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Motivation Results Conclusion

Motivation
• In information theoretic learning, estimation of entropy and other relatedfunctionals is fundamental.

• Often, the quantity of concern X ∼ P has a continuous distribution (probabilitymeasure) in Rd . In other words P ≪ λ (the Lebesgue measure) and P has adensity function pX .
• For such a quantity we seek to estimate the differential entropy

H(P) := E[− log pX (X )].
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Motivation Results Conclusion

Motivation
• Classical methods for estimating H(P) based on samples {xi}n

i=1 from P include:kernel density estimation (KDE), k -nearest neighbors estimates, methods basedon sample spacings.

• These possess nice asymptotic properties, like consistency, but fail in moderatelyhigh dimensions1.
• KDE may be improved by increasing the model class, e.g. going to Gaussianmixture models (GMMs).
• A recent development is entropy estimation with GMMs using gradient-basedoptimization of a cross-entropy target (KNIFE)2.

1Wasserman 2004, p. 319.2Pichler et al. 2022.
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Motivation Results Conclusion

Contribution

This work:

• Shows empirically that the problems of KDE estimates persist in for such GMMestimates.
• Introduces a deep learning-based correction to the estimates called REMEDI,demonstrating good performance in moderate dimensions.
• Proves theoretically that it satisfies a desirable consistency property.
• Investigates its performance in the Information Bottleneck context.
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GMMs fail in moderate dimension
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Figure: KNIFE training curves with error bars on 8-dimensional triangle and uniform ball/cubedatasets. It is observed that increasing the number of components M for KNIFE leads tooverfitting in all datasets.
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Motivation Results Conclusion

Method
Task: Estimate H(P).

Idea: Use weakly fitted base models Q that allow tractable log-likelihoods.
• For example normal, Gaussian mixture models, normalizing flows.
• The difference between H(P) and the cross-entropy C(P||Q) is then given by therelative entropy (KL-divergence) R(P||Q).
• Estimate R(P||Q) using Donsker-Varadhan’s formula.
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Motivation Results Conclusion

Method
Donsker-Varadhan’s formula: For P,Q probability measures on Rd such that P ≪ Qwe have

R(P||Q) = sup
T∈Cb

EP[T ]− logEQ[eT ]. (1)
Such estimation has been used for mutual information3.

• Questions:
• Can we use empirical estimates in Eq. (1)?
• How to optimize over Cb?
• Can we obtain theoretical guarantees?

3Belghazi et al. 2018.
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Motivation Results Conclusion

Loss function
REMEDI loss function: n samples from the data (P) and m independent samples fromthe base (Q) distribution,

L̂REMEDI =
1
n

n∑
i=1

− log q(xi)︸ ︷︷ ︸
L̂KNIFE

−

(
1
n

n∑
i=1

T (xi)− log

(
1
m

m∑
i=1

eT (x̃i )

))
︸ ︷︷ ︸

L̂DV

(2)

Minimizing the loss function (2) implies –

• Minimizing L̂KNIFE: The cross-entropy between P and Q
• Minimizing L̂DV: The KL-divergence between P and Q

We select KNIFE4 as the base distribution.

4Pichler et al. 2022.
Nilsson, Samaddar, Madireddy & Nyquist REMEDI July 2024 9 / 15



Motivation Results Conclusion

Loss function
REMEDI loss function: n samples from the data (P) and m independent samples fromthe base (Q) distribution,

L̂REMEDI =
1
n

n∑
i=1

− log q(xi)︸ ︷︷ ︸
L̂KNIFE

−

(
1
n

n∑
i=1

T (xi)− log

(
1
m

m∑
i=1

eT (x̃i )

))
︸ ︷︷ ︸

L̂DV

(2)

Minimizing the loss function (2) implies –
• Minimizing L̂KNIFE: The cross-entropy between P and Q

• Minimizing L̂DV: The KL-divergence between P and Q
We select KNIFE4 as the base distribution.

4Pichler et al. 2022.
Nilsson, Samaddar, Madireddy & Nyquist REMEDI July 2024 9 / 15



Motivation Results Conclusion

Loss function
REMEDI loss function: n samples from the data (P) and m independent samples fromthe base (Q) distribution,

L̂REMEDI =
1
n

n∑
i=1

− log q(xi)︸ ︷︷ ︸
L̂KNIFE

−

(
1
n

n∑
i=1

T (xi)− log

(
1
m

m∑
i=1

eT (x̃i )

))
︸ ︷︷ ︸

L̂DV

(2)

Minimizing the loss function (2) implies –
• Minimizing L̂KNIFE: The cross-entropy between P and Q
• Minimizing L̂DV: The KL-divergence between P and Q

We select KNIFE4 as the base distribution.

4Pichler et al. 2022.
Nilsson, Samaddar, Madireddy & Nyquist REMEDI July 2024 9 / 15



Motivation Results Conclusion

Loss function
REMEDI loss function: n samples from the data (P) and m independent samples fromthe base (Q) distribution,

L̂REMEDI =
1
n

n∑
i=1

− log q(xi)︸ ︷︷ ︸
L̂KNIFE

−

(
1
n

n∑
i=1

T (xi)− log

(
1
m

m∑
i=1

eT (x̃i )

))
︸ ︷︷ ︸

L̂DV

(2)

Minimizing the loss function (2) implies –
• Minimizing L̂KNIFE: The cross-entropy between P and Q
• Minimizing L̂DV: The KL-divergence between P and Q

We select KNIFE4 as the base distribution.
4Pichler et al. 2022.

Nilsson, Samaddar, Madireddy & Nyquist REMEDI July 2024 9 / 15



Motivation Results Conclusion

Entropy estimation
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(a) Training curve
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Figure: Results on two moons dataset. In the middle we see what direction (positive ornegative) REMEDI affects the base distribution. To the right is the unnormalized distributionimplied by q(x)eT (x).
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Entropy estimation
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(c)
Figure: REMEDI training curves with error bars on 8-dimension uniform ball (a) and cube (b)datasets with 256-comp. KNIFE for reference. (c) The experiment on an 8-dimensionaltriangle dataset shows the effect of varying the number of components. REMEDI significantlyimproves the entropy estimation compared to KNIFE.
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Information Bottleneck

(a) MNIST (b) CIFAR10 (c) ImageNet
Figure: Plot of test error of the Information Bottleneck methods vs β on benchmark imageclassification datasets with error bars. For most β values, REMEDI outperforms the othermethods on MNIST and ImageNet. On CIFAR10, the classification errors are similar for all themethods. However, REMEDI exhibits the lowest classification error across the β values.
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Information Bottleneck
Information bottleneck latent space:

(a) Encoder samples (b) KNIFE contours (c) REMEDI contours
Figure: REMEDI marginal distribution of 2-d latent space on MNIST.
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Generative capabilities
Rejection sampling: A sample X from Q is accepted with probability ϕ(X ), where
ϕ(x) = eT (x)

Ĉ
.

Figure: Left: 10000 proposals from Q. Right: 1989 accepted samples.
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Generative capabilities
Langevin diffusion:

Figure: Q-samples X0 (leftmost) and XtH after simulating (3) with different β.
dXt = −∇V (Xt)dt +

√
2β−1dWt , X0 = x0, V (x) = − (log q(x) + T (x)) (3)
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Thank you!
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