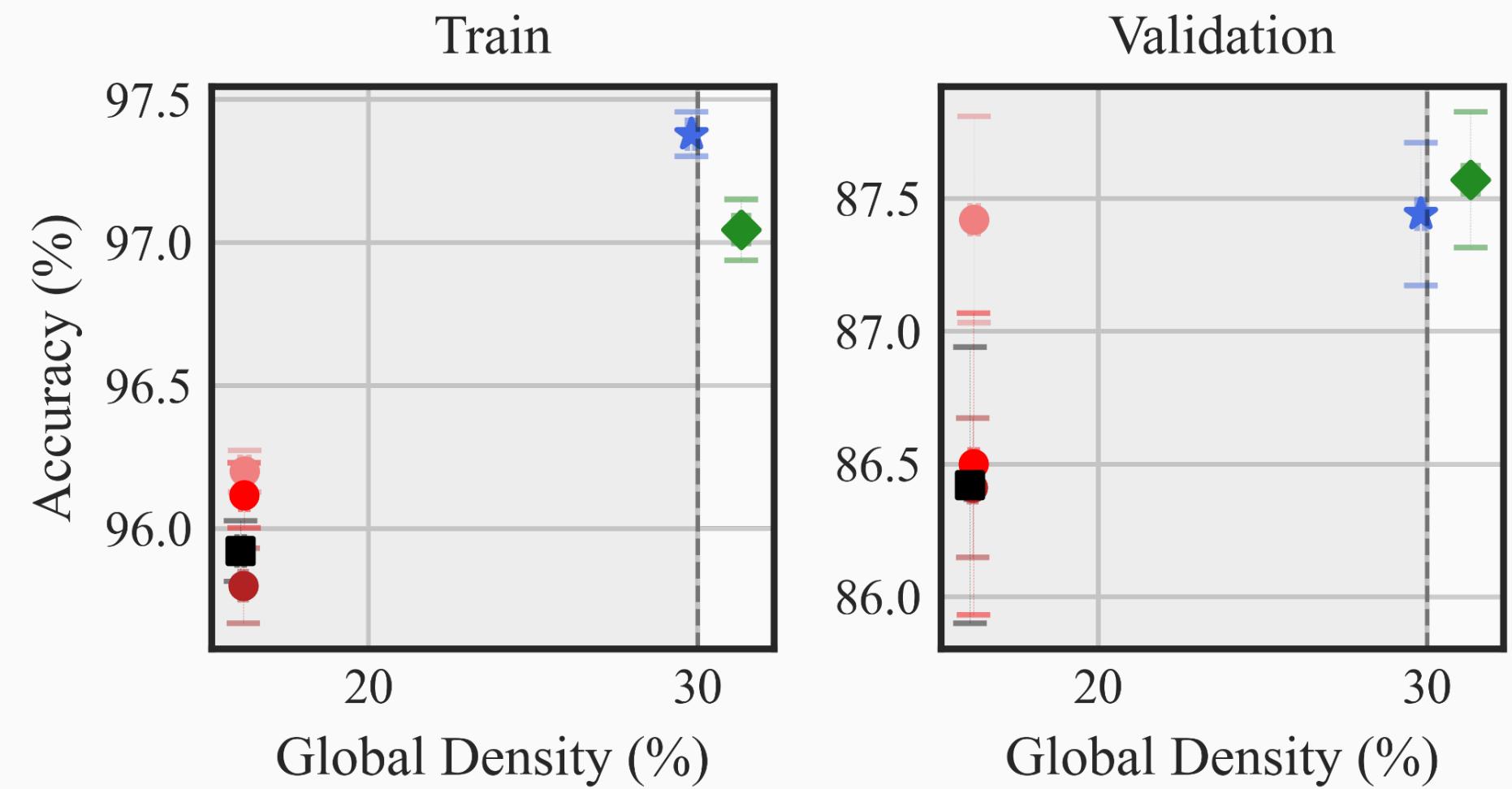
Experimental setup

- Training a ResNet-18 model on CIFAR10
- Structured sparsity with layer-wise or model-wise constraints

Addressing constraint overshooting

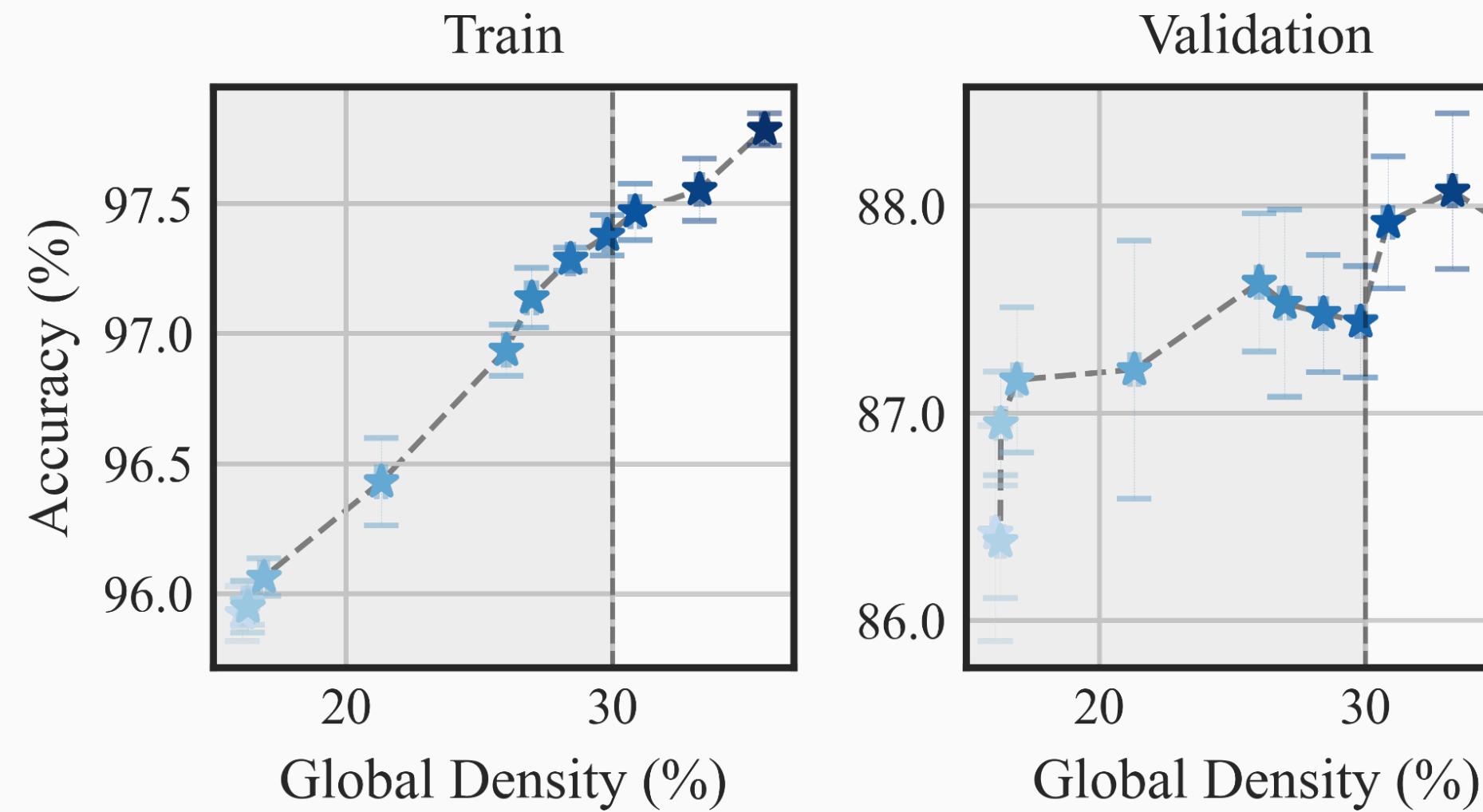
ν PI achieves high accuracy and tightly respects the constraints, without overshooting

- Polyak $\beta = -0.5$
- Polyak $\beta = -0.3$
- Polyak $\beta = 0.3$
- GA
- ◆ GA + Dual Restarts
- ★ ν PI $\kappa_p = 14.4$



Monotonicity on κ_p

★ $\kappa_p = 0.0$ ★ $\kappa_p = 0.008$ ★ $\kappa_p = 0.08$ ★ $\kappa_p = 0.8$
★ $\kappa_p = 4.0$ ★ $\kappa_p = 8.0$ ★ $\kappa_p = 9.6$ ★ $\kappa_p = 12.0$
★ $\kappa_p = 14.4$ ★ $\kappa_p = 16.0$ ★ $\kappa_p = 20.0$ ★ $\kappa_p = 24.0$



Cooper

*a library for Lagrangian-based
constrained optimization in
PyTorch*

