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Problem motivation & setup

Diffusion models have risen as an interesting
way to parametrize policies in reinforcement
learning, due to their expressivity. While such
policies in the behavior cloning setting are
naturally posed, since we have samples of the
distribution we want to sample from, optimizing
diffusion model policies from rewards is a
fundamentally different scenario that requires
special attention.

Our paper sets up a theoretical framework to
analyze this regime, proves a certain class of
training methods can effectively perform Q
learning from diffusion model policies, and
demonstrate the practical benetfits of such an
algorithm.

WY(s a)W(s a) - W(s ak-1)
—_— ) — —

z~N(O /) a

Score matching for diffusion model policies, purely from rewards.

Our method

Core idea: matching denoising model to V,Q

effectively learns optimal policies.

By representing our system as a joint S

DE:

ds = F(s,a)dt + X(s,a)dBy

da = V(s,a)dt

we can prove that any update that pushes the
denoising model W(s,a) towards the action
gradient of the policy’s Q-function V,Q (s, a)

will strictly increase expected rewards.
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Key results

- Comparable results to popular baselines

that do not use as expressive of policy
classes.

- Uniquely learns explorative policies

compared to alternative methods for

training diffusion model policies.
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Key takeaways

- Diffusion model policies can be effectively and
efficiently optimized tor Q-learning by matching
the denoising model against V0.

- Converged policies from such training are multi-
modal and still explore, without explicit entropy
regularization or exploring terms.
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