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Today's 
agenda

‣Constrained optimization 

‣Dynamics of gradient descent-ascent 

‣The PI controller 

‣Applications of PI in constrained optimization

ν

ν

“If I had been rich, I probably 
would not have devoted myself 

to mathematics.”
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Constrained optimization

g(x)

f(x)minimize
x

f(x)

subject to g(x) ≤ 0m and h(x) = 0n

realizable configurations 

{(g(x), f(x)) | x ∈ ℝd}

unconstrained 
optimum

constrained 
optimum (0,0)

Feasible set 
𝒳 = {x ∈ ℝd | g(x) ≤ 0 and h(x) = 0}

Optimality condition (necessary) 
If  is a local minimum of  over , then x* f 𝒳
∇f(x*)⊤z ≥ 0 ∀z ∈ ℱ(x*)

feasible directions at x*
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Lagrangian problem

min
x

f(x)

subject to g(x) ≤ 0m and h(x) = 0n
min

x
max
λ≥0, μ

𝔏(x, λ, μ) ≜ f(x) + λ⊤g(x) + μ⊤h(x)⇔
Lagrangian

“Lagrange multipliers” or “dual variables”

Role of the multipliers (cf. Karush-Kuhn-Tucker necessary conditions) 
∇f(x*) + ∑m

i=1 λ*i ∇gi(x*) + ∑n
i=1 μ*i ∇hi(x*) = 0

Algorithmic approach 
Saddle points of the Lagrangian correspond to constrained optima. Find them!
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Gradient Descent-Ascent (GDA)

min
x

max
λ≥0, μ

𝔏(x, λ, μ) ≜ f(x) + λ⊤g(x) + μ⊤h(x)Lagrangian

Algorithm 
Initialize ,  and  
Repeat 

 

 

 
If convergence check satisfied; stop 

x0 λ0 = 0 μ0 = 0

μk+1 ← μk + αd ∇μ𝔏(xk, μk, μk) = μk + αh(xk)

λk+1 ← [λk + αd ∇λ𝔏(xk, λk, μk)]+ = [λk + αg(xk)]+

xk+1 ← xk − αp ∇x𝔏(xk, λk, μk)

projected gradient ascent  
maintains non-negativity 
of inequality multipliers
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Dynamics of GDA

λk+1 = [λk + αd ∇λ𝔏(xk, λk, μk)]+ = [λk + αg(xk)]+

g(x)

time
0

λ

time
0

λ*

The multiplier accumulates/integrates the sequence of observed constraint violations

largest multiplier value “overshoots”  λ*

infeasible

feasible
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What we are looking for
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Shortcomings of GDA 
‣ GDA may result in overshoot and oscillations (Gidel et al. 2019; Stooke at al. 2020) 
‣ Especially problematic in safety-related applications

Goal and scope 
‣ Reliable and robust approach for solving Lagrangian optimization problems 
‣ That does not modify training “recipe” for primal variables

Achieving this goal enables wider adoption of Lagrangian optimization in deep learning!

Gidel, G., Askari, R., Pezeshki, M., LePriol, R., Huang, G., Lacoste-Julien, S., and Mitliagkas, I. Negative Momentum for Improved Game Dynamics. In AISTATS, 2019. 
Stooke, A., Achiam, J., and Abbeel, P. Responsive Safety in Reinforcement Learning by PID Lagrangian Methods. In ICML, 2020.



TLDR of our paper

9

‣ Stooke et al. (2020) propose updating the Lagrange multipliers based on PID control, 
improving stability on RL tasks with safety constraints. 

‣ We provide an optimization-oriented analysis of PI, our proposed PI controller 

‣  PI yields stable dynamics and allows for monotonic control on the degree of overshoot 

‣ Conceptual insights explaining why using PI helps 
‣ Experimental evidence in SVMs and sparsity-constrained ResNets 

‣ We prove that PI generalizes standard optimization techniques (including momentum) 
‣ We provide insights as to why momentum methods may aggravate the issues of GDA

ν
ν

ν

ν

Stooke, A., Achiam, J., and Abbeel, P. Responsive Safety in Reinforcement Learning by PID Lagrangian Methods. In ICML, 2020.
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Of all attempted optimizers*, only PI converged successfully to the true solution!ν

*Showing best hyperparameters for each optimizer after grid-search aiming to minimize the distance to  after 5.000 iterations  λ*
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PID control in one slide
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50 meters

Continuous-time (Analog) 

ut = κpet + κi ∫
t

0
eτ dτ + κd

det

dt

The Understanding PID Control playlist by Matlab on YouTube provide an excellent, much more detailed introduction to PID control.

Discrete-time (Digital) 

ut = κpet + κi

t

∑
τ=0

eτ + κd (et − et−1)



A control theory view of 
constrained optimization



Dynamical system’s view of CO
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min
x

f(x) subject to g(x) ≤ 0 and h(x) = 0

plug-in your favourite 
primal optimizer choice

constraint violation is the 
error signal for the controller

ensure non-negativity of 
inequality multipliers

multipliers “tilt” the primal gradient  
 ∇f (x*) + ∑m

i=1 λ*i ∇gi(x*) + ∑n
i=1 μ*i ∇hi(x*)



PI control for constrained optimizationν
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Algorithm: PI update on parameter  

Args: EMA coefficient , proportional ( ) and 

integral ( ) gains; initial conditions  and  

1. Measure the current system error  

2.    (for ) 

3.

ν θ

ν κp

κi ξ0 θ0

et

ξt ← νξt−1 + (1 − ν)et t ≥ 1

θt+1 ← θ0 + κpξt + κi ∑
t
τ=0 eτ

Recursively, θ1 ← θ0 + κpξ0 + κie0

θt+1 ← θt + κiet + κp (ξt − ξt−1)
General case

θt+1 ← θt + κiet + κp (et − et−1)
Case ν = 0

like -ascent∇
new term looks at 

change in constraint 
satisfaction!



Two low-hanging fruits
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θt+1 ← θt + κiet + κp (ξt − ξt−1) = θt + κiet + κp(1 − ν)(et − ξt−1)

Gradient descent:  κp = 0
θt+1 ← θ0 + κiet

Suppose that the error signal is the negative gradient of a loss function : f et = − ∇θ f

Optimistic gradient method (Popov, 1980):  κp = κi; ν = 0

θt+1 ← θt + κi [et + (et − et−1)]
Popov, L. D. A modification of the Arrow-Hurwicz method for search of saddle points. Mathematical notes of the Academy of Sciences of the USSR, 1980.



The updates of PIν
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θνPI
t+1 ← θt + κiet + κp(1 − ν)(et − ξt−1)

θGA
t+1 ← θt + κiet

ΔνPI
ΔGA

=
θνPI

t+1 − θt

θGA
t+1 − θt

=
1

1 − κ [1 −
κξt−1

et ]

The entries of  can be updated in parallel, 
but evolve collectively!

θ

constant that 
depends on  and κi κp

“how large is the PI update 
compared to GA?”

ν

Faster Slower Opposite 
direction



PI generalizes momentum methodsν
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Theorem 1 
Under the same initialization , UnifiedMomentum( , , ) is a special case of 

the PI algorithm with the hyperparameter choices: 

θ0 α β ≠ 1 γ
ν

ν ← β ξ0 ← (1 − β)e0

κi ←
α

1 − β κp ← −
αβ

(1 − β)2
[1 − γ(1 − β)]

Polyak ; Nesterov  γ = 0 γ = 1

Shen, L., Chen, C., Zou, F., Jie, Z., Sun, J., and Liu, W. A. Unified Analysis of AdaGrad with Weighted Aggregation and Momentum Acceleration. In IEEE 
TNNLS, 2018.



PI generalizes momentum methodsν
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PI generalizes momentum methodsν
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Note the sign of the  coefficient for Polyak 
and Nesterov: 

κp

κPolyak
p ← −

αβ
(1 − β)2

κNesterov
p ← −

αβ2

(1 − β)2
≤ 0

non-positive for both positive 
and negative momentum

κi ←
α

1 − β

Spanned  and  coefficients for 
fixed  and changing 

κi κp

α β



The (undesirable?) effect of momentum

19Faster Slower Opposite 
direction

Polyak  ν = − 0.3 Polyak  ν = + 0.3

multiplier increases a 
lot as we get closer 

to feasibility!    



PI in contextν



Positive momentum
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‣ Is a special case of PI 

‣ Induces a negative  

‣ Has been shown to be counterproductive for 

(bi-linear) games 

‣Makes overshoot problem worse

ν

κp



Negative momentum
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‣ Is a special case of PI 

‣ Induces a positive  

‣ Suboptimal for strongly convex games 

(Zhang et al., 2021) 

‣ Alleviates multiplier overshooting, but not 

“over-enforcement” of the constraint

ν

κp

Zhang, G. and Wang, Y. On the Suboptimality of Negative Momentum for Minimax Optimization. In AISTATS, 2021. 



Dual restarts
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‣ Once a constraint is strictly satisfied, set its 

corresponding multiplier to zero (Gallego-

Posada et al., 2022) 

‣ Only applicable to (strictly feasible) inequality 

constraints. 

‣ Relies on exact assessment of constraint 

satisfaction 
‣ Stochasticity; numerical precision; “temporary satisfaction”

Gallego-Posada, J., Ramirez, J., Erraqabi, A., Bengio, Y., Lacoste-Julien, S. Controlled Sparsity via Constrained Optimization or: How I Learned to Stop 
Tuning Penalties and Love Constraints . In NeurIPS, 2022. 



PI controllerν
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‣ Natural generalization of the optimistic 

gradient method, which is (near) optimal for 

games (Mokhtari et al., 2020) 

‣ Monotonic effect of  on the degree of 

overshoot 

‣ One fewer degree of freedom than full PID

κp

Mokhtari, A., Ozdaglar, A. E., and Pattathil, S. Convergence Rate of O(1/k) for Optimistic Gradient and Extragradient Methods in Smooth Convex-Concave 
Saddle Point Problems. SIAM Journal on Optimization, 2020.

constraint does 
not overshoot



Experiments



Hard-margin SVMs
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min
w

1
2

| |w | |2 subject to yi (w⊤xi + b) ≥ 1 for i = 1,…, N

Motivation 
‣ Simple, well behaved convex problem with unique* KKT tuple 
‣ Specialized solvers exist for QCQPs, we use this task for illustration 
‣ Cheap experiment allows fine grid-search to test influence of hyperparameters of 

different algorithms

Experimental setup 
‣ Linearly-separable subset of the Iris dataset 
‣ 70 training samples  70 inequality constraints⇒



Of all attempted optimizers*, only PI converged successfully to the true solution!ν

*Showing best hyperparameters for each optimizer after grid-search aiming to minimize the distance to  after 5.000 iterations  λ*
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Robustness

25

Higher values of  allow for 
choosing larger values of  

(multiplier step-size) and over 
a wider range, while still 
achieving convergence.

κp

κi
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PI provides additional flexibility compared to Polyak and 
Nesterov which is crucial for achieving convergence in this task. 

ν



Training sparse ResNets

27

min
x,ϕ

𝔼z|ϕ [L(x ⊙ z |𝒟)] subject to
𝔼z|ϕ [ | |z | |0 ]

#(x)
≤ ϵ

Motivation 
‣ More realistic deep application with non-convex constraints 
‣ In our prior work we document the issue of overshoot and propose “dual restarts” heuristic

Experimental setup 
‣ Training a ResNet-18 model on CIFAR10 
‣ Structured sparsity with layer-wise or model-wise constraints



Addressing constraint overshooting
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PI achieves high accuracy 
and tightly respects the 

constraints, without 
overshooting 

ν



Monotonicity on κp

29



a library for Lagrangian-based 
constrained optimization in 

PyTorch

Cooper


