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Motivation

Knowledge distillation (KD)

* Transfer knowledge from larger (teacher) to smaller (student) networks.
* Model compression (large network to a small network).

* Determine which knowledge to transfer.
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Hong, Yu-Wei & Leu, Jeng-Shiou & Faisal, Muhamad & Prakosa, Setya. (2022). Analysis of Model Compression Using Knowledge Distillation. IEEE Access.




Motivation

Knowledge distillation (KD)

* Relation-based KD

* The structure or similarity between two or three pairs of embedding features 1s distilled.

* They teach the model the full relationship via interactions between few embedding features.

* Thus, the broader context of relationships between all embedding features should be defined.

Input

I 2
Featurizer fT‘ {} fT‘ @ 4

Output ¢ EEEEE[TTTT] 89

8
t
k o< 83
t; L Al 8j
\_ J
Vanilla KD

{o I [TTTT] 89

/
i

\.7

7

]

Y

t.;

%

8j

W,

Relation-based KD

Topology-informed KD



Motivation

Persistent homology (PH)

* Primary method in topological data analysis (TDA), provides an efficient method of calculating the topological structure of

point cloud data (PCD). Persistence of the topological features captures global topology of PCD.

* Comprehensive structural information (e.g. shape of distribution, multiscale structure, connectivity.)

* Persistence diagram (PD) : a method to visualize (summarize) birth and death of the topological features with the

resolution.
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Motivation

Persistent homology Iin DL

* Numerous efforts have been made to integrate topological information into machine learning for geometric data analysis.

* Itis not straightforward to feed PD into DNNs, so convert a PD into a fixed-size vector (Betti-sequence, persistence
landscape, and persistence image).

* Limited experiments to domain-specific datasets or small-scale datasets.

* PH has only been used for extracting information to augment the input data.



Background of persistent homology

Topological characteristics

* Consistent properties of space that persist through continuous transformations, providing insights into the structure,
shape, connectivity, overall distribution within datasets.

* k-dimensional (k-dim) holes : Connected components (0-dim), Loops (1-dim), Voids (2-dim).
* The rank of k-dim homology group : the number of k-dim holes.

* PH : a method that analyzes the creation and destruction of these topological characteristics by exploring the
homology groups of spaces across different scales.

e PD :visual tool that illustrates the results of PH.

1-dim hole 2-dim hole
(Loops) (Void spaces)

Continuous transformations of a trous

Image from https://en.wikipedia.org/wiki/Homology (mathematics) https://cerla.univ-lille.fr/projets-de-recherche/topological-photonics/



https://en.wikipedia.org/wiki/Homology_(mathematics)

Background of persistent homology

Typical pipeline for using persistent homology as an input of neural network

* Convert a point cloud into a simplicial complexes with different resolutions.

* Construct a filtration, a nested sequence of simplicial complexes.

* Compute the birth and death times of k-dim holes with respect to the filtration and summarize into the form of a PD.

* Vectorize the PD and feed to a neural network.



Background of persistent homology

Simplex

* A generalization of the notion of a triangle or tetrahedron to arbitrary dimensions.
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Zomorodian, Afra, and Gunnar Carlsson. Computing persistent homology. Discrete & Computational Geometry 33.2 (2005)



Background of persistent homology

Simplicial complex

A set of simplices that satisfies the following conditions:
(1) Every face of a simplex from X is also in K.
(11) The nonempty intersection of any two simplices o4, 0, € X Is a face of both ¢; and o,.

* k-dim homology group can be computed on a given simplicial complex.

* e.g., Vietoris-Rips (Rips) complex: VR" (P) = {o = {pg, .-, D} | du(pi,pj) <2r}
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https://mathtuition88.com/2017/01/20/introduction-to-persistent-homolgy-cech-and-vietoris-rips-complex/



Background of persistent homology

Filtration
* Anested sequence of simplicial complexes @ = Xy —_o © Xy, © - 0 X = X.

* e.g., Rips filtration
(VR¥(P) & VR (P)}

a<a'’

Image from https://christian.bock.ml/posts/persistent_homology/
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Background of persistent homology

Persistent homology

* A method that analyzes the creation and destruction of k-dim holes over filtrations.
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Background of persistent homology

Persistence diagram

A multiset {(a;, ap)} where a; and a is the birth and the death of a k-dim hole, respectively.

“al (X9
@ v \J.‘.\
X 4 ’1 j
- T .
b1
‘o >t /
¥ ',' "1" ,..s.dQ
2 ;. ®
-
2,5

Birth

Kusano, G, & Fukumizu, K., Hiraoka., Y. Persistence weighted Gaussian kernel for topological data analysis. (2016)
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Background of persistent homology

Persistence Image

* Since a PD is defined as a multiset, it Is not straightforward to feed it into a neural network.

* An alternative fixed-size representation of the persistence diagram reflecting the persistence and density of points In
the PD.
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Method

Preliminaries
* Notation :
e T :pretrained teacher, S : student
e x;:training sample, f7 (x;), f°(x;) : the output of any layer of the featurizer, z” (x;), z° (x;) : logits.

® L = ZXC E(o(z°(x;)),y;) : the student model for image classification is trained by minimizing the cross-entropy
Xi€E
loss.

* (Conventional KD :

® [pp = EE:XK L(o(z'(x;)/1),0(z°(x;)/7)) : vanilla KD loss function.
X;

* Conventional KD is trained with the final loss L = aL g + [Lgp.
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Method

TopKD

* The proposed method, TopKD, consists of two stages, pre-training RipsNet and training student network.

* We defined the PD of the embedding features as the global topology knowledge, and the topology distillation loss.

* For the effective integration of PDs, we use the Pl as a vectorization
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Method

Approximating Pls using RipsNet

1. Create PCDs from the training data using a pretrained teacher model.

2. Calculate PDs of PCDs using Gudhi library.

3. Train RipsNet by using PCDs and PDs as input and output, respectively

RipsNet 1s frozen during the training of the student network to approximate PlIs of the embedding features of the teacher and student networks.
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Method

Topology distillation loss

¢ LTOp — Z LZ (pi(tlJ Y tm), pi(Sl, T Sm)))
(xl,”',xm)EXm

e [f the channel dimension of t; and s; differ, a 1 X 1 convolution is applied to s;.

* The final loss function of TopKD : Lyy¢q; = @Lcg + BLgp + VLrop.
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EXxperiment

CIFAR-100

Table 1. Top-1 accuracy (%) comparison on CIFAR-100 with other KD approaches. Teacher and student networks have the same
architectural style. Blue inverted triangles indicate lower performance than KD; red triangles signify better performance than KD. -
indicates the absence of any available results. Relation denotes the relationships between a specific number of points (e.g., pairwise or
triple-wise) to extract knowledge.

Teacher ResNet56 ResNetl 10 ResNet110 ResNet32 x4 WRN-40-2 WRN-40-2 VGG13

Distillation Knowledge Relation Acc. 712.34 74.31 74.31 79.42 715.61 715.61 74.64
Mechanism Student ResNet20 ResNet20 ResNet32 ResNet8:x4 WRN-16-2 WRN-40-1 VGGS
Acc. 69.06 69.06 71.14 72.50 713.26 71.98 70.36
Logit Soft logits - KD 710.66 T10.67 73.08 73.33 74.92 713.54 72.98
Feature value - FitNet 69.21y 6899w 7106YF 1350w 1358w 7224w T71.02vw
Feature Attention map - AT 7055w 7022w 7231w 73.44 A 7408y  T277w 7143 v
Variational distribution - VID 7038w 7016wy 7J2l6lvY 713.09 v T4.11 v 7330w 7123w
Preactivation feature - OFD 7098 A - 73.23 A 74.95 A 75.24 4 7433 4 7395 A
Correlation coefficient  Pair CC 6963y 6948w 7T148°7 1297 ¥ 1356 o 7221w 7071w
Similarity matrix Pair SP 6967w T004vw 7269 A 71294 v 7383w 7243w T268V
Direction Pair FSP 6995y 7JOllvwy 7T1.89v¥ 12627 1291 v - 7023w
Relation Distance&angle  Pair/triple RKD 6961y 6925v T7182¥ 7190 v 73.35v 7222w T148 v
Probability of features  Pair PKT 7034w 7025w 7261V 73.64 A 7454w 7345w T288vw
Contrastive learning Pair CRD 7116 A 71464 73438 A 75.51 A 7548 4 7414 4 7394 4
Contrastive learning Pair CRCD 7321 a4 72334 7498 4 76.42 A 76.67 A 75954 7497 A
Topology Global topology All Ours 7158 A 7147 4 7377 A 75.40 A 75775 4 7443 4 7401 A
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Experiment

CIFAR-100

Table 2. Top-1 accuracy (%) comparison on CIFAR-100 with other KD approaches. These teacher and student networks have different
architectural styles.

Teacher VGGI3 ResNetd0 ResNet50 ResNet32 <4 ResNet32x4 WRN-40-2
Distillation Knowledge Relation Acc. 74.64 79.34 79.34 719.42 719.42 715.61
Mechanism Student MobileNetV2 MobileNetV2 VGGE ShuffleNetV1 ShuffleNetV2 ShuffleNetV1
Acc. 64.60 64.60 70.36 70.50 71.82 70.50
Logit Soft logits - KD 67.37 67.35 713.81 74.07 74.45 74.83
Feature value - FitNet 64.14 v 63.16 ¥ 71069 ¥ 71359 v 1354w 71373 w
Feature Attention map - AT %40 v 5858 ¥ 1184w 7173w 12773 v 1332w
Variational distribution - VID 6356 Y 67.57 A 71030 v 71338 ¥ 1340 v 7136l Y
Preactivation feature - OFD 69.48 A 69.04 A - 75.98 A 716.82 A 75.85 A
Correlation coefficient  Pair CC 64.86 Y 6543 v 71025 v 71.14 w 711.29 v T1.38 ¥
Similarity matrix Pair SP 66.30 ¥ 68.08 A 1334 v 71348 v T4.56 A 7452 v
Relation Distance&angle  Pair/triple RKD 6452w 6443 v 1150y 7228w 1321w 7221w
Probability of features  Pair PKT 67.13 v 66.52 ¥ 7301 v T4.10 v 74.60 A 71380 ¥
Contrastive learning Pair CRD 69.73 A 69.11 A 74.30 A 75.11 A 715.65 A 76.05 A
Topology Global topology All Ours 68.83 A 69.12 A 74.25 A 75.04 A 76.33 A 76.18 A
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Experiment

ImageNet-1K

Table 3. Top-1 and top-5 accuracy (%) (Acc.) comparison on the ImageNet-1K validation dataset with ResNet34 as the teacher and
ResNet18 as the student network. The best accuracy values are bolded, and “-” indicates the absence of any available results.

Acc. Teacher Student AT KD SemCKD OFD CRD CAT-KD RKD ReviewKD DKD SRRL MGD DistPro NORM Ours

Top-1 73.31 70.00 70.5970.68 70.87 71.0871.17 71.26 7134 71.61 7T1.7071.73 71.80 71.89 7214 73.60
Top-5 91.42 89.60 89.73 90.16 - - 9013 5045 9037 9051 %041 - 9040 - - 90.50

Table 4. Top-1 and top-5 accuracy (%) on the ImageNet-1K validation dataset with ResNet50 as the teacher and MobileNetV2 as the
student network.

Acc. Teacher Student AT KD OFD CRD CAT-KD RED ReviewKD DKD SRRL MGD DistPro NORM Ours

Top-1 76.16 66.20 69.56 68.58 71.2571.37 7224 7132 7T256 T205 7249 7259 7326 7426 76.80
Top-3 9286 85.80 89.33 88.95 90.34 90.41 91.13 - 91.00 91.05 - 9094 - - 92.80
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Analysis

Analysis regarding approximated PIs

How matching the approximated Pls for the embedding features of the teacher and student networks affects the actual distance
between their exact PIs.

Triangle inequality : ||pir — pisl|l, < |lpir — pirllz + |Ipir — pisllz + [|pis — pisl|a
* ||pir — pig||, : topological distillation loss.
o ||lpir — pirlly |lpis — pis||, : the approximation errors for the teacher and student.

* Approximation capability is crucial for matching the exact Pl of the student to that of the teacher network.

e However, ||pis — pig||, is not directly minimized through the training process of the student.

21



Analysis

Analysis regarding approximated Pls

* Error analysis.

* Evaluate the approximation errors on the embedding features of
the student and teacher networks.

* TopKD has smaller errors compared to the students trained

from scratch or with KD.

Table 8: Approximation errors on CIFAR-100. Lgy de-
notes the training error for the teacher as in Eq. (3). The val-
ues are averaged across minibatches of the training dataset.

The bolded value indicates the smallest error.

lpis — pizg|l2

Teacher Student _ E”'.“-_ Student  Smdent
(lpiz = pig|l2) Student Wi KD wi TopKD

VGGII  MobileMNetV?2 0.00229 0.02335 0.03208 0.02103
ResNet50 MobileNetVv?2 0.00218 000997 UMT73  0.00740
ResNets( VGOGE 0.00218 011178 0.01961 0.01679
EesNeti? x4 ShuffleNetV] 0.00248 0053301 005112 004084
REesNeti? x4 ShuffleMNetV?2 0.00248 006427 007016 000434
WEN-40-2 ShuffleNetV] 0.00164 006391 0.05419 0.05001
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Analysis

Visualization of overall topology

* UMAP

* TopKD more effectively gathers points by class than vanilla KD, making clearer distinctions between classes.
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Thank you

Any guestions
Jekim5418@yonsel.ac.kr
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