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Motivating Example

Given a fixed policy π, consider 5 sample trajectories. For a

risk-neutral RL, we can utilize the whole sample trajectories.

E[C1:T ] ≈ 1

N

∑
i∈[N]

C
(i)
1:T

For a CVaR RL, one may utilize the worst q fraction among the

whole sample trajectories. → High variance and low sample efficiency

CVaRq[C1:T ] = E[C1:T |C1:T ≥ VaRq[C1:T ]] ≈ 1

qN

∑
qNworst

C
(i)
1:T

J.Kim, S.Min (ICML 2024) Predictive CVaR Policy Gradient (PCVaR) 2 / 9



Motivating Example

Given a fixed policy π, consider 5 sample trajectories. For a

risk-neutral RL, we can utilize the whole sample trajectories.

E[C1:T ] ≈ 1

N

∑
i∈[N]

C
(i)
1:T

For a CVaR RL, one may utilize the worst q fraction among the

whole sample trajectories. → High variance and low sample efficiency

CVaRq[C1:T ] = E[C1:T |C1:T ≥ VaRq[C1:T ]] ≈ 1

qN

∑
qNworst

C
(i)
1:T

J.Kim, S.Min (ICML 2024) Predictive CVaR Policy Gradient (PCVaR) 2 / 9



Main Idea

We introduce a “predictive tail probability process” Qπ = (Qπ
t )t∈[T ].

- In each period, it predicts the probability that the current sample

path ends up being one of the worst q fraction of outcomes.

We reformulate CVaR as an expectation of reweighted cost realization

by the “predictive tail probability”.

CVaRq[C1:T ] =
1

q
E[
∑
t∈[T ]

QtCt ] ≈
1

qN

∑
i∈[N]

∑
t∈[T ]

Q
(i)
t C

(i)
t

For CVaR RL, we can utilize all sample trajectories via reweighting.

→ Low variance, high sample efficiency
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Predictive CVaR Policy Gradient (PCVaR)

Our goal is to find an optimal policy π∗ solving

min
π∈ΠΘ

{
Jq(π) := q · CVaRπq [C1:T ]

}
. (∗)

Using reformulated CVaR objective, we change the optimization (∗)
into adjusted optimization problem with parameters (θ, η, φ) as

min
θ∈Θ
{J(θ, η, φ) | η, φ s.t . . .} ,

where

J(θ, η, φ) := E

∑
t∈[T ]

Q̂tCt

, Q̂t = f φ(Xt+1,C1:t − η).

- Compared to risk-neutral PG objective, we just replace Ct as Q̂tCt

(even for policy learning process).
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Predictive CVaR Policy Gradient (PCVaR)

The objective Jq(π) in (∗) can be rewritten as

Jq(π) = min
η∈R

Eπ[qη + (C1:T − η)+]. (1)

- Given π ∈ ΠH, optimal solution ηπ of (1) is VaRq(C1:T ).

Definition: Predictive tail probability process Qπ,η

Given π ∈ ΠH and η ∈ R, Qπ,η = (Qπ,η
t )t∈{0,··· ,T} is defined as follow:

Qπ,η
t := P(C1:T ≥ η|Ht+1)

Proposition 3.2: Reformulation of CVaR objective

If
∑

t∈[T ] C
π
t has no probability mass at ηπ = VaRπq [C1:T ],

Jq(π) = Eπ
∑
t∈[T ]

Qπ,ηπ

t Ct

 .
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Predictive CVaR Policy Gradient (PCVaR)

We decompose the CVaR policy optimization (∗) into three

optimization problems with reformulated objective.

min
θ∈Θ

{
J(θ, η, φ)

∣∣∣∣∣ η ∈ arg minη′∈R L(θ, η′),

φ ∈ arg minφ′∈Φ M(θ, η, φ′)

}
,

where

J(θ, η, φ) := E

∑
t∈[T ]

Q̂tCt

, L(θ, η) := E
[
qη + (C1:T − η)+] ,

M(θ, η, φ) := E

∑
t∈[T ]

(
I{C1:T ≥ η} − Q̂t

)2

 .
Update θ (risk-neutral PG with Q̂tCt), η (simple SGD), φ (typical

supervised learning) in parallel.
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Theoretical Analysis

Consistency of the estimators related to φ and η (respectively

Proposition 4.1 and Proposition 4.2)

Unbiasedness of the gradient estimators of J(θ, η, φ) (Theorem 4.3)

Variance reduction in the gradient estimation of PCVaR

(Proposition 4.5)
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Numerical Experiments

Continuous Blackjack

(synthetic data)

Pair trading

(real-world data)
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Contribution

We suggest “Predictive CVaR Policy Gradient (PCVaR)” , relying on

q · CVaRq [C1:T ] = E

∑
t∈[T ]

QtCt

 ,
where Qt = P(current sample ∈ the worst q fractions | history).

conditional E → risk-neutral E

PCVaR utilizes all sample trajectories.

→ Improves sample efficiency and then accelerates learning.

PCVaR can be applied on top of any risk-neutral policy gradient

algorithm.

Its effectiveness is demonstrated with theoretical analyses and

numerical experiments.
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