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Background: Message-Passing Neural Networks (MPNNs)

® MPNNSs has achieved successes in various applications, from recommend-
dation system to molecular dynamics analysis

Two Basic operations in MPNNSs:

(1) Message generation : Message generation
through self-representation of individual nodes

m{’ = MSG® (h{ ™)

(2) Aggregation: Message aggregation from hf,l) = AGG® ({mg), U E N(v)})
neighborhood
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Background: Two limitations of MPNNs

® Over-smoothing and Over-squashing are two key limitations for developing deep MPNNs

Over-smoothing Issue: As the the number of message
passing increases, the node representations become

Indistinguishable. [Li, AAAI 2018]
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Appropriate smoothing helps with classification, but over-
smoothing damages performance. [Keriven, NeurlPS 2022]

Over-squashing Issue: Information from distant nodes gets
excessively compressed, hindering the effective propagation

of node features in graph. [Alon, ICLR 2021]
h}gr—l—l)

h(T+1)

0T,

< (aﬁ)r—}—l (Ar—i_l)is-
[Topping, ICLR2022]

As distance rincreases, (A"T1);s gives an exponential decay.
Node representation is insensitive to node blue

Due to over-squashing, the receptive field of GNNs has
been greatly restricted. Deep MPNNs lacks effectiveness.
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Related Works: Existing strategies to overcome the above two issues

Strategy 1 - Graph Rewiring: Graph rewiring optimizes graph topology through editing topology, to
migrate over-smoothing and over-squashing. It can be divided into the following two categories

Rule-based Rewiring

DropEdge[Rong Y, ICLR2020]:
Random edge removal during training

Adrop - A_Ala

SDRF[Topping, ICLR2021]:
Edge Addition based on graph curvature

Coloring Edges Based on the Sign of Graph Curvature

Learning-based Rewiring

Graphormer[Ying C, NerulPS2021]:
Learning graph structures with attention mechanism

Q=HWgy, K=HWg, V=HWy,
QK'
NPk
NAGphormer[Chen j, ICLR2023]:

using the attention mechanism rewiring sub-graph

. N
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Main drawback: Disrupt the original graph structure, maybe lead to performance degradation.




Related Works: Existing strategies to overcome the above two issues

Strategy 2 -Regularization : Constraining node representations to be distinctive during training can effect-
ively prevent over-smoothing. It can be divided into the following three categories

EGNN([Zhou, NeurlPS2021]:
Enforcing node similarity through
Dirichlet Energy constraint

GroupNorm([Zhou, NeurlPS2020]:
Normalize similar groups of nodes
independently

NodeNorm[Zhou, ICLR2021]:
Normalize node features based on
standard deviation to control the
variance of node features.

Constraining Node Representations

Constraining Info Flow

G2[Rusch, ICML2022]:
Dynamic update of node representa-
tions based on gradient adaptation

GatedGCN|[Bresson, Arxiv2018]:
Introduce a gating mechanism to
control the information flow, learn-
ing which edges are more important
for down-steam tasks

OPEN[Yang, NeurlPS2022]:

modeling relevances between pro-
pagations by whole ego-network and
multi-channels

Inherent Constraining

ACMP[Wang, ICLR2023]:

Simulating a particle system with
attractive and repulsive forces,
thereby maintaining feature diversity.

GraphCON[Rusch, ICML2023]:

the feature update of each node
(oscillator) depends not only on its
neighboring nodes but also on the
overall dynamics of the system.

GRAFF[ Giovanni, TMLR2023]:
linear graph convolutions minimize
the Dirichlet energy

Main drawback: these regularizations may degrade model performance and lack of effective solutions for over-squashing.




Related Works: Existing strategies to overcome the above two issues

Strategy 3 - Residual connection : Fusing shallow GNN representations to migrate over-smoothing or
over-squashing. It can be divided into the following two categories:

Residual Connections with Initial Features

GCNII[Chen, ICML2020]: Initial residual connections and identity mapping

H =0 (((1-a) PHO+aHO) (1-80)L,+8,W "))

Residual Connections with Shallow Features

Drew|[Gutteridge, ICML2023]:

DRew-MPNN

Main drawback: Only alleviates over-smoothing and over-squashing, but doesn't fundamentally resolve.
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Method: What is heterophily mixing?

Heterophily mixing is the mixture of messages with different semantics (e.g., categories information) in
aggregation of message passing

- —o - —©

The message aggregation of nodes 2 and 3 triggered heterophily mixing.

o -

Heterophily mixing can spread as the number of layers increases.



Method: Heterophily mixing restricts the capability of deep MPNNs

Over-smoothing and over-squashing are both rooted in information loss resulting from heterophily
mixing in aggregation of message passing

Al. Vanilla GCN inherently leads to oversmoothing issue
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B1. Vanilla GCN inherently leads to oversquashing issue
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Method: Heterophily mixing restricts the capability of deep MPNNs

Over-smoothing and over-squashing are both rooted in information loss resulting from heterophily
mixing in aggregation of message passing

| - ing!
q@l Over-smoothing!

Over-squashing!



Method: MTGCN Core Intuition

If messages are separated and independently propagated in tracks according to their category semantics,
heterophilic mixing can be prevented. ======) over-smoothing and over-squashing will be addressed effectively

A2. The proposed MTGCN can tackle oversmoothing issue

- 1. Loading
fc(:tlu;lc]sgonto Lolayer K Nodes belonging to the same category are expected
track to associate with the same track, governed by a
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B2. The proposed MTGCN can tackle oversquashing issue

node-track affiliation matrix.

Lolayer




Method: MTGCN Core Intuition

If messages are separated and independently propagated in tracks according to their category semantics,
heterophilic mixing can be prevented. ======) over-smoothing and over-squashing will be addressed effectively

A2. The proposed MTGCN can tackle oversmoothing issue
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1. Loading

Nodes belonging to the same category are expected
to associate with the same track, governed by a
node-track affiliation matrix.

2. Multi-Track Message Passing ( MTMP )
the initial messages are updated by propagating and
aggregating in respective tracks over L iterations.



Method: MTGCN Core Intuition

If messages are separated and independently propagated in tracks according to their category semantics,
heterophilic mixing can be prevented. ======) over-smoothing and over-squashing will be addressed effectively

A2. The proposed MTGCN can tackle oversmoothing issue
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1. Loading

Nodes belonging to the same category are expected
to associate with the same track, governed by a
node-track affiliation matrix.

2. Multi-Track Message Passing ( MTMP )
The initial messages are updated by propagating and
aggregating in respective tracks over L iterations.

3. Acquiring

Based on the node-track affiliation matrix, nodes
acquire the updated messages in their affiliated
tracks to construct their node representation.

How to obtain an accurate node-track
affiliation matrix?



Method: MTGCN detailed steps

C. Calculating Track Prototype and Auxiliary Node Representation

< Graph G
Auxiliary Model W 4<A:]a):::;srgt¥gg?ﬁn'>

< Pseudo Labels

/ Representative
- MT(.;CN > Nodes of Each Track Prototype P>
at preceding stage \

Category B

D. Multi-stage Pipeline

C1: Training auxiliary model
We employ the simple 2-layer GCN[! as our auxiliary model W

W is trained using both trainset and pseudo labels (get by prior stage).

C2: calculate track prototype by auxiliary model

1
Pr.= A ZveB 5(3/1), T) | Hy,.

auxiliary model embedding

B comprises representative node.
P is the category center of each category of nodes

[1] Kipf, Thomas N., and Max Welling. "Semi-Supervised Classification with Graph Convolutional Networks." International Conference on Learning

Representations. 2016.



Method: MTGCN detailed steps

C1: Training auxiliary model
We employ the simple 2-layer GCN[ as our auxiliary model W

W is trained using both trainset and pseudo labels (get by prior stage).

=

B. Calculating Node-Track Affiliations

<Track Prototype P C2: calculate track prototype by auxiliary model

4 Attention Mechanism Node-Track 1
softmax(H, W (PWg)T) Affiliations F _ .
<Auxiliary Represen- PT,Z - A veEB 6(y'va T) H’U :

.
tation of Node H

7 N— auxiliary model embedding

B comprises representative node.
P is the category center of each category of nodes

B1l: Get Node-Track Affiliations
F., = softmax(H, Wx(PWg)').

[1] Kipf, Thomas N., and Max Welling. "Semi-Supervised Classification with Graph Convolutional Networks." International Conference on Learning
Representations. 2016.



Method: MTGCN detailed steps

A. Multi-Track Graph Convolutional Networks (MTGCN)
Graph : o
D
< Node-Track MO = M= e p(D) fation 2
Affiliations F
Node Classification
A

Al. Loading

MP | =g(X,,) if [Fr.|=1

b)

MP |=0 if |Fr,|=0,

Initial Message Node-track affiliations

g : R™ — R? maps node raw feature to message space

A2. Multi-Track Message Passing ( MTMP )
My, = (D VPAD VMY + oMy
A3. Acquiring

- (ZTG‘T Frop M (L) )E

Node-track affiliations Learnable weight

~»




Method: Why MTMP Gains Improvements?

Capacity 1: Preventing heterophily mixing

100%

1 @ Nodes in Cora —e— w/o initial residual
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A. Node representations B. Relationship between two accuracies

Using initial residual connections can achieve higher accuracy when
F., low.

Accuracy of F'. ,, t — heterophily mixing 1 — Classify acc t

Capacity 2: Facilitating long-distant information flow

MPNNs

0-60-6-0-0

message passing is inherently tied to the fusion of messages
into a node’s feature over-squashing

MTMP

Trackl: 0‘*9“9_’_’9
Track2: @—6O—©O-@—0O

It is attributed to the fact that MTMP achieves the decoupling
of messages and node representations.

Neighborhood(S)

Capacity 3: Enhancing separation condition[Wei, ICLR2021]

Table 1. Statistics of separation conditions p

Expansion assumption:

P(Neighborhood(S)) > min{ cxP(S), 1}

Separation assumption:
E,[R(G*,x)] < ufor u = small H

Different gt classes are sufficiently separated

Datasets | Cora | Citeseer | Pubmed
w in vanilla MPNNs | 034 | 040 | 035 MTMP can achieve
p in our proposed MTMP | 0.19 | 029 | 020 better performance
err(G) < 2 err(Gy;) + 2
—c-1 )Tk

pseudolabeler
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Experiments: node classification task

Semi-supervised node classification Full-supervised node classification

Table 2. Comparisons of node classification accuracy in semi- Table 3. Comparisons of node classification accuracy in full-
supervised setting (%). The best two models are emphasized supervised setting (%). The best two models are emphasized
in red (best) and blue (second best). in red (best) and blue (second best).
Datasets Cora Cite. Pubm. Co.CS Co.Phys Datasets Cora Cite. Pubm. Comn. Texas Wisc.
Homophily 0.81 0.80 0.74 0.30 0.11 0.21
g§¥ 2(1)(2)} ;84811 ;ggé 3(1)(1); gggi GCN 85.77 73.68 88.13 5270 52.16 48.92
. ’ ) ) ’ ’ GAT 86.37 7432 87.62 5432 58.38 4941
Self-Tran 8227 7324  80.32 - - GCNII 88.49 77.13 9030 74.86 69.46 74.12
DisenGCN ~ 83.30 7244  80.30  90.96  94.28 GeomGCN 8527 77.99 9005 60.81 67.57 64.12
GCNII 8530 73.10 80.10 8850  93.90 LINKX 8464 7319 8786 77.84 7460 75.49
EGNN 85.70 - 80.10 - 93.30 GGCN 87.95 77.14 89.15 85.68 84.86 86.86
GRAND++ 83.60 73.40 78.80 - - H2GCN 87.87 77.11 8949 82.70 84.86 87.65
PDE-GCN 84.30 75.60 80.60 - - ACM-GCN 88.25 77.12 89.71 8595 86.76 87.45
GraphCON 8420 74.20 79 .40 - - Sheaf 8690 76.70 8949 8486 85.05 89.41
ACMP 8491 7375 79.01 84.02 93.47 GRAFF 87.61 7692 8895 83.24 88.38 8745
GREAD 84.72 7331 78.17 88.52 92.24 Half-hop 83.48 7140 88.15 7236 69.21 70.78

GraphCON  88.03 7496 8643 84.30 8540 87.80

MTGCN-s1 90.61 7646 8843 8421 84.21 90.20
MTGCN-s2 89.68 77.06 88.11 86.84 92.10 88.23

MTGCN-s1  85.00 7333 8031  87.61 94.30
MTGCN-s2 8597 7335 81.10 92.15 94.57

MTGCN-s3 8640  74.60 8092 91.57  94.55 MTGCN-s3 9042 77.36 8826 86.84 89.47 90.20
MTGCN-s4 8544 73.88 8033 9254 9472 MTGCN-s4 90.60 7691 88.01 89.47 9210 90.20
* MTGCN demonstrates superior performance * MTGCN is equally effective on heterogeneous graphs

* The multi-stage training strategy is highly effective * The multi-stage training strategy has limited effectiveness.




Experiments: solve over-smoothing

Table 4. Semi-supervised node classification accuracy (%) and group distance ratio R, across various model depth.

Dataset Cora Citeseer Pubmed

# of layers 2 4 8 16 32 64 2 4 8 16 32 64 2 4 8 16 32 64
GCN 80.0 804 695 649 603 287 | 708 676 302 183 250 200|790 76,5 612 409 224 353
GAT 812 798 623 319 319 149 | 70.8 67.0 485 23.1 23.1 181 | 786 769 765 413 413 40.7
DropEdge 82.8 820 758 757 625 495 | 723 706 614 572 416 344 | 796 794 781 785 7T7.0 615
JKNet - 80.2 80.7 802 81.1 71.5 - 68.7 677 698 682 634 - 780 78.1 726 724 745
Incep - 776 76.5 81.7 81.7 80.0 - 693 684 702 68.0 675 - 777 779 749 - -
GCNII 80.2 823 828 835 849 853|661 667 706 720 732 731|777 782 788 803 79.8 80.1
PDE-GCN 82.0 836 840 842 843 843|746 750 752 7155 756 755|793 806 80.1 804 80.2 80.3
DisenGCN 776 833 827 829 822 69.1 | 70.1 693 713 722 706 654 | 764 765 803 788 76.6 750
MTGCN 80.5 834 849 862 859 864 | 701 728 729 746 738 740 | 787 80.7 80.5 80.8 81.0 8l.1

R, of MTGCN | 0.249 0.313 0.368 0.383 0.382 0.381 | 0.293 0.328 0.368 0.383 0.383 0.382 | 0.837 0918 1.031 1.076 1.035 1.027

C dinte'r
(C - 1)2 dintra

group distance ratio R, =

Robustness of MTGCN to depth: MTGCN maintains a stable classification accuracy and group distance ratio (Rg)!!!
when increasing the network depth.

"Depth" learning capability of MTGCN: With the increase in the number of layers in MTGCN, its accuracy in
classification tasks shows a gradual improvement.

[1]Zhou, Kaixiong, et al. "Towards deeper graph neural networks with differentiable group normalization." Advances in neural information processing systems 33
(2020): 4917-4928.



Experiments: Effectively solve over-squashing

Example of the Tree-NeighborsMatch task!!! Tree-NeighborsMatch Result
100% ] * —_—
\.
2 80% 1 9
&
— @
=
. - Q
(a) (B) (c¢) (D) E ) F) G) H) g60% e ®
T/ﬁ /i\_j: f :ﬁ/\\\; ?/'j/ z\/'j]z/ljuf/ljl = —o— GCN \
- 8 40% 1 —®— GAT . .
3= o
MTGCN demonstrates excellent performance: its effectiveness 87 GIN .\ \
in addressing the over-squashing. &R gy | = GGNN t "
QO 20% —8— DisenGCN .\,\.\0
. .\.\.\.
Performance degradation of other models: When the depth of —&— MTGCN T
the tree exceeds five layers, the training accuracy of all models, 3 1 ; 2

except for MTGCN, significantly decreases.

Depth of trees in the data
Slight performance decrease of MTGCN on deep trees: This could
be attributed to MTGCN's high spatial complexity.

[1]Alon, Uri, and Eran Yahav. "On the Bottleneck of Graph Neural Networks and its Practical Implications." International Conference on Learning
Representations. 2020.
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Conclusion

» Heterophilic mixing is one of the key factors leading to over-smoothing

and over-squashing.

» A novel Multi-Track Graph Convolutional Network (MTGCN) designed to

counteract heterophilic mixing.

» Empirical validation shows that MTGCN performs well and solves the

problems of over-smoothing and over-squashing.

Paper: https://openreview.net/pdf?id=1sRuv4cnuZ

‘ Code: https://github.com/XJTU-Graph-Intelligence-

Lab/mtgcn

If you have any problems, please feel free to contact me:
liyul998 @stu.xjtu.edu.cn, peihongbin@xjtu.edu.cn
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