How Uniform Random Weights Induce
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Typical Interpolating Neural Networks
Generalize with Narrow Teachers
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Motivation

Question: Why Neural Networks Generalize? ]
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Understanding Generalization in Deep Learning

@ SGD 'Implicit Bias' toward generalizing solutions:

e Gunasekar et al. 2017; Soudry et al. 2018; Arora et al. 2019; Lyu and
Li 2020; Chizat and Bach 2020; Vardi 2023

Gon Buzaglo 3/11



Understanding Generalization in Deep Learning

@ SGD 'Implicit Bias' toward generalizing solutions:

e Gunasekar et al. 2017; Soudry et al. 2018; Arora et al. 2019; Lyu and
Li 2020; Chizat and Bach 2020; Vardi 2023

@ Randomly sampled interpolating NNs empirically generalize:
o Valle-Perez et al., 2019; Mingard et al., 2021; Chiang et al., 2023

Gon Buzaglo 3/11



Understanding Generalization in Deep Learning

@ SGD 'Implicit Bias' toward generalizing solutions:

e Gunasekar et al. 2017; Soudry et al. 2018; Arora et al. 2019; Lyu and
Li 2020; Chizat and Bach 2020; Vardi 2023

@ Randomly sampled interpolating NNs empirically generalize:
o Valle-Perez et al., 2019; Mingard et al., 2021; Chiang et al., 2023

Gon Buzaglo 3/11



Take Home Message

@ There exists an underlying narrow teacher network

@ The weights of all networks are quantized
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Take Home Message

@ There exists an underlying narrow teacher network

@ The weights of all networks are quantized

We prove that a typical interpolating NN generalizes with

#samples ~ O (# teacher params + # student neurons)

@ Usually, # student neurons < # student params
@ Results for any depth and activation function, including CNN.

@ Relax quantization assumption, for special case (2-layer, LeakyReLU).
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Posterior Sampling

@ Prior over functions
P (h) =Pg (hg = h)

@ Posterior given training set

Ps(h) =P (h|Ls(h)=0)

6

All parameters
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Posterior Sampling Generalizes with Fixed p

Teacher Equivalence

The probability to sample a teacher-equivalent model is

Lemma (Generalization of Abstract Posterior Sampling, Informal)

]P)SNDN,hNPS (ﬁD(h) < E) Z 1— (5,
if
—log (p) + 3log (%)
€

N >

< sample complexity
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Key Assumptions

We consider Q-quantized networks where each of the parameters is
chosen from a fixed set @ C R such that 0 € Q and |Q| < Q.

@ e.g., Numbers representable as log, Q-bit floats.

We consider a teacher h* = hg« which is a Q-quantized network of some
depth L and small widths D* = (d7, ..., d[), and a wider student of the
same depth L but widths D > D*.

do

ds3
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Key Assumptions

We consider a teacher h* = hg« which is a Q-quantized network of some
depth L and small widths D* = (df, ..., d[), and a wider student of the
same depth L but widths D > D*.

do

Uniform Prior

We consider a uniform prior over ()-quantized parameterizations.
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Main Result

Theorem (Effective Sample Complexities, Informal)

For any depth and activation function we have that:

@ fFor Vanilla Fully Connected Networks:

L
sample complexity = O <Iog Q - Z (d,*d,_1 + d,*)) .
=1

e With "batch-normalization-like scaling”:

L
sample complexity = O (Iog Q - Z (dfdi_y + 2d/)> :
=
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Proof Idea

do dy do
‘ )
% ; ds3

Vanilla Fully Connected Networks

How can a sampled network (left) replicate the teacher (right)?
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Proof Idea

do dy do
‘ )
% ; ds3

Vanilla Fully Connected Networks

How can a sampled network (left) replicate the teacher (right)?

@ Having a sub-network identical to the teacher

@ Then outgoing weights of redundant neurons

@ Then the weights entering can be arbitrary
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We showed

Posterior Sampling generalizes, assuming underlying narrow teacher.
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Summary
We showed
Posterior Sampling generalizes, assuming underlying narrow teacher.

In the paper

@ Analogous results for CNN

@ Removing Quantization Assumption (2-Layer)

@ Beyond interpolators
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We showed

Posterior Sampling generalizes, assuming underlying narrow teacher.

In the paper

@ Analogous results for CNN

@ Removing Quantization Assumption (2-Layer)

@ Beyond interpolators

Future directions
@ Random interpolators conditioned on specific implicit bias

@ Connections to SGD
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