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Motivation

Question: Why Neural Networks Generalize?
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Understanding Generalization in Deep Learning

SGD ’Implicit Bias’ toward generalizing solutions:

Gunasekar et al. 2017; Soudry et al. 2018; Arora et al. 2019; Lyu and
Li 2020; Chizat and Bach 2020; Vardi 2023

Randomly sampled interpolating NNs empirically generalize:

Valle-Perez et al., 2019; Mingard et al., 2021; Chiang et al., 2023
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Take Home Message

Assumptions

There exists an underlying narrow teacher network

The weights of all networks are quantized

Our results

We prove that a typical interpolating NN generalizes with

#samples ≈ O (# teacher params+# student neurons)

Usually, # student neurons≪ # student params

Results for any depth and activation function, including CNN.

Relax quantization assumption, for special case (2-layer, LeakyReLU).
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Posterior Sampling

Prior over functions

P (h) = Pθ (hθ = h)

Posterior given training set

PS (h) = P (h | LS(h) = 0)
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Posterior Sampling Generalizes with Fixed p̃

Teacher Equivalence

The probability to sample a teacher-equivalent model is

p̃ ≜ Ph∼P (h ≡ h⋆) .

Lemma (Generalization of Abstract Posterior Sampling, Informal)

PS∼DN ,h∼PS (LD(h) < ϵ) ≥ 1− δ ,

if

N ≥
− log (p̃) + 3 log

(
2
δ

)
ϵ

← sample complexity
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Key Assumptions

Quantization

We consider Q-quantized networks where each of the parameters is
chosen from a fixed set Q ⊂ R such that 0 ∈ Q and |Q| ≤ Q.

e.g., Numbers representable as log2Q-bit floats.

Narrowness

We consider a teacher h⋆ = hθ⋆ which is a Q-quantized network of some
depth L and small widths D⋆ = (d⋆

1 , . . . , d
⋆
L), and a wider student of the

same depth L but widths D ≫ D⋆.

Uniform Prior

We consider a uniform prior over Q-quantized parameterizations.
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Main Result

Theorem (Effective Sample Complexities, Informal)

For any depth and activation function we have that:

For Vanilla Fully Connected Networks:

sample complexity = O

(
logQ ·

L∑
l=1

(d⋆
l dl−1 + d⋆

l )

)
.

With ”batch-normalization-like scaling”:

sample complexity = O

(
logQ ·

L∑
l=1

(
d⋆
l d

⋆
l−1 + 2dl

))
.
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Proof Idea

Vanilla Fully Connected Networks

How can a sampled network (left) replicate the teacher (right)?

Having a sub-network identical to the teacher

Then zero-out outgoing weights of redundant neurons

Then the weights entering can be arbitrary
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Summary

We showed

Posterior Sampling generalizes, assuming underlying narrow teacher.

In the paper

Analogous results for CNN

Removing Quantization Assumption (2-Layer)

Beyond interpolators

Future directions

Random interpolators conditioned on specific implicit bias

Connections to SGD
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