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Multi-scale Pre-training
» Inspired by the Multilingual Pre-training: Code-Switch Protein Sequence
» To construct a code-switch protein sequence , we randomly select a group of residues and insert their corresponding atoms into the sequence, which is the unzipping process.
» Pre-training Objective for Multi-scale Information : Multi-scale Masked Language Modeling
» Randomly masking a portion of the atoms or residues in and then ask the model to predict the original atoms or residues using the surrounding context.
» Pre-training Objective for Atom-scale Information: Pair-wise Distance Recovery
Small Molecules Macromolecules » We use the corrupted atoms coordinates as model input and ask model to recover the accurate Euclidean distances between these atoms. We only calculate PDR within residues.
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> Residue Scale Position Encoding: RoPE » Pre-training Datasets: AlphaFold DB and Uni-Mol Molecular Dataset
» For encoding the relationship between two residues, the PE » For the protein dataset, we use AlphaFold DB dataset, which contains 8M protein sequences and structures predicted by AlphaFold2 with high confidence (pLDDT > 90).
should be consistent with the mainstream encoding method. » For the molecule dataset, we use the dataset provided by Uni-Mol, which contains 19M molecules and 209M conformations generated by ETKGD and Merck Molecular Force Field.
> For atoms from the same unzipped residue, the PE should not > Performance on Protein-Molecule Tasks: Unified Modeling Can Harness the Full Potential of Pre-training Techniques

introduce any ambiguous position information.

» Atom Scale Position Encoding: 3D Spatial PE

» Atom-scale structural information is crucial for modeling
atomic level semantics.

» ESM-AA outperforms other models and achieves the state-of-the-art results, which indicates that our unified modeling can harness the full potential of PLMs.
» Performance on Protein-Only Tasks : ESM-AA Preserves the Strong Ability of Protein Understanding
» The table demonstrates that ESM-AA can perform similarly to ESM-2 in unsupervised contact prediction task. This indicates that ESM-AA does not sacrifice its understanding of proteins.

> The model needs to have the ability to capture structural » Visualization of Proteins’ and Molecules’ Embedding : ESM-AA Preserves the Strong Ability of Protein Understanding
information at the atomic scale » ESM-AA model is capable of creating a more cohesive semantic representation encompassing both proteins and molecular data, which makes ESM-AA outperform two separate models.
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