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Constrained optimization

minixmize f(x) )

subject to g(x) <0, and h(x) =0,

realizable configurations

Feasible set (gx). f(x)) |x € Rd}

2L ={xeR?gx)<0 and h(x) =0}

Optimality condition (necessary)

If x* is a local minimum of fover X, then st IR ‘ |

Vix®)Tz >0 Vz € F(x*) opeimurt (0.0) Y gx)
R unconstrained
. feasible directions at x* optimum
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Lagrangian problem

min f(x) Lagrangian

— - A T T
subject to g(x) <0, and h(x) =0, min max Lx,A,p) = f(x)+A'gx) +p ' hx)

FiN
\— “Lagrange multipliers” or “dual variables”

Role of the multipliers (cf. Karush-Kuhn-Tucker necessary conditions)
Vs + X7 A Vg o) + Y pE Vi) = 0

Algorithmic approach
Saddle points of the Lagrangian correspond to constrained optima. Find them!



Gradient Descent-Ascent (GDA)

Lagrangian  min /IFT;(?X Rx, A, p) = flx) + 2 "g(x) + p " h(x)
x A20,p

Algorithm
Initialize xy,, Ao = 0 and py; =0

Repeat

projected gmdient ascent

ﬂk+1 <« I’lk + ad Vﬂg(xk’ I’lka ﬂk) — ﬂk -T- ah(xk) [- e non’negativity
Ar1 < [’lk + 0y V) R, Ay ﬂk)] = (A4 + ag(xk)] of inequality multipliers

Xir1 < X — @ V R A 1)

If convergence check satisfied; stop



Dynamics of GDA

M1 = [+ gV R0, A )| "= A + ag(xy)] ’

g(x) A

largest multiplier value “overshoots” A*
¢

infeasible

The multiplier accumulates/integrates the sequence of observed constraint violations
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What we are looking for

Shortcomings of GDA

> GDA may result in overshoot and oscillations (Gidel et al. 2019; Stooke at al. 2020)
> Especially problematic in safety-related applications

Goal and scope

> Reliable and robust approach for solving Lagrangian optimization problems
> That does not modify training “recipe” for primal variables

Achieving this goal enables wider adoption of Lagrangian optimization in deep learning!

o o Gidel, G., Askari, R., Pezeshki, M., LePriol, R., Huang, G., Lacoste-Julien, S., and Mitliagkas, |. Negative Momentum for Improved Game Dynamics. In AISTATS, 2019.
Stooke, A., Achiam, J., and Abbeel, P. Responsive Safety in Reinforcement Learning by PID Lagrangian Methods. In ICML, 2020.



TLDR of our paper

> Stooke et al. (2020) propose updating the Lagrange multipliers based on PID control,

improving stability on RL tasks with safety constraints.

» We provide an optimization-oriented analysis of LPl, our proposed Pl controller
> LUPI yields stable dynamics and allows for monotonic control on the degree of overshoot
» Conceptual insights explaining why using vPI helps

> Experimental evidence in SVMs and sparsity-constrained ResNets

» We prove that vPl generalizes standard optimization techniques (including momentum)

> We provide insights as to why momentum methods may aggravate the issues of GDA

(o) Q Stooke, A., Achiam, J., and Abbeel, P. Responsive Safety in Reinforcement Learning by PID Lagrangian Methods. In ICML, 2020.



Overview of results

Of all attempted optimizers*, only vPl converged successfully to the true solution!

[Ae — X |2 Multiplier for constraint 64 Violation for constraint 64
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-=== GA + Dual Restarts a = 1.6e — 03
—— Adam a = 3.8¢ — 04

—— Polyak 8= — 0.3, a=7.0e — 03

VPl Kk, =70, k;=1.1

*Showing best hyperparameters for each optimizer after grid-search aiming to minimize the distance to A* after 5.000 iterations
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PID control in one slide

Desired altitude

== 50 meters = m S s s m— - —— - — -
: : 0 Plant B Measurement | | _l
Changes in altitude Current al- ' + O

: _I; due to propeller thrust titude from '
0 P and disturbances P drone’s sensors ) |

! l
Il s e e et e e e e e e e — — — — — — —— — — —— — — — -
i
| O< (PID Controller -
0 ~ +  Control signal L Error = Measured - Desired
i
i
i
i
i
: Continuous-time (Analog) Discrete-time (Digital)

rl d t
I e
4 —

: u,= ke +K | e dr+x,— U, = K, + K Z e.+K;(e,—e_;)
i 70 dr =0
i
i
i

(o) © The Understanding PID Control playlist by Matlab on YouTube provide an excellent, much more detailed introduction to PID control.



A control theory view of
constrained optimization

O®O0



Dynamical system’s view of CO

min f(x) subjectto g(x) <0 and h(x) =10

At+1 Pl‘OJCCthIl Ait1 Inequality Controller Error =g(z¢) — 0 04 —
Atp1 = VPL (A, g(x4), Ao) . Target level = 0
+

Plant Lagrangian dynamics
x; = approx. argmm L(x, py, M) =

@) + il k(@) + A g(a)

N g(x)

Ly
—>[ Measurement

Y, h(th)

)

+
Hi+1 ( Equality Controller } Error = h(z;) -0 Y

.=
L pir1 = VPT (py, h(zy), po) O Target level = 0




vPI control for constrained optimization

Recursively, 8, < 0, + k. &, + ke
Algorithm: vPl update on parameter 0 Yr Y1 0 T K80 + K€

Args: EMA coefficient v, proportional (x,) and 0, —0,+Ke,+x (E—E_))
t+1 t it T Rp \&¢ t—1

integral (k) gains; initial conditions &, and 6, General case

1. Measure the current system error e,

like V-ascen
2.& — vE_ + (1 —v)e, (forr> 1) TN

6 <—H+K€+K(3_el>
3.0, — 0, +xE+1.Y e ! DU
t+1 0 pgt 127;:0 T CaSe UV = O



Two low—hanging fruits

0., 0 +ke + K, (’g’t — 5;-1) =0.+ ke, + Kp(l — V) (et — ’g't_l)
Suppose that the error signal is the negative gradient of a loss function f: e, = — V, f

Gradient descent: K, = 0

0., < 0),+«xe,

Optimistic gradient method (Popov, 1980): K, = KjV = 0

0.1 <0 +x [et + (et — et—l)]



The updates of LP1

“how Zarge is the vPI update

. . compared to GA?”
The entries of @ can be updated in parallel, ¢ P

but evolve collectively!

HUPI «— 92‘ + Ke, + Kp(l — V)(et — é—l)

r+1
GA
0.1 < 0,+ ke,
ovPl _ g I |
AvPl G r 1 - K&
~ gGA 1 -
AGA o= — 6, l —«x ] e
N
K constant that
depends on k; and k, Faster  Slower Opposite

O (o] direction



UPI generalizes momentum methods

Theorem 1 Polyak y = 0; Nesterov y = 1
Under the same initialization 6,, UnifiedMomentum(a, f # 1, y) is a special case of

the VPl algorithm with the hyperparameter choices:

K — K, < ap [1 —y(1=p)]
| 7 (1= p)>




UPI generalizes momentum methods

Algorithm &o Kp Ki v

ap Q
UNIFIEDMOMENTUM(, 3, 7Y) (1 — B)eg L [1—~v(1—p6)] 15 B

o Q
POLYAK(«, ) (1—P5)eg L 1— 3 B

a3? o

1 — _

NESTEROV (v, [3) (1 —B)eg 1_5) - B
P1 €0 Kp Ki 0
OPTIMISTICGRADIENTASCENT () e Q o 0
vPI (K;, kp, V) In practice 0 K Ko %
GRADIENTASCENT () — 0 o 0




UPI generalizes momentum methods

1= p ® Polyak X Nesterov

Note the sign of the k, coefficient for Polyak

and Nesterov:

Polyak ap

Kp ) 2
(1 — IB ) non-positive for both positive
, \[ and negative momentum

Nesterov ap <0

14 ) 2 =

(I —=0)

Spanned k; and , coefficients for

oO®O0 fixed a and changing p

0.5



The (undesirable?) eftect of momentum

A Av Pl multiplier increases a
A (1 | "~ ot as we get closer
T

to feasibility.’

Polyak v =+ 0.3

0O®o0 Faster  Slower Opposite

direction



UPl 1n context
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Positive momentum

» Is a special case of P!

> Induces a negative k,

» Has been shown to be counterproductive for
(bi-linear) games

> Makes overshoot problem worse

Violation
()]
(@)

-

Multiplier
(\9
(W)

0.0

— GA == Polyak 3=0.3

0 50 100 150 200

0 50 100 150 200

Epoch




Negative momentum

— GA Polyak 3= — 0.3
== Polyak =0.3
> |s a special case of VPI g 50
5
> Induces a positive , SN N R R
» Suboptimal for strongly convex games 0 50 100 150 200

(Zhang et al., 2021)

el
S

> Alleviates multiplier overshooting, but not

"over-enforcement” of the constraint

Multiplier
(\®)
DN

S
o

0 50 100 150 200
Epoch



Dual restarts

> Once a constraint is strictly satisfied, set its
corresponding multiplier to zero (Gallego-
Posada et al., 2022)

> Only applicable to (strictly feasible) inequality
constraints.

> Relies on exact assessment of constraint

satisfaction

> Stochasticity; numerical precision; “temporary satisfaction”

O®o0

— GA Polyak 5= — 0.3
== Polyak 5 =0.3 - GA + Dual Restarts
g%
5
S
=0
0 50 100 150 200
Epoch

S
=

Multiplier
\9
N
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o
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vP1 controller

— GA GA + Dual Restarts
== Polyak #=10.3 VPl k, =16.0
Polyak = — 0.3

> Natural generalization of the optimistic
. . . . _§ >0 constraint does
gradient method, which is (near) optimal for = " not overshoot
>
games (Mokhtari et al., 2020) !
> Monotonic effect of k, on the degree of
overshoot =i

> One fewer degree of freedom than full PID

Multiplier
(\®)
N

0.0




Eerriments
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Hard—margin SVMs

1
min5| |w||* subjectto y,(w'x;+b) > 1 for i=1,...,N

w

Motivation

> Simple, well behaved convex problem with unique* KKT tuple

> Specialized solvers exist for QCQPs, we use this task for illustration

» Cheap experiment allows fine grid-search to test influence of hyperparameters of
different algorithms

Experimental setup

> Linearly-separable subset of the Iris dataset

> 70 training samples = 70 inequality constraints

O®o0
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Of all attempted optimizers*, only vPl converged successfully to the true solution!

| A — X * |2 Multiplier for constraint 64 Violation for constraint 64
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— GAa=7.0e —03

-=== GA + Dual Restarts o = 1.6e — 03
—— Adam a = 3.8¢ — 04

—— Polyak 3= — 0.3, a=7.0e — 03

VPl Kk, =70, k;=1.1

*Showing best hyperparameters for each optimizer after grid-search aiming to minimize the distance to A* after 5.000 iterations Q



Robustness

Higher values of «, allow for

choosing larger values of «;
(multiplier step-size) and over
a wider range, while still

achieving convergence.

Multiplier step-size

Polyak 3=-0.5
Polyak 3=10.7
GA

- (GA + Dual Restarts

VPl Kk, =1
VPl Kk, = 10
VPl K, =70
Adam
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50
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50

VPl provides additional flexibility compared to Polyak and
Nesterov which is crucial for achieving convergence in this task.
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Training sparse ResNets

Eyp [ 11211] y

inE_, [L(x ©z|9 bject t
T,lbn z|¢[ ( | )] subject to #0)

Motivation
> More realistic deep application with non-convex constraints

> In our prior work we document the issue of overshoot and propose “dual restarts” heuristic

Experimental setup
> Training a ResNet-18 model on CIFAR10

> Structured sparsity with layer-wise or model-wise constraints



Addressing constraint overshooting

Polyak 3= — 0.5 @ Polyak 3= —0.3

B GA ® GA +Dual Restarts & Pl x,=14.4
Train Validation

VPl achieves high accuracy 97.5 p |
. | 875 , @

and tightly respects the = 970 ® i

constraints, without 7 | 870 |

& 96.5 : :

overshooting 2 . | s6s |

< e | |

® | 86.0 |- |

20 30 20 30

Global Density (%) Global Density (%)

® Polyak 3=0.3




Monotonicity on K,

kp = 0.0 kp = 0.008 Ky = 0.08 Kp = 0.8
kp=4.0 % k,=28.0 * k,=9.6 * k,=12.0
* k,—=144 % k,=16.0 * k,=20.0 % K, =24.0

Train Validation
975 x* | 830 X
S ,t“.'* F_r
— ¥ | /w' .
g" 97.0 * | R | l
7 [ = 7
g /// : 87.0 :
3 96.5 | |
<: /// : :
96.0 : 26.0 |
20 30 20 30
Global Density (%) Global Density (%)




Cooper ioh

constrained optimization in

Py'Torch

oO® o0



