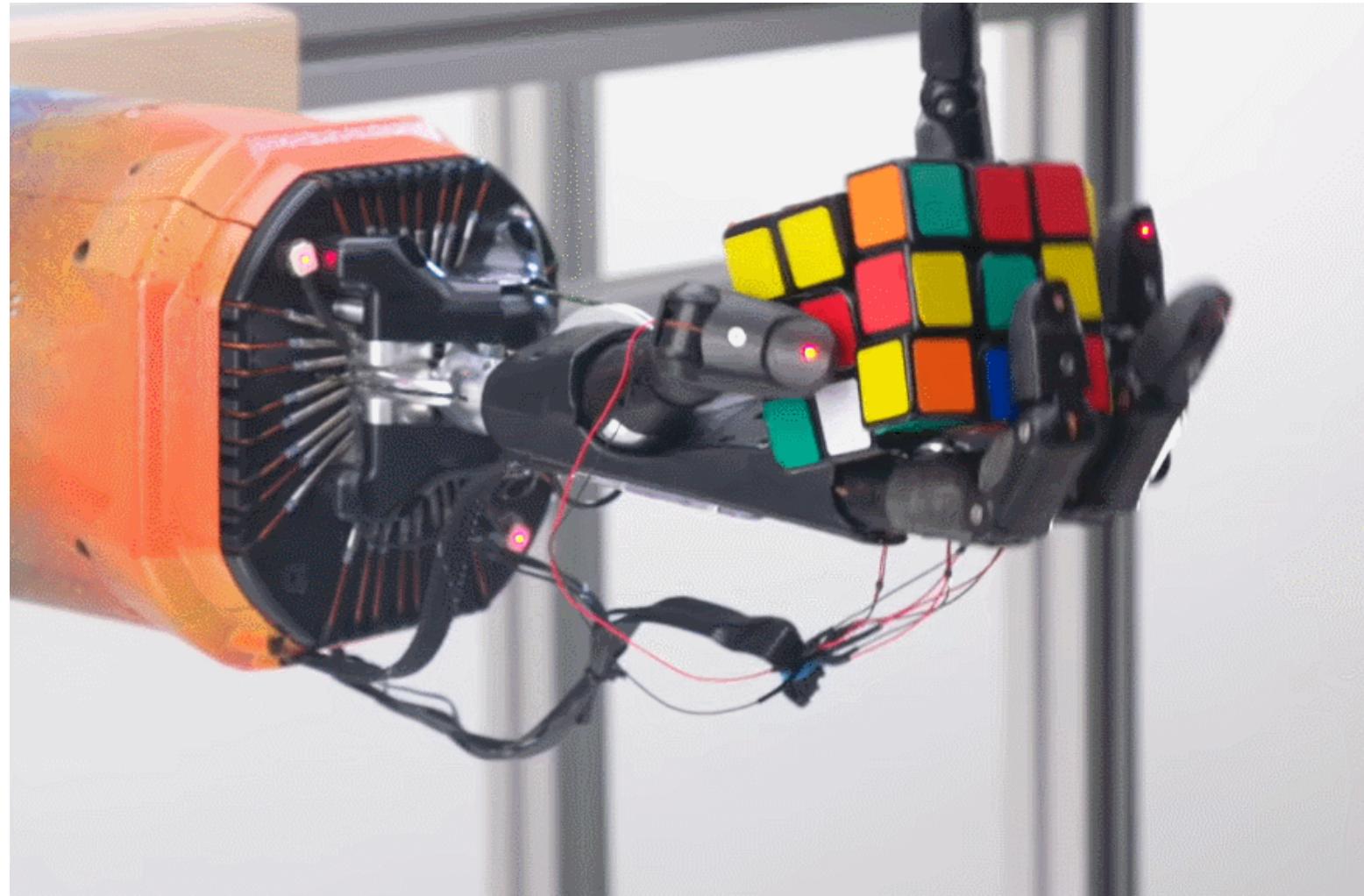
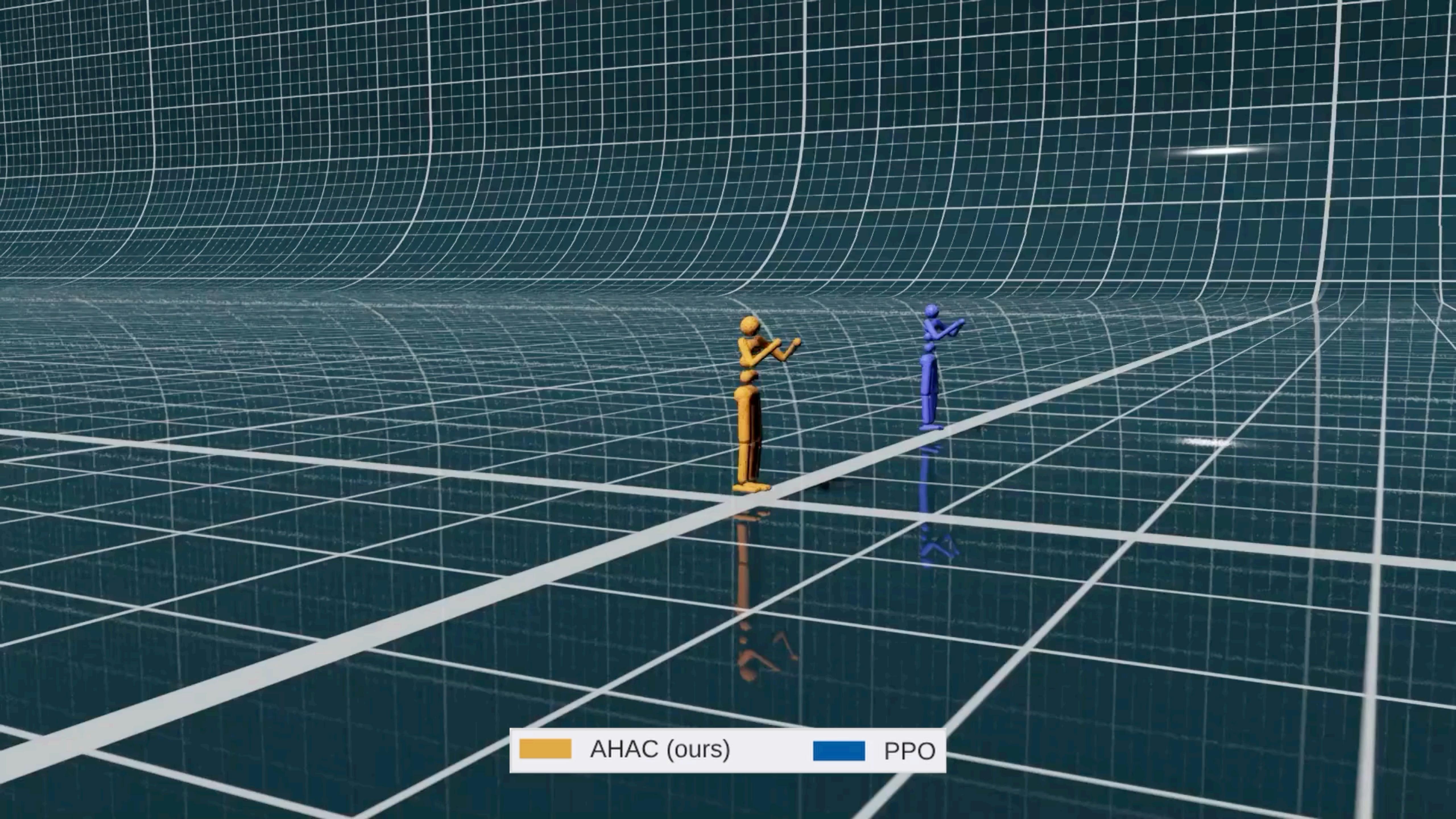


Song et al, Autonomous Drone Racing with Deep Reinforcement Learning (2021)

Rudin et al, Learning To Walk in Minutes (2021)



OpenAI, Solving Rubik's Cube with a Robot Hand (2019)



AHAC (ours)

PPO

Adaptive Horizon Actor-Critic for Policy Learning in Contact-Rich Differentiable Simulators

Ignat Georgiev, Krishnan Srinivasan, Jie Xu, Eric Heiden, Animesh Garg

Reinforcement Learning

$$\max_{\theta} J(\theta) := \max_{\theta} \mathbb{E}_{\substack{s_1 \sim \rho \\ a_h \sim \pi(\cdot | s_h)}} [R_H(s_1)]$$

Zeroth-Order Model-Free

- no assumptions over dynamics
- policy $\pi_{\theta}(\cdot | s_h)$ is trained via the Policy Gradients Theorem

$$\nabla_{\theta}^{[0]} J(\theta) := \mathbb{E}_{a_h \sim \pi_{\theta}(\cdot | s_h)} [R_H(s_1) \sum_{h=1}^H \nabla_{\theta} \log \pi_{\theta}(a_h | s_h)]$$

- Works well with little assumptions!
- Widely considered to
 - Solve complex tasks
 - Notoriously sample inefficient

First-Order Model-Based

- Assumes dynamics are known (usually learned)
- Policy $\pi_{\theta}(\cdot | s_h)$ is trained via analytical gradients through the model

$$\nabla_{\theta}^{[1]} J(\theta) := \mathbb{E}_{a_h \sim \pi_{\theta}(\cdot | s_h)} [\nabla_{\theta} R_H(s_1)]$$

- Requires more assumptions
- Widely considered to
 - Have less variance
 - Underperform against model-free

Learning through contact in differentiable simulation

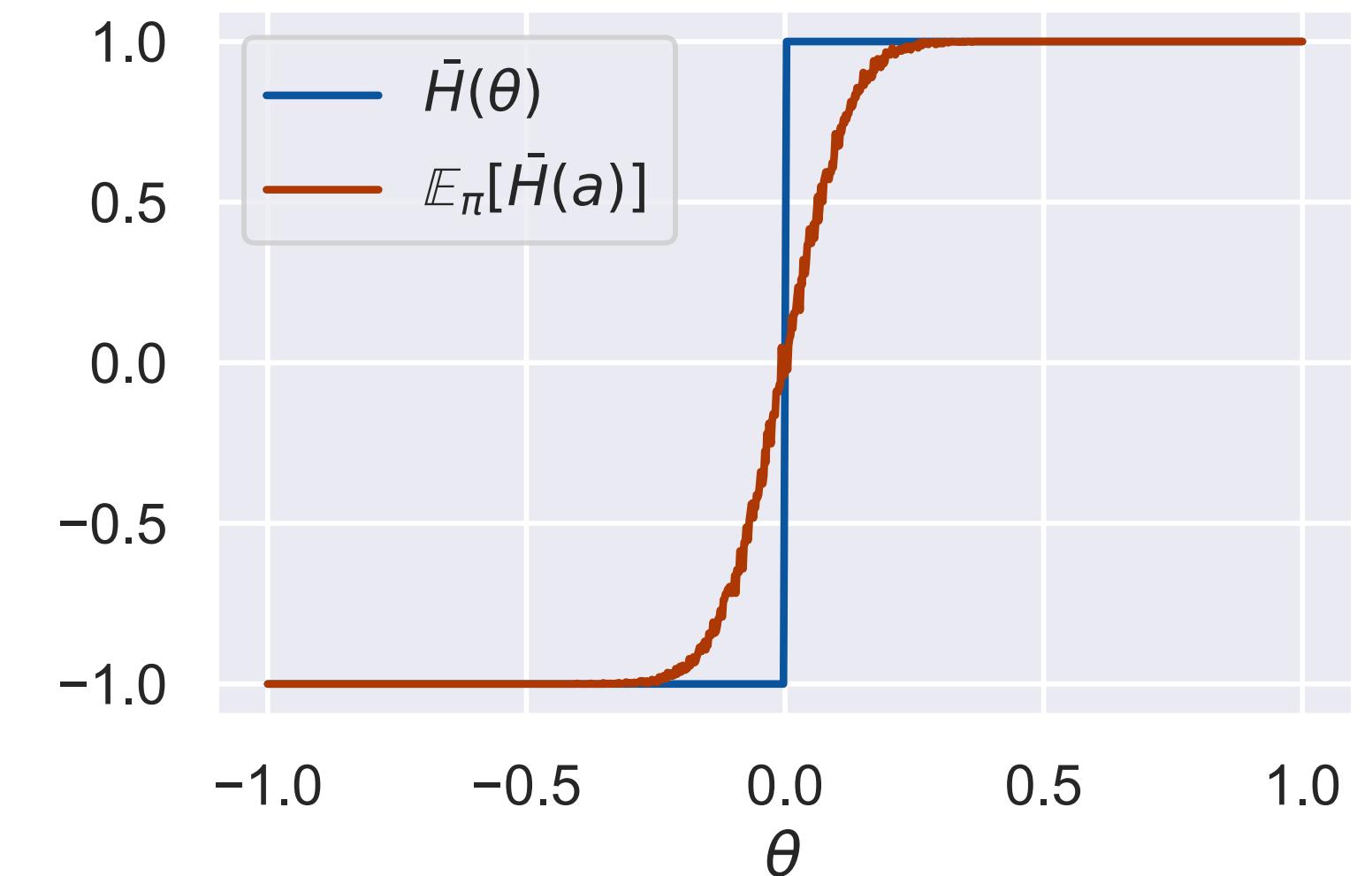
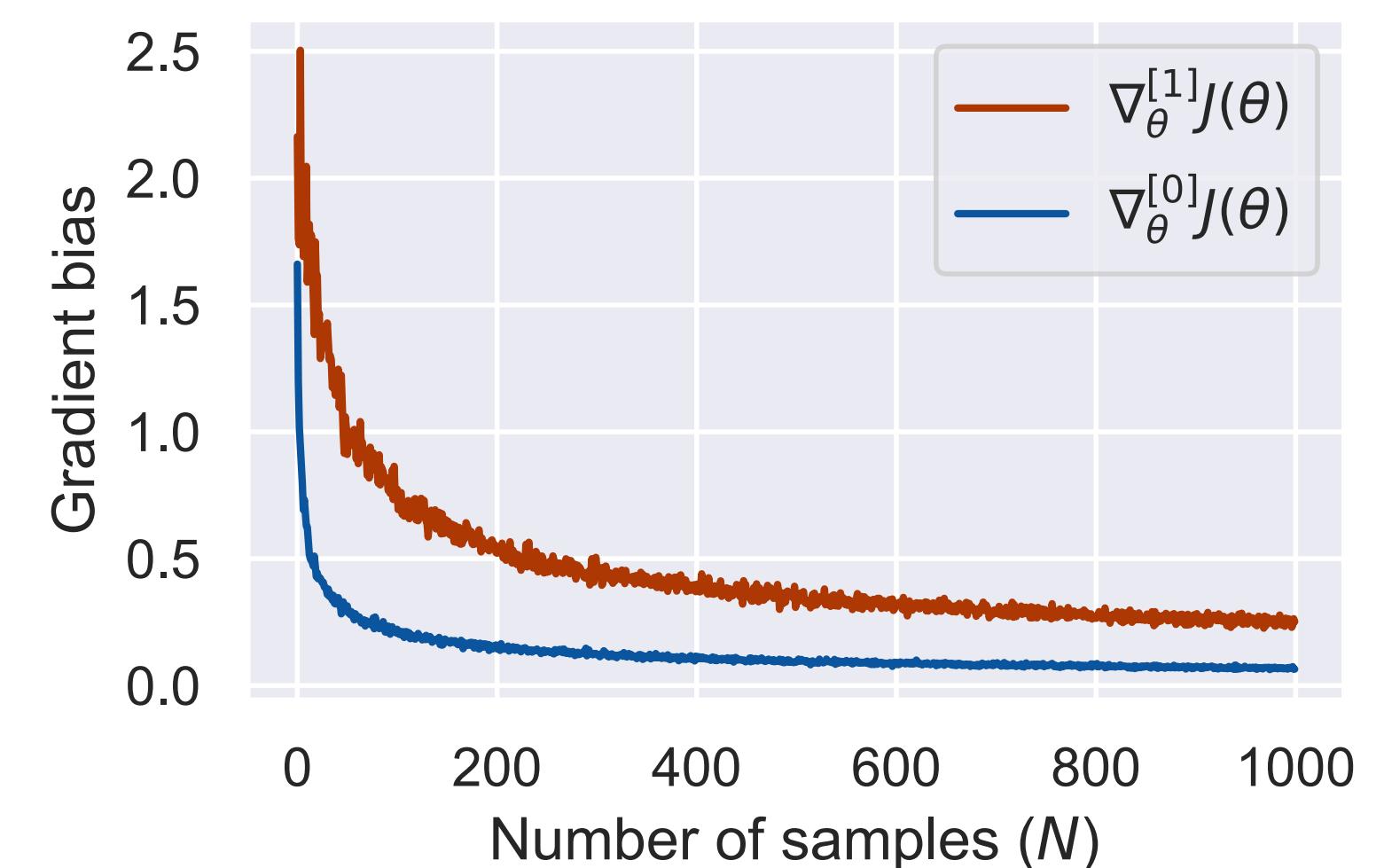
- Differentiable simulators enable differentiating through contact

$$\bar{H}(x) = \begin{cases} 1 & x > \nu/2 \\ 2x/\nu & |x| \leq \nu/2 \\ -1 & x < -\nu/2 \end{cases}$$

$$x \sim \pi_\theta(\cdot) = \theta + w \quad w \sim \mathcal{N}(0, \sigma^2)$$

$$\nabla_\theta \mathbb{E}_\pi \bar{H}(a) \neq 0 \text{ at } \theta = 0$$

- However, $\nabla_\theta \bar{H}(a) = 0$ with some prob.
- Under finite samples N :
 - First-order grad bias is high with low samples
 - Zeroth-order grad bias is low throughout



Learning through contact

Assumption 2.7. The system dynamics $f(\mathbf{s}, \mathbf{a})$ and the reward $r(\mathbf{s}, \mathbf{a})$ are continuously differentiable $\forall \mathbf{s} \in \mathbb{R}^n, \forall \mathbf{a} \in \mathbb{R}^m$.

Lemma 3.1. For an H -step stochastic optimisation problem under Assumptions 2.7, which also has Lipschitz-smooth policies $\|\nabla \pi_{\theta}(\mathbf{a}|\mathbf{s})\| \leq B_{\pi}$ and Lipschitz-smooth and bounded rewards $r(\mathbf{s}, \mathbf{a}) \leq \|\nabla r(\mathbf{s}, \mathbf{a})\| \leq B_r$ $\forall \mathbf{s} \in \mathbb{R}^n; \mathbf{a} \in \mathbb{R}^m; \theta \in \mathbb{R}^d$, then zero-order estimates remain unbiased. However, first-order gradient exhibit bias which is bounded by:

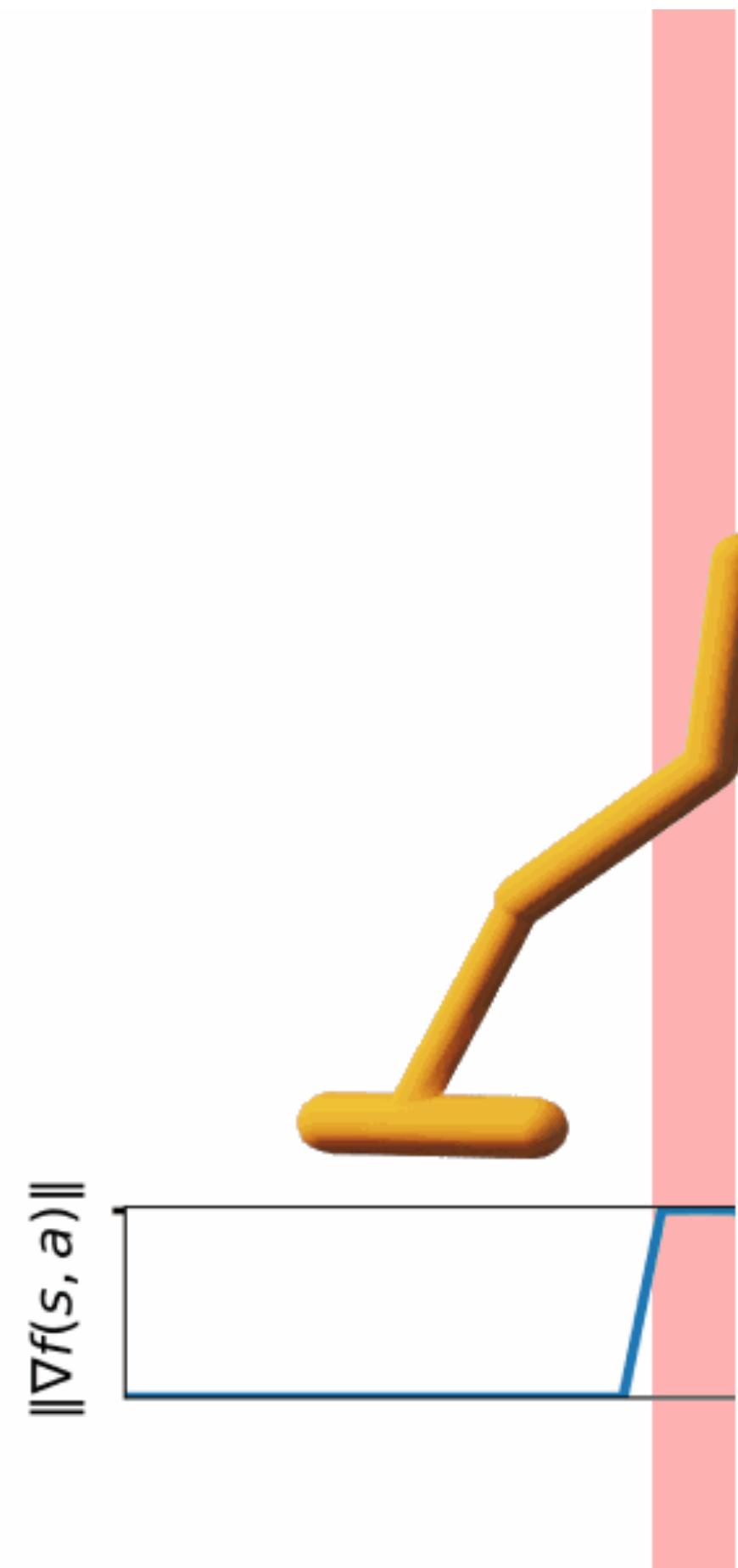
$$\|\mathbb{E}[\nabla_{\theta}^{[1]} J(\theta)] - \mathbb{E}[\nabla_{\theta}^{[0]} J(\theta)]\| \leq H^4 B_r^2 B_{\pi}^2 \mathbb{E}_{a \sim \pi} \prod_{t=1}^H \|\nabla f(s_t, a_t)\|^2$$

Bias

1. Stiff contact approximation leads to high first-order gradient bias
2. The longer the horizon, the higher the bias



Stop trajectory rollout



Adaptive Horizon Actor Critic (AHAC)

Building on Short Horizon Actor Critic (SHAC)

Xu et al. Accelerated Policy Learning with Parallel Differentiable Simulation (2022)

Algorithm 1 Adaptive Horizon Actor-Critic

```

1: while episode not done do
2:   for  $h = 0, 1, \dots, H$  do
3:      $\mathbf{a}_{t+h} \sim \pi_{\theta}(\cdot | \mathbf{s}_{t+h})$ 
4:      $\mathbf{s}_{t+h+1} = f(\mathbf{s}_{t+h}, \mathbf{a}_{t+h})$ 
5:   end for
6:    $\theta \leftarrow \theta + \alpha_{\theta} \nabla_{\theta} \mathcal{L}_{\pi}(\theta, \phi)$ 
7:    $\phi \leftarrow \phi + \alpha_{\phi} \nabla_{\phi} \mathcal{L}_{\pi}(\theta, \phi)$ 
8:    $H \leftarrow H - \alpha_{\phi} \sum_{t=0}^H \phi_t$ 
9:   while not converged do
10:     $\psi \leftarrow \psi - \alpha_{\psi} \nabla_{\psi} \mathcal{L}_V(\psi)$ 
11:   end while
12: end while

```

$$J(\theta) := \sum_{h=t}^{t+H-1} \gamma^{h-t} r(s_h, a_h) + \gamma^t V_p s_i(s_{t+H})$$

s.t. $\|\nabla f(s_t, a_t)\| \leq C \quad \forall t \in \{0, \dots, H\}$

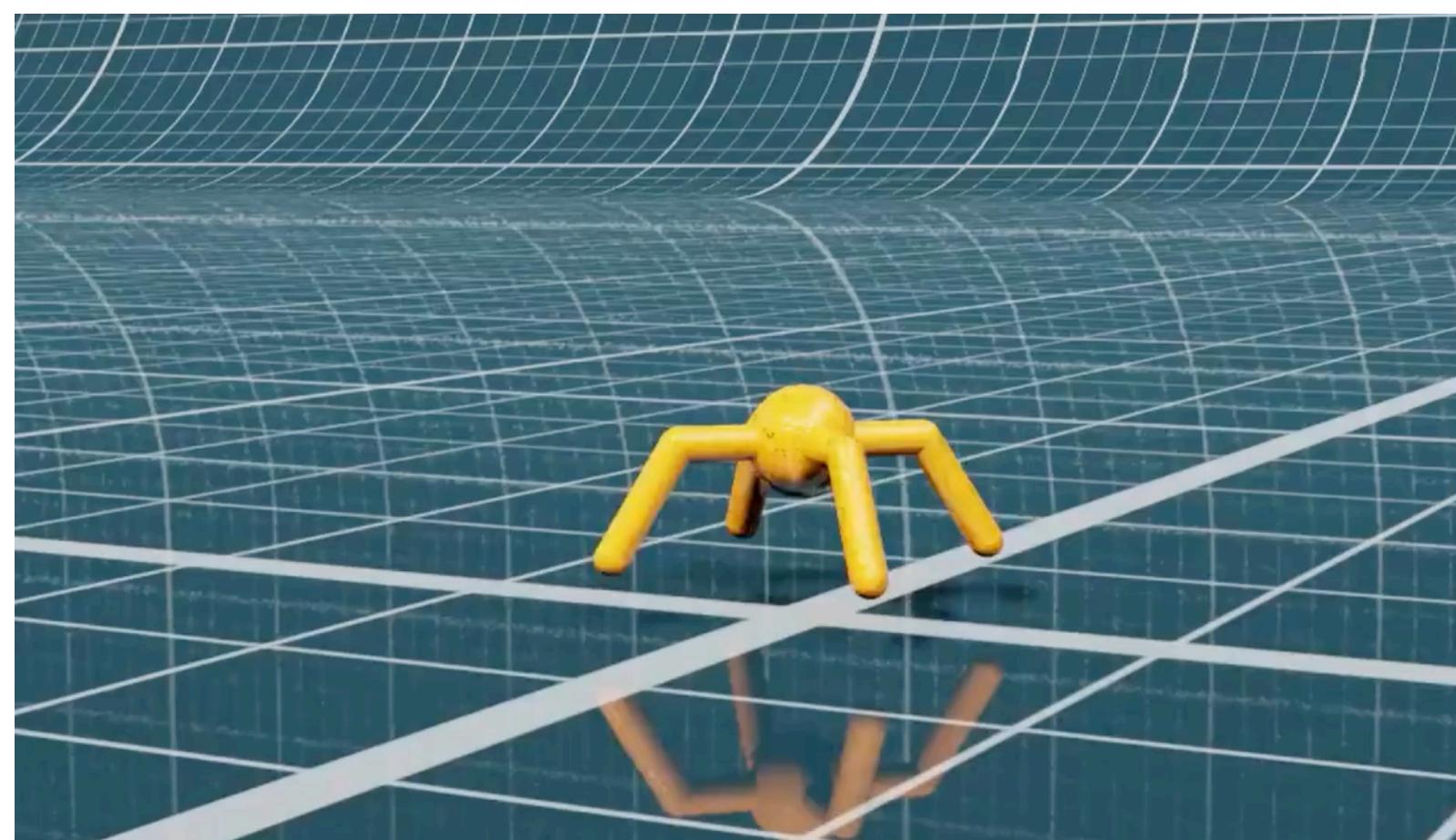
$$\mathcal{L}_{\pi}(\theta, \phi) = \sum_{h=t}^{t+H-1} \gamma^{h-t} r(s_h, a_h) + \gamma^t V_{\psi}(s_{t+H})$$

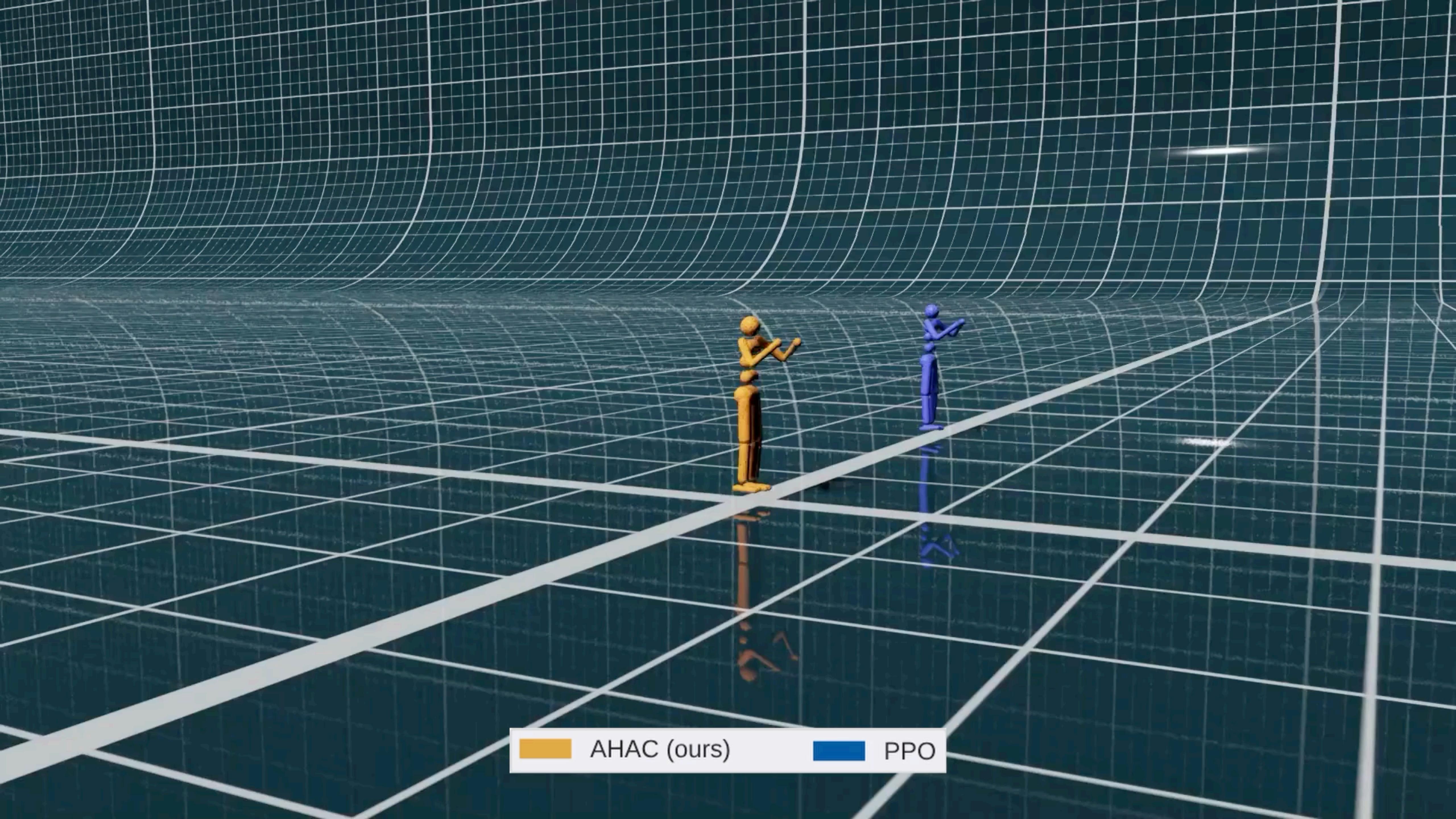
$$+ \phi^T \begin{pmatrix} \|\nabla f(s_t, a_t)\| \\ \vdots \\ \|\nabla f(s_{t+H}, a_{t+H})\| \end{pmatrix} - C$$

$$\mathcal{L}_V(\psi) := \sum_{h=t}^{t+H} \|V_{\psi}(s_h) - \hat{V}(s_h)\|_2^2$$

Asymptotic performance

- Standard locomotion benchmarks
- Compare against zeroth-order (PPO and SAC) and first-order (SHAC and SVG) baselines

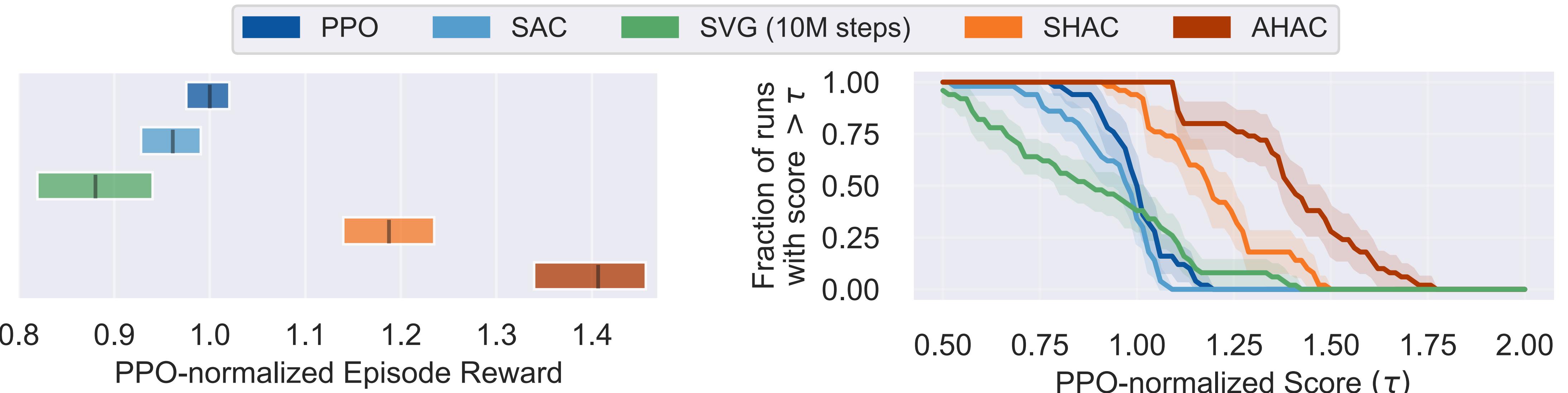




AHAC (ours)

PPO

Summary results across all tasks



- 50% Interquartile Mean (IQM) with 95% Confidence Interval (CI)
- AHAC achieves 40% higher reward than PPO across all tasks

More at: <https://adaptive-horizon-actor-critic.github.io/>

