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Background

‘ Dynamical systems: Dynamic model governs how states evolve in time
(e.g., weather variables, fluid flows, particles moving in space):

uk:S(uk_l):...:Sk(uO) Uup,uy,...,ur €U

aé Learning systems from data: \We can use historical trajectories to learn a
model that mimics system dynamics:

Find 6 s.t. Sp(ug_1) ~ uy

¥ Trajectory matching: Most approaches rely on minimization of a
Q__—/’ trajectory matching objective, e.q:

min £(6) = [[Sp(ur) — i1



Background

Chaotic systems are characterized by
states diverging exponentially.

models and true dynamics can

Y Inconsistencies between learned
therefore become exaggerated.

Animation credit: https://geoffboeing.com/2016/12/animating-lorenz-attractor-python/


https://geoffboeing.com/2016/12/animating-lorenz-attractor-python/

Background

Invariant measure

Many systems, even chaotic ones
are ergodic and remain in a narrow
set of possible states known as
the attractor.

This attractor supports an
invariant measure that is
unchanged by the system
dynamics.



Problem statement

Hypothesis: Models learned
from data, do not learn the
“right” invariant measure
and fail to remain close to
the attractor, resulting in
non-physical behavior for
long rollouts.
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Problem statement

Hypothesis: Models learned
from data, do not learn the
“right” invariant measure
and fail to remain close to
the attractor, resulting in
non-physical behavior for
long rollouts.
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?

Can we achieve stability by
moving learned model
outputs to the correct
attractor?



Proposed methodology

Learn a model so that we:

match data trajectories while preserving the invariant measure.
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Proposed methodology
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[ What is the “right” |) to use? }
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What is the “right” ) to use?

Respects underlying geometry of state space.

Unbiased and sample efficient estimation.

Entails convergence properties.

Not “cursed” by dimension.
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Abstract
We propose a for analyzing and ing distributions, which we use to construct sta-
tistical tests to determine if two samples are drawn from different distributions. Our test statistic is
the largest di in exp ions over ions in the unit ball of a reproducing kernel Hilbert

distribution of this statistic. The MMD can be computed in quadratic time, although efficient linear
time approximations are available. Our statistic is an instance of an integral probability metric, and
various classical metrics on distributions are obtained when alternative function classes are used
in place of an RKHS. We apply our two-sample tests to a variety of problems, including attribute
matching for databases using the Hungarian marriage method, where they perform strongly. Ex-
cellent performance is also obtained when comparing distributions over graphs, for which these are
the first such tests.

space (RKHS), and is called the maximum mean discrepancy (MMD). We present two distribution- *
free tests based on large deviation bounds for the MMD, and a third test based on the asymptotic h— u sk ,{ u "

Gretton, Arthur, et al. "A kernel two-sample test." The Journal of Machine Learning Research 13.1(2012): 723-773.



SN SN NS

Maximum Mean Discrepancy (MMD)

Admits unbiased estimator.
Computed in @(n?).
Entails convergence properties.

Enjoys parametric rates of estimation: O(l/\/ﬁ) sampling error.
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How can we sample from (g ?

Assuming the learned model has an attractor, we sample from it by
unrolling learned model “far enough” in time:

k sk o,
(Sg )1 = g
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“Unconditional” regularization D (,u* ; /’LZ )
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“Conditional” regularization |) ( (Sk ) # ,u* 9 ,Uz )
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DySLIM

LR = L+ MDD, (S5)n™) + 22D ((S%)enr”, (S5) ")



DySLIM

LY =L+ MD(u", (S§)un*) + XD((S*)pp*, (S5)wn")

Trajectory matching



DySLIM

LY = L+ MD(u*, (SF)en™) + XaD((S®) p*, (Sh)wn*)

“Unconditional” regularization



DySLIM

LY =L+ MD(u", (S§)un*) + XD((S*)pp*, (S§)wn")

“Conditional” regularization



DySLIM

e System-agnostic measure-matching
regularization.

e Tractable, sample & compute-efficient.

e Capable of tackling larger and more
complex systems.




Experiments

Lorenz 63

Kuramoto—Sivashinsky

Kolmogorov Flow



https://johncarlosbaez.wordpress.com/2021/10/17/conjectures-on-the-kuramoto-sevashinsky-equation/

Baselines: Unregularized objectives

1-step |Sp(u) — S(u)|]

0
Curriculum Z 1S5 () — S*(u)]]
k=1

Pushforward HS@(Sg(Sg_l(u)» — 8% (u)]



Lorenz 63
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Lorenz 63
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Kuramoto-Sivashinsky

Pfwd DySLIM A1=1, A2=1000 (ours)
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Kolmogorov Flow
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Kolmogorov Flow

Table 1. Kolmogorov flow: Metrics for 1-step, curriculum, and pushforward objectives without and with regularization (A\; = 0,
A2 = 100). Boldface numbers indicate that the metric is improved by our regularization. All values displayed are in units of x 102,

Batch size LR MELR (J) MELRw ({) covRMSE (1) Wass1 (1) TCM (1)
Base DySLIM | Base DySLIM | Base DySLIM | Base DySLIM | Base DySLIM

1-step 64 Se-4 | 2.77 1.84 0.44 0.85 7:93 7.30 16.2 5.55 5.39 245
Curr 64 Se-4 | 5.35 1.64 0.95 0.45 8.13 6.95 9.66 4.76 3.50 2.83
Pfwd 128 le-4 | 3.19 2.46 0.53 0.53 6.81 6.69 4.64 4.51 3.68 0.72




Summary

Leveraged key property of ergodic systems: supporting invariant
measure.

Introduced DySLIM: a scalable and system-agnostic
measure-matching regularization.

Demonstrated that both short-term predictive capabilities and
long-term stability can be improved across a range of well-studied
systems. (Lorenz 63, Kuramoto—Sivashinsky, and Kolmogorov Flows.)



Thank
you!

Zhong Yi Wan

-

Stephan Hoyer Volodymyr Kuleshov Fei Sha Leonardo Zepeda-Nunez



Thank you!

Tue 23 Jul 1:30 p.m. — 3 p.m. CEST
Hall C 4-9 #1003

Stable Learning by Invariant Measure
for Chaotic Systems

x [2402.04467] DySLIM: Dynamics
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https://github.com/google-research/swirl-dynamics/tree/main/swirl_dynamics/projects/ergodic
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