

Multi-Track Message Passing: Tackling Over-smoothing and Over-squashing in Graph Learning via Preventing Heterophily Mixing

Presenter: Yu Li

Xi'an Jiaotong University July 2024

1. Background

2. Related Works

3. Method

4. Experiments

Background: Message-Passing Neural Networks (MPNNs)

 MPNNs has achieved successes in various applications, from recommenddation system to molecular dynamics analysis

Two Basic operations in MPNNs:

(1) Message generation : Message generation through self-representation of individual nodes

(2) Aggregation: Message aggregation from neighborhood

$$\mathbf{m}_{u}^{(l)} = \mathsf{MSG}^{(l)}\left(\mathbf{h}_{u}^{(l-1)}\right)$$

$$\mathbf{h}_{v}^{(l)} = \mathrm{AGG}^{(l)}\left(\left\{\mathbf{m}_{u}^{(l)}, u \in N(v)\right\}\right)$$

Background: Two limitations of MPNNs

• **Over-smoothing** and **Over-squashing** are two key limitations for developing deep MPNNs

Over-smoothing Issue: As the the number of message passing increases, the node representations **become Indistinguishable**. [Li, AAAI 2018]

Appropriate smoothing helps with classification, but oversmoothing damages performance. [Keriven, NeurIPS 2022] **Over-squashing Issue:** Information from distant nodes gets excessively compressed, **hindering the effective propagation of node features in graph**. [Alon, ICLR 2021]

As distance r increases, $(\hat{A}^{r+1})_{is}$ gives an exponential decay. Node green representation is insensitive to node blue

Due to over-squashing, the receptive field of GNNs has been greatly restricted. Deep MPNNs lacks effectiveness.

1. Background

2. Related Works

3. Method

4. Experiments

Related Works: Existing strategies to overcome the above two issues

Strategy 1 - Graph Rewiring: Graph rewiring optimizes graph topology through editing topology, to migrate over-smoothing and over-squashing. It can be divided into the following two categories

Rule-based Rewiring

 DropEdge[Rong Y, ICLR2020]: Random edge removal during training

$$A_{\text{drop}} = A - A',$$

• **SDRF**[Topping, ICLR2021]: Edge Addition based on graph curvature

Coloring Edges Based on the Sign of Graph Curvature

Learning-based Rewiring

 Graphormer[Ying C, NerulPS2021]: Learning graph structures with attention mechanism

$$\begin{split} Q &= H W_Q, \quad K = H W_K, \quad V = H W_V, \\ A &= \frac{Q K^\top}{\sqrt{d_K}}, \quad \operatorname{Attn}\left(H\right) = \operatorname{softmax}\left(A\right) V, \end{split}$$

• **NAGphormer**[Chen j, ICLR2023]: using the attention mechanism rewiring sub-graph

Main drawback: Disrupt the original graph structure, maybe lead to performance degradation.

Related Works: Existing strategies to overcome the above two issues

Strategy 2 -Regularization : Constraining node representations to be distinctive during training can effectively prevent over-smoothing. It can be divided into the following three categories

Constraining Node Representations

EGNN[Zhou, NeurIPS2021]: Enforcing node similarity through **Dirichlet Energy** constraint

GroupNorm[Zhou, NeurIPS2020]: Normalize similar **groups of nodes independently**

NodeNorm[Zhou, ICLR2021]: Normalize node features based on standard deviation to control the variance of node features.

Constraining Info Flow

G²[Rusch, ICML2022]: Dynamic update of node representations based on **gradient adaptation**

GatedGCN[Bresson, Arxiv2018]: Introduce a **gating mechanism** to control the information flow, learning which edges are more important for down-steam tasks

OPEN[Yang, NeurIPS2022]: modeling **relevances between propagations** by whole ego-network and multi-channels

Inherent Constraining

ACMP[Wang, ICLR2023]: Simulating a particle system with attractive and repulsive forces, thereby maintaining feature diversity.

GraphCON[Rusch, ICML2023]: the feature update of each node (oscillator) depends not only on its neighboring nodes but also on the **overall dynamics of the system**.

GRAFF[Giovanni, TMLR2023]: linear graph convolutions minimize the Dirichlet energy

Main drawback: these regularizations may degrade model performance and lack of effective solutions for over-squashing.

Related Works: Existing strategies to overcome the above two issues

Strategy 3 - Residual connection : Fusing shallow GNN representations to migrate over-smoothing or over-squashing. It can be divided into the following two categories:

Residual Connections with Initial Features

GCNII[Chen, ICML2020]: Initial residual connections and identity mapping

$$\mathbf{H}^{(\ell+1)} = \sigma \left(\left((1 - \alpha_{\ell}) \tilde{\mathbf{P}} \mathbf{H}^{(\ell)} + \alpha_{\ell} \mathbf{H}^{(0)} \right) \left((1 - \beta_{\ell}) \mathbf{I}_{n} + \beta_{\ell} \mathbf{W}^{(\ell)} \right) \right)$$

Residual Connections with Shallow Features

Main drawback: Only alleviates over-smoothing and over-squashing, but doesn't fundamentally resolve.

1. Background

2. Related Works

3. Method

4. Experiments

Method: What is heterophily mixing?

Heterophily mixing is the mixture of messages with different semantics (e.g., categories information) in aggregation of message passing

Method: Heterophily mixing restricts the capability of deep MPNNs

Over-smoothing and **over-squashing** are both rooted in information loss resulting from *heterophily mixing* in aggregation of message passing

A1. Vanilla GCN inherently leads to oversmoothing issue

B1. Vanilla GCN inherently leads to oversquashing issue

Method: Heterophily mixing restricts the capability of deep MPNNs

A1. Vanilla *GCN* inherently leads to oversmoothing issue

Over-smoothing and **over-squashing** are both rooted in information loss resulting from *heterophily mixing* in aggregation of message passing

B1. Vanilla *GCN* inherently leads to oversquashing issue

Over-squashing!

Method: MTGCN Core Intuition

If messages are **separated and independently propagated in tracks** according to their category semantics, heterophilic mixing can be prevented. over-smoothing and over-squashing will be addressed effectively

A2. The proposed MTGCN can tackle oversmoothing issue

1. Loading

Nodes belonging to the same category are expected to associate with the same track, governed by a node-track affiliation matrix.

B2. The proposed MTGCN can tackle oversquashing issue

Method: MTGCN Core Intuition

If messages are **separated and independently propagated in tracks** according to their category semantics, heterophilic mixing can be prevented. over-smoothing and over-squashing will be addressed effectively

A2. The proposed MTGCN can tackle oversmoothing issue

B2. The proposed MTGCN can tackle oversquashing issue

1. Loading

Nodes belonging to the same category are expected to associate with the same track, governed by a node-track affiliation matrix.

2. Multi-Track Message Passing (MTMP)

the initial messages are updated by propagating and aggregating in respective tracks over *L* iterations.

Method: MTGCN Core Intuition

If messages are **separated and independently propagated in tracks** according to their category semantics, heterophilic mixing can be prevented. over-smoothing and over-squashing will be addressed effectively

A2. The proposed MTGCN can tackle oversmoothing issue

B2. The proposed MTGCN can tackle oversquashing issue

1. Loading

Nodes belonging to the same category are expected to associate with the same track, governed by a node-track affiliation matrix.

2. Multi-Track Message Passing (MTMP)

The initial messages are updated by propagating and aggregating in respective tracks over *L* iterations.

3. Acquiring

Based on the node-track affiliation matrix, nodes acquire the updated messages in their affiliated tracks to construct their node representation.

How to obtain an accurate node-track affiliation matrix?

Method: MTGCN detailed steps

C1: Training auxiliary model

We employ the simple 2-layer GCN^{[1]} as our auxiliary model Ψ

 Ψ is trained using both **trainset** and **pseudo labels** (get by prior stage).

C2: calculate track prototype by auxiliary model

$$\mathbf{P}_{T,:} = rac{1}{\Delta} \sum_{v \in \mathcal{B}} \delta(y_v, T) \cdot \mathbf{H}_{v,:}$$

auxiliary model embedding

 \mathcal{B} comprises representative node.

P is the category center of each category of nodes

[1] Kipf, Thomas N., and Max Welling. "Semi-Supervised Classification with Graph Convolutional Networks." International Conference on Learning Representations. 2016.

Method: MTGCN detailed steps

C1: Training auxiliary model

We employ the simple 2-layer GCN^{[1]} as our auxiliary model Ψ

 Ψ is trained using both trainset and pseudo labels (get by prior stage).

C2: calculate track prototype by auxiliary model

$$\mathbf{P}_{T,:} = rac{1}{\Delta} \sum_{v \in \mathcal{B}} \delta(y_v, T) \cdot \mathbf{H}_{v,:}$$

auxiliary model embedding

 \mathcal{B} comprises representative node. \mathbf{P} is the category center of each category of nodes

B1: Get Node-Track Affiliations

$$\mathbf{F}_{:,v} = \operatorname{softmax}(\mathbf{H}_{v,:}\mathbf{W}_{K}(\mathbf{PW}_{Q})^{\mathrm{T}}).$$

[1] Kipf, Thomas N., and Max Welling. "Semi-Supervised Classification with Graph Convolutional Networks." International Conference on Learning Representations. 2016.

A1. Loading

$$\mathcal{M}_{T,:,:}^{(\ell)} = (\tilde{\mathbf{D}}^{-1/2} \tilde{\mathbf{A}} \tilde{\mathbf{D}}^{-1/2}) \mathcal{M}_{T,:,:}^{(\ell-1)} + \alpha_{\ell} \mathcal{M}_{T,:,:}^{(0)},$$

A3. Acquiring

$$\mathbf{Z}_{v,:} = (\sum_{T \in \mathcal{T}} \mathbf{F}_{T,v} \cdot \mathcal{M}_{T,v,:}^{(L)}) \mathbf{W}_{Z},$$

Node-track affiliations Learnable weight

Method: Why MTMP Gains Improvements?

1. Background

2. Related Works

3. Method

4. Experiments

Experiments: node classification task

Semi-supervised node classification

Table 2. Comparisons of node classification accuracy in semisupervised setting (%). The best two models are emphasized in red (best) and blue (second best).

Datasets	Cora	Cite.	Pubm.	Co.CS	Co.Phys
GCN	80.01	70.41	79.01	90.01	93.81
GAT	81.21	70.81	78.52	91.13	93.31
Self-Train	82.27	73.24	80.32	-	-
DisenGCN	83.30	72.44	80.30	90.96	94.28
GCNII	85.30	73.10	80.10	88.50	93.90
EGNN	85.70	-	80.10	-	93.30
GRAND++	83.60	73.40	78.80	-	-
PDE-GCN	84.30	75.60	80.60	-	-
GraphCON	84.20	74.20	79.40	-	-
ACMP	84.91	73.75	79.01	84.02	93.47
GREAD	84.72	73.31	78.17	88.52	92.24
MTGCN-s1	85.00	73.33	80.31	87.61	94.30
MTGCN-s2	85.97	73.35	81.10	92.15	94.57
MTGCN-s3	86.40	74.60	80.92	91.57	94.55
MTGCN-s4	85.44	73.88	80.33	92.54	94.72

- MTGCN demonstrates superior performance
- The multi-stage training strategy is highly effective

Full-supervised node classification

Table 3. Comparisons of node classification accuracy in fullsupervised setting (%). The best two models are emphasized in red (best) and blue (second best).

Datasets Homophily	Cora 0.81	Cite. 0.80	Pubm. 0.74	Corn. 0.30	Texas 0.11	Wisc. 0.21
GCN	85.77	73.68	88.13	52.70	52.16	48.92
GAT	86.37	74.32	87.62	54.32	58.38	49.41
GCNII	88.49	77.13	90.30	74.86	69.46	74.12
GeomGCN	85.27	77.99	90.05	60.81	67.57	64.12
LINKX	84.64	73.19	87.86	77.84	74.60	75.49
GGCN	87.95	77.14	89.15	85.68	84.86	86.86
H2GCN	87.87	77.11	89.49	82.70	84.86	87.65
ACM-GCN	88.25	77.12	89.71	85.95	86.76	87.45
Sheaf	86.90	76.70	89.49	84.86	85.05	89.41
GRAFF	87.61	76.92	88.95	83.24	88.38	87.45
Half-hop	83.48	71.40	88.15	72.36	69.21	70.78
GraphCON	88.03	74.96	86.43	84.30	85.40	87.80
MTGCN-s1	90.61	76.46	88.43	84.21	84.21	90.20
MTGCN-s2	89.68	77.06	88.11	86.84	92.10	88.23
MTGCN-s3	90.42	77.36	88.26	86.84	89.47	90.20
MTGCN-s4	90.60	76.91	88.01	89.47	92.10	90.20

- MTGCN is equally effective on heterogeneous graphs
- The multi-stage training strategy has limited effectiveness.

Experiments: solve over-smoothing

Dataset	Cora					Citeseer					Pubmed							
# of layers	2	4	8	16	32	64	2	4	8	16	32	64	2	4	8	16	32	64
GCN	80.0	80.4	69.5	64.9	60.3	28.7	70.8	67.6	30.2	18.3	25.0	20.0	79.0	76.5	61.2	40.9	22.4	35.3
GAT	81.2	79.8	62.3	31.9	31.9	14.9	70.8	67.0	48.5	23.1	23.1	18.1	78.6	76.9	76.5	41.3	41.3	40.7
DropEdge	82.8	82.0	75.8	75.7	62.5	49.5	72.3	70.6	61.4	57.2	41.6	34.4	79.6	79.4	78.1	78.5	77.0	61.5
JKNet	-	80.2	80.7	80.2	81.1	71.5	-	68.7	67.7	69.8	68.2	63.4	-	78.0	78.1	72.6	72.4	74.5
Incep	-	77.6	76.5	81.7	81.7	80.0	-	69.3	68.4	70.2	68.0	67.5	-	77.7	77.9	74.9	-	-
GCNII	80.2	82.3	82.8	83.5	84.9	85.3	66.1	66.7	70.6	72.0	73.2	73.1	77.7	78.2	78.8	80.3	79.8	80.1
PDE-GCN	82.0	83.6	84.0	84.2	84.3	84.3	74.6	75.0	75.2	75.5	75.6	75.5	79.3	80.6	80.1	80.4	80.2	80.3
DisenGCN	77.6	83.3	82.7	82.9	82.2	69.1	70.1	69.3	71.3	72.2	70.6	65.4	76.4	76.5	80.3	78.8	76.6	75.0
MTGCN	80.5	83.4	84.9	86.2	85.9	86.4	70.1	72.8	72.9	74.6	73.8	74.0	78.7	80.7	80.5	80.8	81.0	81.1
R_g of MTGCN	0.249	0.313	0.368	0.383	0.382	0.381	0.293	0.328	0.368	0.383	0.383	0.382	0.837	0.918	1.031	1.076	1.035	1.027

Table 4. Semi-supervised node classification accuracy (%) and group distance ratio R_q across various model depth.

group distance ratio
$$R_g = rac{C}{(C-1)^2} rac{d_{inter}}{d_{intra}}$$

Robustness of MTGCN to depth: MTGCN maintains a stable classification accuracy and group distance ratio (Rg)^[1] when increasing the network depth.

"Depth" learning capability of MTGCN: With the increase in the number of layers in MTGCN, its accuracy in classification tasks shows a gradual improvement.

[1]Zhou, Kaixiong, et al. "Towards deeper graph neural networks with differentiable group normalization." *Advances in neural information processing systems* 33 (2020): 4917-4928.

Experiments: Effectively solve over-squashing

Example of the Tree-NeighborsMatch task^[1]

MTGCN demonstrates excellent performance: its effectiveness in addressing the over-squashing.

Performance degradation of other models: When the depth of the tree exceeds five layers, the training accuracy of all models, except for MTGCN, significantly decreases.

Slight performance decrease of MTGCN on deep trees: This could be attributed to MTGCN's high spatial complexity.

Tree-NeighborsMatch Result

[1]Alon, Uri, and Eran Yahav. "On the Bottleneck of Graph Neural Networks and its Practical Implications." International Conference on Learning Representations. 2020.

1. Background

2. Related Works

3. Method

4. Experiments

Conclusion

- Heterophilic mixing is one of the key factors leading to over-smoothing and over-squashing.
- A novel Multi-Track Graph Convolutional Network (MTGCN) designed to counteract heterophilic mixing.
- Empirical validation shows that MTGCN performs well and solves the problems of over-smoothing and over-squashing.

Paper: https://openreview.net/pdf?id=1sRuv4cnuZ

Code: <u>https://github.com/XJTU-Graph-Intelligence-</u> Lab/mtgcn

If you have any problems, please feel free to contact me: liyu1998@stu.xjtu.edu.cn, peihongbin@xjtu.edu.cn

