REMEDI: Corrective Transformations for Improved Neural Entropy Estimation

Viktor Nilsson ^{1*†} Anirban Samaddar ^{2*} Sandeep Madireddy ² Pierre Nyguist ¹³

¹KTH Royal Institute of Technology ²Argonne National Laboratory, ³Chalmers University of Technology and University of Gothenburg

*Equal contribution, †Corresponding author

Table of Contents

- Motivation
- Results
- Conclusion

• In information theoretic learning, estimation of entropy and other related functionals is fundamental.

- In information theoretic learning, estimation of entropy and other related functionals is fundamental.
- Often, the quantity of concern $X \sim \mathbb{P}$ has a continuous distribution (probability measure) in \mathbb{R}^d .

- In information theoretic learning, estimation of entropy and other related functionals is fundamental.
- Often, the quantity of concern $X \sim \mathbb{P}$ has a continuous distribution (probability measure) in \mathbb{R}^d . In other words $\mathbb{P} \ll \lambda$ (the Lebesgue measure) and \mathbb{P} has a density function p_X .

- In information theoretic learning, estimation of entropy and other related functionals is fundamental.
- Often, the quantity of concern $X \sim \mathbb{P}$ has a continuous distribution (probability measure) in \mathbb{R}^d . In other words $\mathbb{P} \ll \lambda$ (the Lebesgue measure) and \mathbb{P} has a density function p_X .
- For such a quantity we seek to estimate the differential entropy

$$H(\mathbb{P}) \coloneqq \mathbb{E}[-\log p_X(X)].$$

• Classical methods for estimating $H(\mathbb{P})$ based on samples $\{x_i\}_{i=1}^n$ from \mathbb{P} include: kernel density estimation (KDE), k-nearest neighbors estimates, methods based on sample spacings.

4/15

¹Wasserman 2004, p. 319.

²Pichler et al. 2022.

- Classical methods for estimating $H(\mathbb{P})$ based on samples $\{x_i\}_{i=1}^n$ from \mathbb{P} include: kernel density estimation (KDE), k-nearest neighbors estimates, methods based on sample spacings.
- These possess nice asymptotic properties, like consistency, but fail in moderately high dimensions¹.

¹Wasserman 2004, p. 319.

²Pichler et al. 2022.

- Classical methods for estimating $H(\mathbb{P})$ based on samples $\{x_i\}_{i=1}^n$ from \mathbb{P} include: kernel density estimation (KDE), k-nearest neighbors estimates, methods based on sample spacings.
- These possess nice asymptotic properties, like consistency, but fail in moderately high dimensions¹.
- KDE may be improved by increasing the model class, e.g. going to Gaussian mixture models (GMMs).

¹Wasserman 2004, p. 319.

²Pichler et al. 2022.

- Classical methods for estimating $H(\mathbb{P})$ based on samples $\{x_i\}_{i=1}^n$ from \mathbb{P} include: kernel density estimation (KDE), k-nearest neighbors estimates, methods based on sample spacings.
- These possess nice asymptotic properties, like consistency, but fail in moderately high dimensions¹.
- KDE may be improved by increasing the model class, e.g. going to Gaussian mixture models (GMMs).
- A recent development is entropy estimation with GMMs using gradient-based optimization of a cross-entropy target (KNIFE)².

4/15

¹Wasserman 2004, p. 319.

²Pichler et al. 2022.

This work:

 Shows empirically that the problems of KDE estimates persist in for such GMM estimates.

- Shows empirically that the problems of KDE estimates persist in for such GMM estimates.
- Introduces a deep learning-based correction to the estimates called REMEDI, demonstrating good performance in moderate dimensions.

- Shows empirically that the problems of KDE estimates persist in for such GMM estimates.
- Introduces a deep learning-based correction to the estimates called REMEDI, demonstrating good performance in moderate dimensions.
- Proves theoretically that it satisfies a desirable consistency property.

- Shows empirically that the problems of KDE estimates persist in for such GMM estimates.
- Introduces a deep learning-based correction to the estimates called REMEDI, demonstrating good performance in moderate dimensions.
- Proves theoretically that it satisfies a desirable consistency property.
- Investigates its performance in the Information Bottleneck context.

GMMs fail in moderate dimension

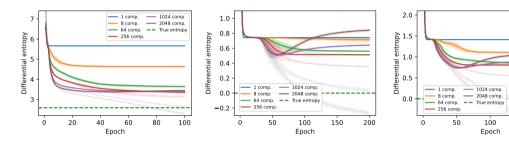


Figure: KNIFE training curves with error bars on 8-dimensional triangle and uniform ball/cube datasets. It is observed that increasing the number of components *M* for KNIFE leads to overfitting in all datasets.

150

200

Task: Estimate $H(\mathbb{P})$.

Task: Estimate $H(\mathbb{P})$.

Idea: Use weakly fitted base models $\mathbb Q$ that allow tractable log-likelihoods.

Task: Estimate $H(\mathbb{P})$. Idea: Use weakly fitted base models \mathbb{Q} that allow tractable log-likelihoods.

• For example normal, Gaussian mixture models, normalizing flows.

Task: Estimate $H(\mathbb{P})$.

Idea: Use weakly fitted base models Q that allow tractable log-likelihoods.

- For example normal, Gaussian mixture models, normalizing flows.
- The difference between $H(\mathbb{P})$ and the cross-entropy $C(\mathbb{P}||\mathbb{Q})$ is then given by the relative entropy (KL-divergence) $R(\mathbb{P}||\mathbb{Q})$.

Task: Estimate $H(\mathbb{P})$.

Idea: Use weakly fitted base models Q that allow tractable log-likelihoods.

- For example normal, Gaussian mixture models, normalizing flows.
- The difference between $H(\mathbb{P})$ and the cross-entropy $C(\mathbb{P}||\mathbb{Q})$ is then given by the relative entropy (KL-divergence) $R(\mathbb{P}||\mathbb{Q})$.
- Estimate $R(\mathbb{P}||\mathbb{Q})$ using Donsker-Varadhan's formula.

Donsker-Varadhan's formula: For \mathbb{P},\mathbb{Q} probability measures on \mathbb{R}^d such that $\mathbb{P}\ll\mathbb{Q}$ we have

$$R(\mathbb{P}||\mathbb{Q}) = \sup_{T \in C_b} \mathbb{E}^{\mathbb{P}}[T] - \log \mathbb{E}^{\mathbb{Q}}[e^T]. \tag{1}$$

Donsker-Varadhan's formula: For \mathbb{P},\mathbb{Q} probability measures on \mathbb{R}^d such that $\mathbb{P} \ll \mathbb{Q}$ we have

$$R(\mathbb{P}||\mathbb{Q}) = \sup_{T \in C_b} \mathbb{E}^{\mathbb{P}}[T] - \log \mathbb{E}^{\mathbb{Q}}[e^T]. \tag{1}$$

- Questions:
 - Can we use empirical estimates in Eq. (1)?

Donsker-Varadhan's formula: For \mathbb{P},\mathbb{Q} probability measures on \mathbb{R}^d such that $\mathbb{P} \ll \mathbb{Q}$ we have

$$R(\mathbb{P}||\mathbb{Q}) = \sup_{T \in C_b} \mathbb{E}^{\mathbb{P}}[T] - \log \mathbb{E}^{\mathbb{Q}}[e^T]. \tag{1}$$

- Questions:
 - Can we use empirical estimates in Eq. (1)?
 - How to optimize over C_b ?

Donsker-Varadhan's formula: For \mathbb{P},\mathbb{Q} probability measures on \mathbb{R}^d such that $\mathbb{P} \ll \mathbb{Q}$ we have

$$R(\mathbb{P}||\mathbb{Q}) = \sup_{T \in C_b} \mathbb{E}^{\mathbb{P}}[T] - \log \mathbb{E}^{\mathbb{Q}}[e^T]. \tag{1}$$

- Questions:
 - Can we use empirical estimates in Eq. (1)?
 - How to optimize over C_b ?
 - Can we obtain theoretical guarantees?

REMEDI loss function: n samples from the data (\mathbb{P}) and m independent samples from the base (\mathbb{Q}) distribution,

$$\hat{\mathcal{L}}_{\text{REMEDI}} = \underbrace{\frac{1}{n} \sum_{i=1}^{n} -\log q(x_i)}_{\hat{\mathcal{L}}_{\text{KNIFE}}} - \underbrace{\left(\frac{1}{n} \sum_{i=1}^{n} T(x_i) - \log \left(\frac{1}{m} \sum_{i=1}^{m} e^{T(\tilde{x}_i)}\right)\right)}_{\hat{\mathcal{L}}_{\text{DV}}}$$
(2)

Minimizing the loss function (2) implies -

REMEDI loss function: n samples from the data (\mathbb{P}) and m independent samples from the base (\mathbb{Q}) distribution,

$$\hat{\mathcal{L}}_{\text{REMEDI}} = \underbrace{\frac{1}{n} \sum_{i=1}^{n} -\log q(x_i)}_{\hat{\mathcal{L}}_{\text{KNIFE}}} - \underbrace{\left(\frac{1}{n} \sum_{i=1}^{n} T(x_i) - \log \left(\frac{1}{m} \sum_{i=1}^{m} e^{T(\tilde{x}_i)}\right)\right)}_{\hat{\mathcal{L}}_{\text{DV}}}$$
(2)

Minimizing the loss function (2) implies -

• Minimizing $\hat{\mathcal{L}}_{KNIFE}$: The cross-entropy between $\mathbb P$ and $\mathbb Q$

REMEDI loss function: n samples from the data (\mathbb{P}) and m independent samples from the base (\mathbb{Q}) distribution,

$$\hat{\mathcal{L}}_{\text{REMEDI}} = \underbrace{\frac{1}{n} \sum_{i=1}^{n} -\log q(x_i)}_{\hat{\mathcal{L}}_{\text{KNIFE}}} - \underbrace{\left(\frac{1}{n} \sum_{i=1}^{n} T(x_i) - \log \left(\frac{1}{m} \sum_{i=1}^{m} e^{T(\tilde{x}_i)}\right)\right)}_{\hat{\mathcal{L}}_{\text{DV}}}$$
(2)

Minimizing the loss function (2) implies -

- Minimizing $\hat{\mathcal{L}}_{KNIFE}$: The cross-entropy between $\mathbb P$ and $\mathbb Q$
- Minimizing $\hat{\mathcal{L}}_{DV}$: The KL-divergence between $\mathbb P$ and $\mathbb Q$

REMEDI loss function: n samples from the data (\mathbb{P}) and m independent samples from the base (\mathbb{Q}) distribution,

$$\hat{\mathcal{L}}_{\text{REMEDI}} = \underbrace{\frac{1}{n} \sum_{i=1}^{n} -\log q(x_i)}_{\hat{\mathcal{L}}_{\text{KNIFE}}} - \underbrace{\left(\frac{1}{n} \sum_{i=1}^{n} T(x_i) - \log \left(\frac{1}{m} \sum_{i=1}^{m} e^{T(\tilde{x}_i)}\right)\right)}_{\hat{\mathcal{L}}_{\text{DV}}}$$
(2)

Minimizing the loss function (2) implies -

- Minimizing $\hat{\mathcal{L}}_{ ext{KNIFE}}$: The cross-entropy between $\mathbb P$ and $\mathbb Q$
- Minimizing $\hat{\mathcal{L}}_{DV}$: The KL-divergence between $\mathbb P$ and $\mathbb Q$

We select KNIFE⁴ as the base distribution.

⁴Pichler et al. 2022.

Entropy estimation

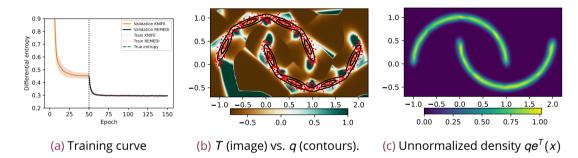


Figure: Results on two moons dataset. In the middle we see what direction (positive or negative) REMEDI affects the base distribution. To the right is the unnormalized distribution implied by $q(x)e^{T(x)}$.

Results

Entropy estimation

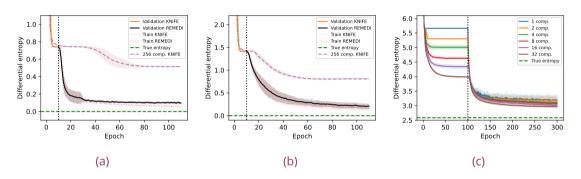


Figure: REMEDI training curves with error bars on 8-dimension uniform ball (a) and cube (b) datasets with 256-comp. KNIFE for reference. (c) The experiment on an 8-dimensional triangle dataset shows the effect of varying the number of components. REMEDI significantly improves the entropy estimation compared to KNIFE.

Information Bottleneck

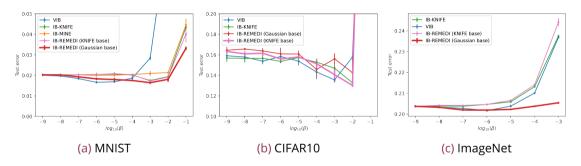


Figure: Plot of test error of the Information Bottleneck methods vs β on benchmark image classification datasets with error bars. For most β values, REMEDI outperforms the other methods on MNIST and ImageNet. On CIFAR10, the classification errors are similar for all the methods. However, REMEDI exhibits the lowest classification error across the β values.

July 2024

Information Bottleneck

Information bottleneck latent space:

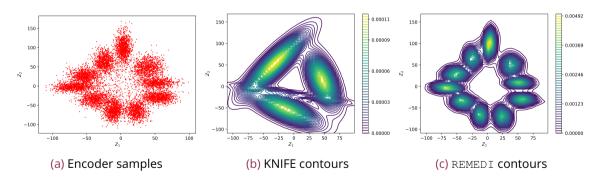


Figure: REMEDI marginal distribution of 2-d latent space on MNIST.

Generative capabilities

Rejection sampling: A sample X from \mathbb{Q} is accepted with probability $\phi(X)$, where $\phi(X) = \frac{e^{T(X)}}{2}$.

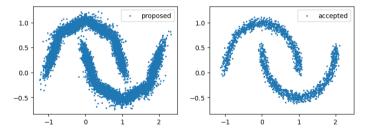


Figure: Left: 10000 proposals from \mathbb{O} . Right: 1989 accepted samples.

Generative capabilities

Langevin diffusion:

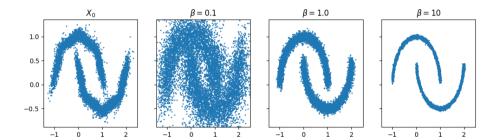


Figure: \mathbb{Q} -samples X_0 (leftmost) and $X_{t\mu}$ after simulating (3) with different β .

REMEDI

$$dX_t = -\nabla V(X_t)dt + \sqrt{2\beta^{-1}}dW_t, \quad X_0 = X_0, \quad V(X) = -(\log q(X) + T(X))$$
 (3)

Thank you!

References I

- Belghazi, Mohamed Ishmael et al. (2018). "Mutual information neural estimation". In: *International conference on machine learning*. PMLR, pp. 531–540.
- Pichler, Georg et al. (2022). "A differential entropy estimator for training neural networks". In: *International Conference on Machine Learning*. PMLR, pp. 17691–17715.
- Wasserman, Larry (2004). *All of statistics: a concise course in statistical inference*. Vol. 26. Springer.