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Background

Dynamical systems: Dynamic model governs how states evolve in time 
(e.g., weather variables, fluid flows, particles moving in space):

Learning systems from data: We can use historical trajectories to learn a 
model that mimics system dynamics:

Trajectory matching: Most approaches rely on minimization of a 
trajectory matching objective, e.g:



Chaotic systems are characterized by 
states diverging exponentially.

Inconsistencies between learned 
models and true dynamics can 
therefore become exaggerated.

Background

Animation credit: https://geoffboeing.com/2016/12/animating-lorenz-attractor-python/ 
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Many systems, even chaotic ones 
are ergodic and remain in a narrow 
set of possible states known as 
the attractor.

This attractor supports an 
invariant measure that is 
unchanged by the system 
dynamics.

Background

Invariant measure



Problem statement

True invariant 
measure

Learned invariant 
measure

Hypothesis: Models learned 
from data, do not learn the 
“right” invariant measure 
and fail to remain close to 
the attractor, resulting in 
non-physical behavior for 
long rollouts.

❗



Problem statement

Example failure modes

Hypothesis: Models learned 
from data, do not learn the 
“right” invariant measure 
and fail to remain close to 
the attractor, resulting in 
non-physical behavior for 
long rollouts.

❗



Problem statement

Can we achieve stability by 
moving learned model 
outputs to the correct 
attractor?

Hypothesis: Models learned 
from data, do not learn the 
“right” invariant measure 
and fail to remain close to 
the attractor, resulting in 
non-physical behavior for 
long rollouts.

❗ ❓



Learn a model so that we:

match data trajectories while preserving the invariant measure.

Proposed methodology



Proposed methodology



Proposed methodology



What is the “right”         to use?



Respects underlying geometry of state space.

Unbiased and sample efficient estimation.

Entails convergence properties.

Not “cursed” by dimension.

What is the “right”         to use?



Maximum Mean Discrepancy (MMD)

Gretton, Arthur, et al. "A kernel two-sample test." The Journal of Machine Learning Research 13.1 (2012): 723-773.



Admits unbiased estimator.

Computed in              . 

Entails convergence properties.

Enjoys parametric rates of estimation:                        sampling error.

Maximum Mean Discrepancy (MMD)



How can we sample from         ?



How can we sample from         ?

Assuming the learned model has an attractor, we sample from it by 
unrolling learned model “far enough” in time:



How can we 
sample from 

a ?



How can we 
sample from 

a ?



Time-evolve 
with aa 









“Unconditional” regularization



“Conditional” regularization



DySLIM



DySLIM

Trajectory matching



DySLIM

“Unconditional” regularization



DySLIM

“Conditional” regularization



DySLIM

● System-agnostic measure-matching 
regularization.

● Tractable, sample & compute-efficient.

● Capable of tackling larger and more 
complex systems.



Experiments

Lorenz 63

Kuramoto–Sivashinsky

Kolmogorov Flow

Animation credit: https://johncarlosbaez.wordpress.com/2021/10/17/conjectures-on-the-kuramoto-sevashinsky-equation/ 

https://johncarlosbaez.wordpress.com/2021/10/17/conjectures-on-the-kuramoto-sevashinsky-equation/


Baselines: Unregularized objectives

1-step

Curriculum

Pushforward

Brandstetter, Johannes, Daniel Worrall, and Max Welling. "Message passing neural PDE solvers." arXiv preprint arXiv:2202.03376 (2022).



Lorenz 63



Lorenz 63



Kuramoto–Sivashinsky



Kolmogorov Flow



Kolmogorov Flow



Summary

● Leveraged key property of ergodic systems: supporting invariant 
measure.

● Introduced DySLIM: a scalable and system-agnostic 
measure-matching regularization.

● Demonstrated that both short-term predictive capabilities and 
long-term stability can be improved across a range of well-studied 
systems. (Lorenz 63, Kuramoto–Sivashinsky, and Kolmogorov Flows.)
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