Risk-Sensitive Policy Optimization via Predictive CVaR Policy Gradient

Ju-Hyun Kim Seungki Min

{vgb8111, skmin}@kaist.ac.kr Department of Industrial and Systems Engineering KAIST

ICML 2024, Jul 2024

Motivating Example

• Given a fixed policy π , consider 5 sample trajectories. For a risk-neutral RL, we can utilize the whole sample trajectories.

Motivating Example

• Given a fixed policy π , consider 5 sample trajectories. For a risk-neutral RL, we can utilize the whole sample trajectories.

• For a CVaR RL, one may utilize the worst q fraction among the whole sample trajectories. \rightarrow High variance and low sample efficiency

Main Idea

We introduce a "*predictive tail probability process*" $Q^{\pi} = (Q^{\pi}_t)_{t \in [\mathcal{T}]}$. - In each period, it predicts the probability that the current sample path ends up being one of the worst q fraction of outcomes.

Main Idea

We introduce a "*predictive tail probability process*" $Q^{\pi} = (Q^{\pi}_t)_{t \in [\mathcal{T}]}$. - In each period, it predicts the probability that the current sample path ends up being one of the worst q fraction of outcomes.

We reformulate CVaR as an expectation of reweighted cost realization by the "predictive tail probability".

Main Idea

We introduce a "*predictive tail probability process*" $Q^{\pi} = (Q^{\pi}_t)_{t \in [\mathcal{T}]}$. - In each period, it predicts the probability that the current sample path ends up being one of the worst q fraction of outcomes.

We reformulate CVaR as an expectation of reweighted cost realization by the "predictive tail probability".

• For CVaR RL, we can utilize all sample trajectories via reweighting. \rightarrow Low variance, high sample efficiency Ω

Predictive CVaR Policy Gradient (PCVAR)

Our goal is to find an optimal policy π^* solving

$$
\min_{\pi \in \Pi^{\Theta}} \left\{ J_q(\pi) := q \cdot \text{CVaR}_q^{\pi} \left[C_{1:T} \right] \right\}. \tag{*}
$$

Using reformulated CVaR objective, we change the optimization ([∗](#page-6-0)) into adjusted optimization problem with parameters (θ, η, ϕ) as

$$
\min_{\theta \in \Theta} \left\{ J(\theta, \eta, \phi) \mid \eta, \phi \text{ s.t } \dots \right\},\
$$

where

$$
J(\theta, \eta, \phi) := \mathbb{E}\left[\sum_{t \in [T]} \hat{Q}_t C_t\right], \hat{Q}_t = f^{\phi}(X_{t+1}, C_{1:t} - \eta).
$$

- Compared to risk-neutral PG objective, we just replace \mathcal{C}_t as $\hat{Q}_t\mathcal{C}_t$ (even for policy learning process). つへへ

J.Kim, S.Min (ICML 2024) [Predictive CVaR Policy Gradient \(](#page-0-0)PCVaR) 4 / 9

Predictive CVaR Policy Gradient (PCVaR)

• The objective $J_q(\pi)$ in $(*)$ can be rewritten as

$$
J_q(\pi) = \min_{\eta \in \mathbb{R}} \mathbb{E}^\pi[q\eta + (C_{1:\mathcal{T}} - \eta)^+]. \tag{1}
$$

- Given $\pi\in\Pi^\mathcal{H}$, optimal solution η^π of (1) is $\mathsf{VaR}_q(\mathcal{C}_{1:\mathcal{T}}).$

Predictive CVaR Policy Gradient (PCVAR)

• The objective $J_q(\pi)$ in $(*)$ can be rewritten as

$$
J_q(\pi) = \min_{\eta \in \mathbb{R}} \mathbb{E}^\pi[q\eta + (C_{1:\mathcal{T}} - \eta)^+]. \tag{1}
$$

- Given $\pi\in\Pi^\mathcal{H}$, optimal solution η^π of (1) is $\mathsf{VaR}_q(\mathcal{C}_{1:\mathcal{T}}).$

Definition: Predictive tail probability process $\mathsf{Q}^{\pi,\eta}$

Given $\pi\in\Pi^\mathcal{H}$ and $\eta\in\mathbb{R}$, $Q^{\pi,\eta}=(Q^{\pi,\eta}_t)_{t\in\{0,\cdots,\mathcal{T}\}}$ is defined as follow: $Q_t^{\pi,\eta} := \mathbb{P}(C_{1:T} \geq \eta | H_{t+1})$

Predictive CVaR Policy Gradient (PCVaR)

• The objective $J_q(\pi)$ in $(*)$ can be rewritten as

$$
J_q(\pi) = \min_{\eta \in \mathbb{R}} \mathbb{E}^\pi[q\eta + (C_{1:\mathcal{T}} - \eta)^+]. \tag{1}
$$

- Given $\pi\in\Pi^\mathcal{H}$, optimal solution η^π of (1) is $\mathsf{VaR}_q(\mathcal{C}_{1:\mathcal{T}}).$

Definition: Predictive tail probability process $\mathsf{Q}^{\pi,\eta}$

Given $\pi\in\Pi^\mathcal{H}$ and $\eta\in\mathbb{R}$, $Q^{\pi,\eta}=(Q^{\pi,\eta}_t)_{t\in\{0,\cdots,\mathcal{T}\}}$ is defined as follow: $Q_t^{\pi,\eta} := \mathbb{P}(C_{1:T} \geq \eta | H_{t+1})$

Proposition 3.2: Reformulation of CVaR objective

If $\sum_{t\in [T]} C^\pi_t$ has no probability mass at $\eta^\pi = \mathsf{VaR}^\pi_q[C_{1:T}],$

$$
J_q(\pi) = \mathbb{E}^\pi\left[\sum_{t\in [\mathcal{T}]} Q_t^{\pi,\eta^\pi}\,\mathcal{C}_t\right].
$$

Predictive CVaR Policy Gradient (PCVaR)

We decompose the CVaR policy optimization ([∗](#page-6-0)) into three optimization problems with reformulated objective.

$$
\min_{\theta \in \Theta} \left\{ J(\theta, \eta, \phi) \middle| \begin{array}{l} \eta \in \argmin_{\eta' \in \mathbb{R}} L(\theta, \eta'), \\ \phi \in \argmin_{\phi' \in \Phi} M(\theta, \eta, \phi') \end{array} \right\},\
$$

where

$$
J(\theta, \eta, \phi) := \mathbb{E}\left[\sum_{t \in [\mathcal{T}]} \hat{Q}_t C_t\right], \mathcal{L}(\theta, \eta) := \mathbb{E}\left[\mathbf{q}\eta + (\mathcal{C}_{1:\mathcal{T}} - \eta)^+\right],
$$

$$
M(\theta, \eta, \phi) := \mathbb{E}\left[\sum_{t \in [T]} \left(\mathbb{I}\{C_{1:T} \geq \eta\} - \hat{Q}_t\right)^2\right].
$$

Update θ (risk-neutral PG with $\hat{Q}_t C_t)$, η (simple SGD), ϕ (typical supervised learning) in parallel.

- Consistency of the estimators related to ϕ and η (respectively Proposition 4.1 and Proposition 4.2)
- Unbiasedness of the gradient estimators of $J(\theta, \eta, \phi)$ (Theorem 4.3)
- Variance reduction in the gradient estimation of PCVAR (Proposition 4.5)

Numerical Experiments

Continuous Blackjack (synthetic data)

• Pair trading (real-world data)

4 0 F

Þ

Contribution

• We suggest "Predictive CVaR Policy Gradient $(PCVAR)$ ", relying on

$$
\boldsymbol{q} \cdot \text{CVaR}_{\boldsymbol{q}}\left[C_{1:T}\right] = \mathbb{E}\left[\sum_{t \in [T]} Q_t C_t\right],
$$

where $Q_t = \mathbb{P}(\text{current sample} \in \text{the worst q fractions} \mid \text{history}).$ $\overline{\text{conditional E}} \rightarrow \text{risk-neutral E}$

• PCVAR utilizes all sample trajectories.

 \rightarrow Improves sample efficiency and then accelerates learning.

- \bullet PCVAR can be applied on top of any risk-neutral policy gradient algorithm.
- **Its effectiveness is demonstrated with theoretical analyses and** numerical experiments.