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Mutual Information

A Mathematical Theory of Communication

Mutual Information: Properties:
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Mutual Information in Adversarial Learning

INfoGAN

Enhances GAN by maximizing the
mutual information between the
generated samples and the
interpretable latent variables.

« Improves Disentanglement
« Enhances Data Generation
» Better Interpretability
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InfoGAN architecture.
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Chen et al. InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets” Neurips16



Mutual Information in Video Segmentation

Video Object Segmentation

Minimize the mutual information
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between the pixels within and > J(//(((( o information
outside the region. /\ o exchange

N

» Self-supervised object

segmentation
» No need of explicit regularizers
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Yang et al. “‘Unsupervised Moving Object Detection via Contextual Information Separation” CVPR 19 4



Mutual Information for Controllable Scene Representation

Encode Mutual Information correlation into NeRFs

MI is
enforced

| MI is not
A is more correlated with B than with C enforced
X is more correlated with Y than with Z

I(AB)>I(AC) T(X,Y)>I(X,Z)

G
1 =y

Mutual
Information
Shaping

Xu & Yang et al. “JacobiNeRF: NeRF Shaping with Mutual Information Gradients” CVPR 23



Traditional Mutual Information Estimators

* Histogram _ - Non-differentiable
* K-Nearest Neighbor » Inefficiency

* Kernel Density Estimation Curse of dimensionality
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A Kraskov et al “Estimating mutual information” Physical Review E 2004



Mutual Information Neural Estimation (MINE)

Joint samples Marginal samples

MINE [ ANEE - (AR
MI estimation as functional optimization Y .... Y

Donsker-Varadhan Representation:

I(x,y) = sup J™°(6; x,y)
7]
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where 6 : X xY — R

However, for each pair of X E, [6]
and Y, a new MLP must be Pxy

trained from scratch. Time-
consuming and unstable.

Belghazi et al, “Mutual Information Neural Estimation” ICML 2018



Can we design a neural network that could pre-learn the

mutual information from all distributions?

MINE
optimization <
(r1,91)
o, I : — jinfo 9; ’ %
p(X,y)~ (2;92) L, Ty ] 9 . Mutual
= s%p Ep, ,[0] — log(Ep,..p, [exp(0)]) Information
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Pre-learned Neural Network

No need to perform optimization, fast, and, differentiable!



How? Can we use pre-computed MI to supervise?

{ Estimate J
MI

[Supervise]

Generalization Ability

Difficult to predict Ml on unseen
distributions.

Efficiency

* Precomputing Ml on various
seguences is time-consuming.
« Performance will be upper-

bounded by these
precomputing methods.



InfoNet Architecture
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High-dimensional Estimation

Sliced Mutual Information(SMI)

Estimate high-dimensional mutual information by randomly projecting data
onto lower-dimensional subspaces and aggregating the results.
1
SI(X;Y) :—j j 1(0"X;4"Y)dOd ¢
de_lsdy_l Sax-1 94,1
$%-1 denotes the d-dimensional sphere (its surface area is designated by
Sa-1)-
Using SMI, we can focus on

the Ml between all one-
R € RNM o dimensional XY pairs.

Random projection

Z Goldfeld et al “Sliced mutual information: A scalable measure of statistical dependence” Neurips 2021 11



Inject Normalization

Copula Transformation

Original Data  Processed data

« Transform the original sample into uniform marginals on
13 Copula 0.6
the interval [0,1] before training and testing 3 Transforma | 0.4
26 0.8
« Similar to applying rank data on X and Y separately 4 0.0
« Mutual Information is invariant during the transformation i/ 0.2
35 1.0
Advantages
«  Only need to consider the relative position relationship. Undifferentiable?
_ _ o Using SoftRank instead in
« Reduce data complexity and improve the generalization training tasks.

ability of the model.
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Estimation Pipeline

Original Inputs

B =\
CIEEE
HENEN

ERnn
>

-~
|

o,

Random
Projections

/N

o'x | I | copu
o'y | I

1(07X; ¢TY)

Mean

S~ SMI(X;Y)

13



Training Data and Time

Gaussian Mixture Models

Strong generalization ability
Approximate any arbitrary

A weighted sum of multiple Gaussian
distributions, each defined by its own
mean and variance.

K

p() = ) mN (2l B

i=1

distribution well with a sufficient
number of Gauss components

Training Time

. /5 hours to converge on RTX 4090 A

i
’15-‘ ’ | GMM with three Much faster than estimating the Ml of
T L Gauss components all training data using MINE individually.
M A - J
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InfoNet performs well on seen and unseen distributions

Seen Distributions Unseen Distributions
Gauss Additive Noise Gamma Exponential
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InfoNet is test-time efficient

SEQ. LENGTH 200 500 1000 2000 5000
KSG 0.009 0.024 0.049 0.098 0.249
KDE 0.004 0.021 0.083 0.32 1.801
MINE-2000 3.350 3.455 3.607 3.930 4.157
MINE-500 0.821 0.864 0.908 0.991 1.235
MINE-10 0.017 0.017 0.019 0.021 0.027
InfoNet-16 0.001 0.002 0.002 0.002 0.003

« MINE-500: train MINE for 500 iterations.
« InfoNet-16: estimate 16 distributions using InfoNet

simultaneously (batchsize=16) 16



InfoNet is robust in correlation order prediction

In practice, correlation order is more critical for decision making

Given one reference variable A, and two test variables B & C, [I(A,B) > I(A,C) or I(A,B) < I(A,C)?

No. oOFComMmpPs. K=1 K=2 K=3 K=4 K=5 K=6 K=7 K=8 K=9 K=10

98.7 99.0 982 98.0 979 977 976 975 97.0 973
974 9777 979 975 979 978 97.0 974 974 974

98.5 91.2 90.8 87.2 845 837 81.2 79.6 81.3 78.1
946 77.1 754 T71.6 675 694 665 663 687 664
60.9 56.1 55.1 543 524 549 537 504 53.1 525
99.8 995 99.0 99.2 991 99.2 99.0 99.2 993 995




InfoNet is suitable for other complex data

Mutual Information between point trajectories

Mutual information of trajectories between motion of video points.
T represents point trajectory in the video.

H(Tselected point’ Tpoint from same object) > H(Tselected point’ Tpoint fromother object)

18

Zheng et al. “PointOdyssey: A Large-Scale Synthetic Dataset for Long-Term Point Tracking” ICCV 23



Conclusion and Discussion

1. InfoNet is the first mutual information estimate model pre-
learns from various different distributions.

2. It has extra fast estimation speed and strong
generalization ability, and numerous potential applications
in the future.

3. Estimating high-dimensional M| requires more slices, ==
reducing speed. Our current research aims to design a | nfO N et

new architecture to address this issue. Quick Mutual Informiation Estimator



Conclusion and Discussion

Thanks!
Q&A

Github
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