Hybrid Inverse Reinforcement Learning

Juntao Ren*, Gokul Swamy*, Steven Wu, Drew Bagnell, Sanjiban Choudhury

Inverse Reinforcement Learning for Imitation

 $\begin{cases} s_1 \dots s_n \\ a_1 \dots a_n \end{cases} \longleftrightarrow \begin{cases} s_1 \dots s_n \\ a_1 \dots a_n \end{cases}$

Robust to compounding

Requires repeatedly solving a hard exploration problem.

Exploration makes IRL Inefficient

Exploration makes IRL Inefficient

 $\pi_{F} \stackrel{f}{\longleftrightarrow} \pi$

Exploration makes IRL Inefficient

 $\pi_{F} \xleftarrow{f} \pi$

Exploration makes IRL Inefficient

Exploration makes IRL Inefficient

We're playing adversarial whack-a-mole with an RL Hammer

Question: How do we reduce the amount of exploration performed in inverse RL?

A Unifying Mathematical Framework for Efficient IRL

a sequence of policies $\pi_{t+1} = A_{\pi}(f_{1,t})$ such that

$$\sum_{t=1}^{T} J(\pi_E, f_t) - dt$$

ERROr { Reg_{π}(*T*) }: A policy-selection algorithm \mathbb{A}_{π} satisfies the $\operatorname{Reg}_{\pi}(T)$ expert-relative regret guarantee if given any sequence of reward functions $f_{1,T}$, it produces

$J(\pi_t, f_t) \leq \operatorname{Reg}_{\pi}(T).$

Notice that we never need to compute a best response to an $f_t!$

A Unifying Mathematical Framework for Efficient IRL

 $J(\pi_{E}, r) - J(\bar{\pi}, r) = \frac{1}{T} \sum_{T}^{I} J(\pi_{E}, r) - J(\pi_{t}, r)$ t = 1 $\leq \max_{f^{\star} \in \mathscr{F}_{r}} \frac{1}{T} \sum_{t=1}^{T} J(\pi_{E}, f^{\star}) - J(\pi_{t}, f^{\star})$ $\leq \frac{1}{T} \sum_{t=1}^{T} J(\pi_E, f_t) - J(\pi_t, f_t) + \frac{\operatorname{Reg}_f(T)}{T} H$ $\operatorname{Reg}_{\pi}(T)$, $\operatorname{Reg}_{f}(T)$

[R**S**+ '24]

A2: Hybrid Training

A3: Hybrid Model Fitting

HyPER

A1: Expert Resets

FILTER

A2: Hybrid Training

HyPE

A3: Hybrid Model Fitting

HyPER

[S+'23, B+'03]

A2: Hybrid Training

A3: Hybrid Model Fitting

HyPER

Speeding up IRL with Hybrid Training

A2: Hybrid Training

A3: Hybrid Model Fitting

HyPER

Hybrid Model Fitting Speeds Up IRL (even more)

Paper

Thanks!

gswamy@cmu.edu, jlr429@cornell.edu