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e Ininformation theoretic learning, estimation of entropy and other related
functionals is fundamental.

e Often, the quantity of concern X ~ P has a continuous distribution (probability
measure) in RY. In other words P < ) (the Lebesgue measure) and P has a
density function py.

e For such a quantity we seek to estimate the differential entropy

H(P) := E[- log px(X)].
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¢ Classical methods for estimating H(P) based on samples {x;}!_, from P include:
kernel density estimation (KDE), k-nearest neighbors estimates, methods based
on sample spacings.

'Wasserman 2004, p. 319.
ZPichler et al. 2022.
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¢ Classical methods for estimating H(P) based on samples {x;}!_, from P include:
kernel density estimation (KDE), k-nearest neighbors estimates, methods based
on sample spacings.

* These possess nice asymptotic properties, like consistency, but fail in moderately
high dimensions’.

e KDE may be improved by increasing the model class, e.g. going to Gaussian
mixture models (GMMs).

* Arecent development is entropy estimation with GMMs using gradient-based
optimization of a cross-entropy target (KNIFE)2.

'Wasserman 2004, p. 319.
ZPichler et al. 2022.
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Contribution

This work:

¢ Shows empirically that the problems of KDE estimates persist in for such GMM
estimates.

* Introduces a deep learning-based correction to the estimates called REMEDT,
demonstrating good performance in moderate dimensions.

* Proves theoretically that it satisfies a desirable consistency property.
* Investigates its performance in the Information Bottleneck context.
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GMMs fail in moderate dimension
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Figure: KNIFE training curves with error bars on 8-dimensional triangle and uniform ball/cube
datasets. It is observed that increasing the number of components M for KNIFE leads to
overfitting in all datasets.
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Idea: Use weakly fitted base models Q that allow tractable log-likelihoods.

* For example normal, Gaussian mixture models, normalizing flows.

* The difference between H(PP) and the cross-entropy C(P||Q) is then given by the
relative entropy (KL-divergence) R(PP||Q).

* Estimate R(P||Q) using Donsker-Varadhan's formula.
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Donsker-Varadhan's formula: For P, Q probability measures on R? such that P <« Q
we have

R(P||Q) = sup EF[T] — log E?[e"]. %)
TGCb
Such estimation has been used for mutual information3.
® Questions:
* Can we use empirical estimates in Eq. (1)?
* How to optimize over Cp?
* Can we obtain theoretical guarantees?

3Belghazi et al. 2018.
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REMEDT loss function: n samples from the data (P) and m independent samples from
the base (Q) distribution,
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REMEDT loss function: n samples from the data (P) and m independent samples from
the base (Q) distribution,

~ 1 m o
Lremepr = — Z log g(x;) < Z T(x;) — log (E Z eT(x,))) )
i=

-~ -~

Lnire Loy
Minimizing the loss function (2) implies -
* Minimizing Lxnire: The cross-entropy between P and Q
e Minimizing £Zpy: The KL-divergence between P and Q
We select KNIFE* as the base distribution.
“Pichler et al. 2022.
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Entropy estimation
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(a) Training curve (b) T (image) vs. g (contours). (¢) Unnormalized density qu(x)

Figure: Results on two moons dataset. In the middle we see what direction (positive or
negative) REMEDI affects the base distribution. To the right is the unnormalized distribution
implied by g(x)e”™).
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Figure: REMEDI training curves with error bars on 8-dimension uniform ball (a) and cube (b)
datasets with 256-comp. KNIFE for reference. (c) The experiment on an 8-dimensional
triangle dataset shows the effect of varying the number of components. REMEDT significantly
improves the entropy estimation compared to KNIFE.
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Figure: Plot of test error of the Information Bottleneck methods vs 3 on benchmark image
classification datasets with error bars. For most 8 values, REMEDI outperforms the other
methods on MNIST and ImageNet. On CIFAR10, the classification errors are similar for all the
methods. However, REMEDI exhibits the lowest classification error across the 3 values.
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Information Bottleneck

Information bottleneck latent space:
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Figure: REMEDI marginal distribution of 2-d latent space on MNIST.
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Generative capabilities

Rejection sampling: A sample X from Q is accepted with probability ¢(X), where
o(x) = 27
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Figure: Left: 10000 proposals from Q. Right: 1989 accepted samples.
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Generative capabilities

Langevin diffusion:
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Figure: Q-samples X, (leftmost) and X;, after simulating (3) with different s.

aX; = -V V(Xt)dt + Zﬂ_1th, Xo = X, V(X) = — (|Og Q(X) + T(X)) (3)
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Thank you!
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