

# InfoNet: Neural Estimation of Mutual Information without Test-Time Optimization

Zhengyang Hu, Song Kang, Qunsong Zeng, Kaibin Huang, Yanchao Yang

The University of Hong Kong



*Electrical and Electronic Engineering  
Institute of Data Science*

# Mutual Information

## A Mathematical Theory of Communication

By C. E. SHANNON

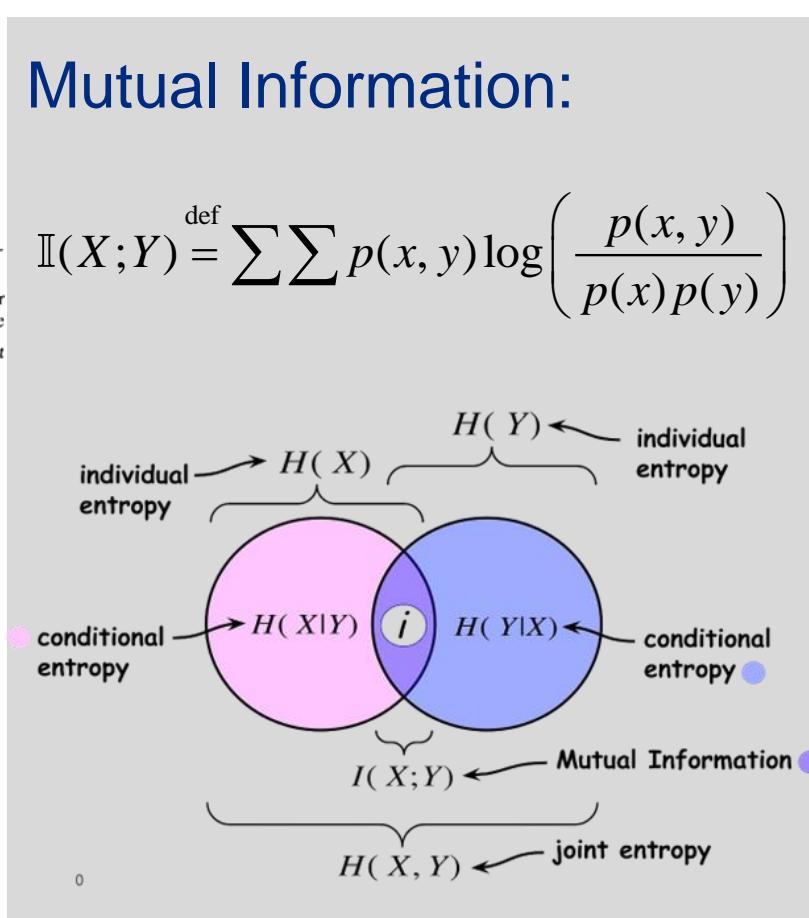
### 9. THE FUNDAMENTAL THEOREM FOR A NOISELESS CHANNEL

We will now justify our interpretation of  $H$  as the rate of generating information by proving that  $H$  determines the channel capacity required with most efficient coding.

*Theorem 9:* Let a source have entropy  $H$  (bits per symbol) and a channel have a capacity  $C$  (bits per second). Then it is possible to encode the output of the source in such a way as to transmit at the average rate  $\frac{C}{H} - \epsilon$  symbols per second over the channel where  $\epsilon$  is arbitrarily small. It is not possible to transmit at an average rate greater than  $\frac{C}{H}$ .



1948



### Properties:

- Non-negativity
- Transformation Invariance
- Data Processing Inequality
- Chain Rule
- ...

### Advantages:

- Robustness
- Comprehensive Dependence Measure
- Nonlinear Sensitivity
- ...

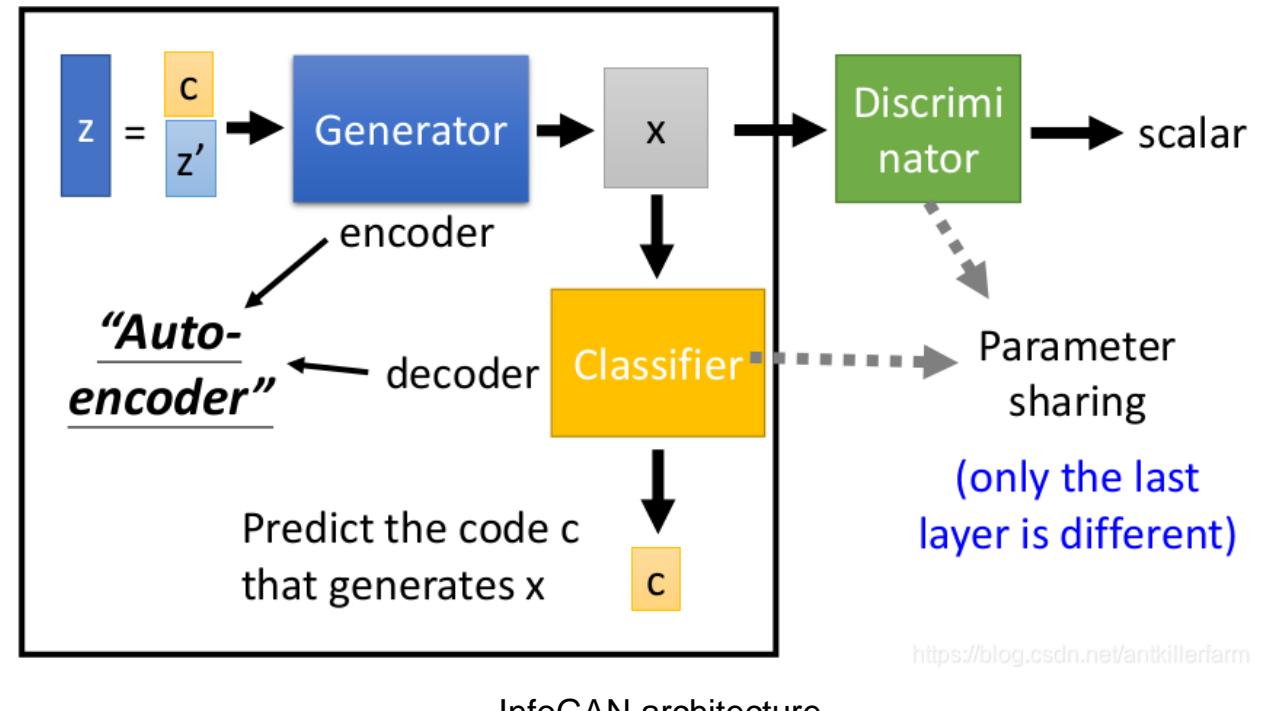


# Mutual Information in Adversarial Learning

## InfoGAN

Enhances GAN by maximizing the mutual information between the generated samples and the interpretable latent variables.

- Improves Disentanglement
- Enhances Data Generation
- Better Interpretability



<https://blog.csdn.net/antkillerfarm>

InfoGAN architecture.

$$\min_G \max_D V_{\mathbb{I}}(D, G) = V(D, G) - \lambda \mathbb{I}(c; G(z, c))$$

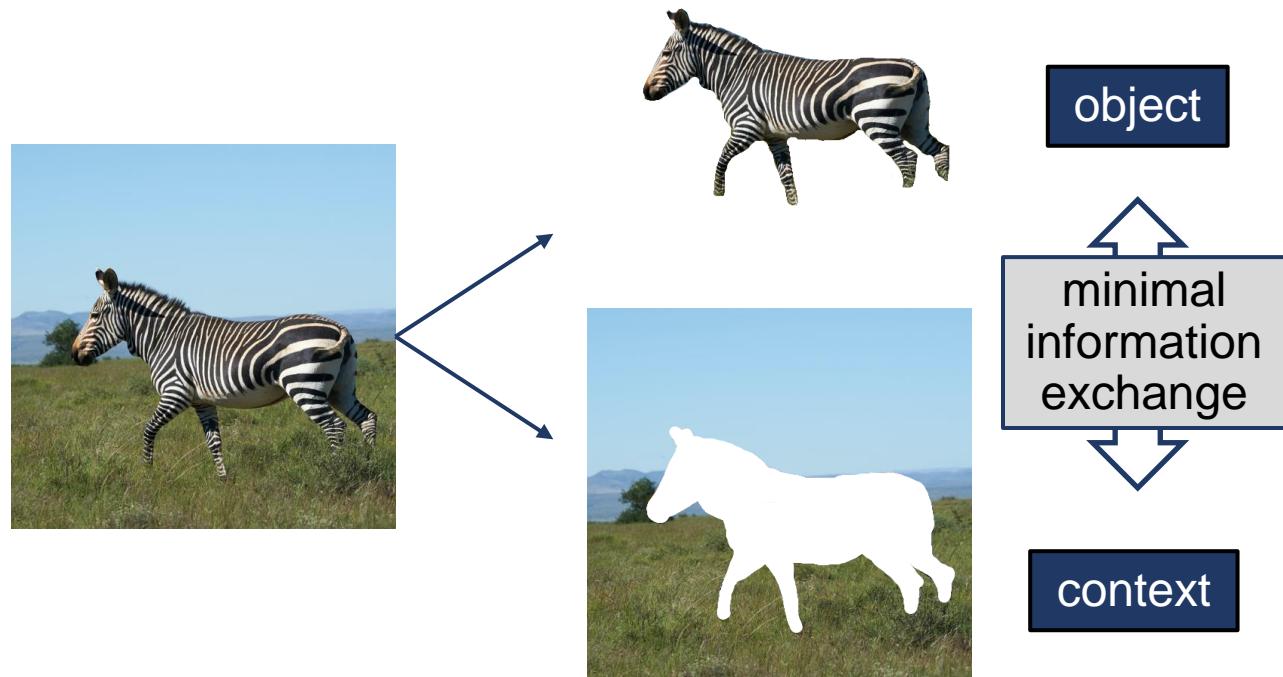
Chen et al. "InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets" Neurips16



## Video Object Segmentation

Minimize the mutual information between the pixels within and outside the region.

- Self-supervised object segmentation
- No need of explicit regularizers
- Improves generalizability



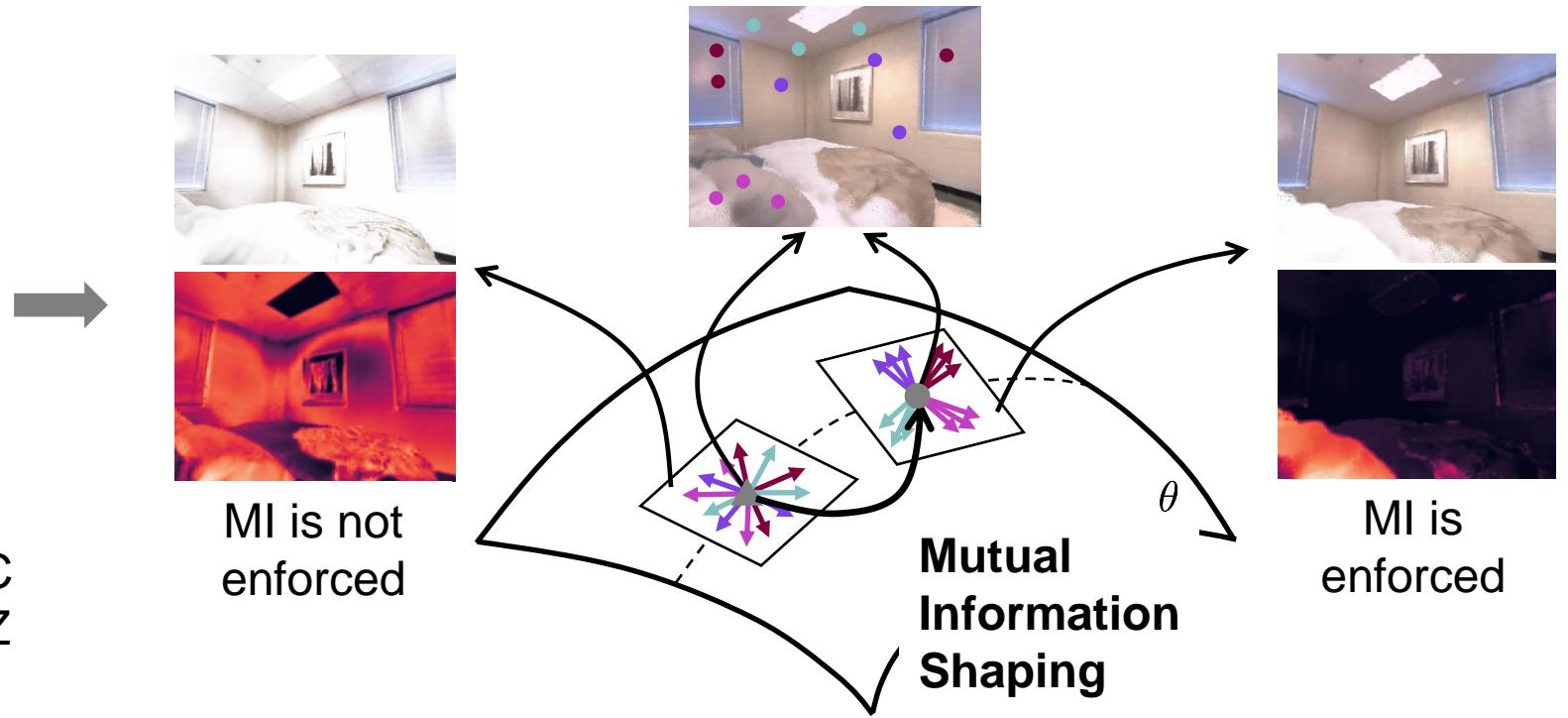
$$\mathcal{L}(m) = \frac{\mathbb{I}(m \odot \mathbf{u} | (1-m) \odot \mathbf{u})}{\mathbb{H}(m \odot \mathbf{u})} + \frac{\mathbb{I}((1-m) \odot \mathbf{u} | m \odot \mathbf{u})}{\mathbb{H}((1-m) \odot \mathbf{u})}$$

## Encode Mutual Information correlation into NeRFs



A is more correlated with B than with C  
X is more correlated with Y than with Z

$$\mathbb{I}(A, B) > \mathbb{I}(A, C) \quad \mathbb{I}(X, Y) > \mathbb{I}(X, Z)$$

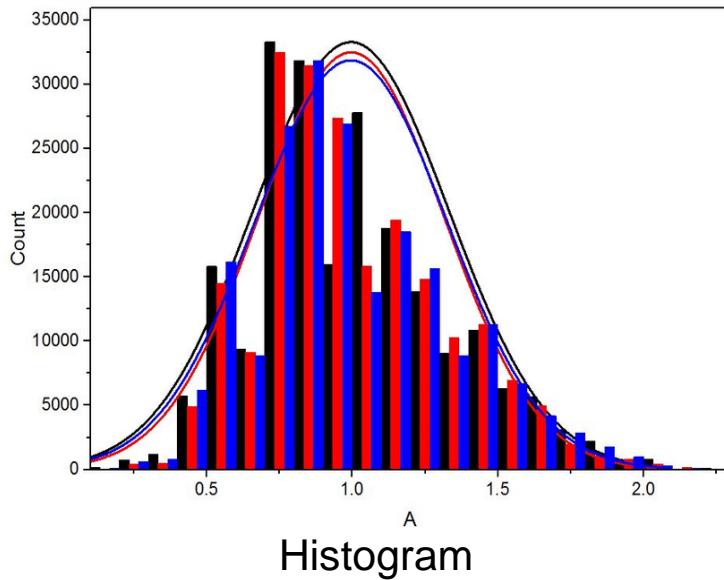
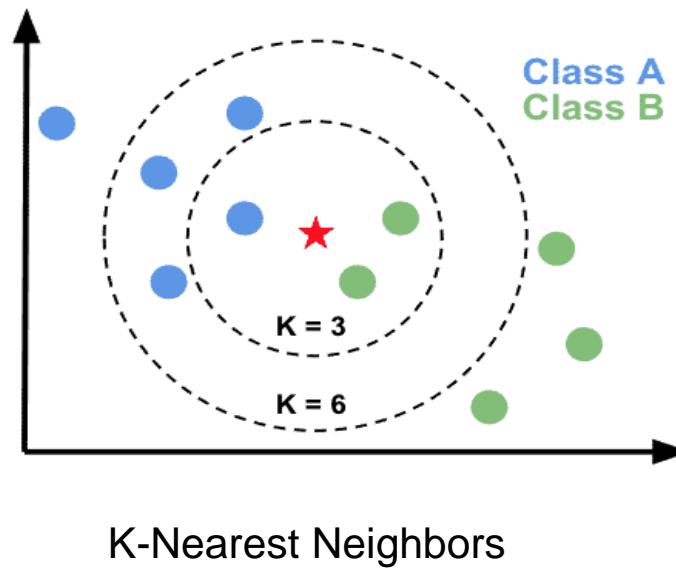
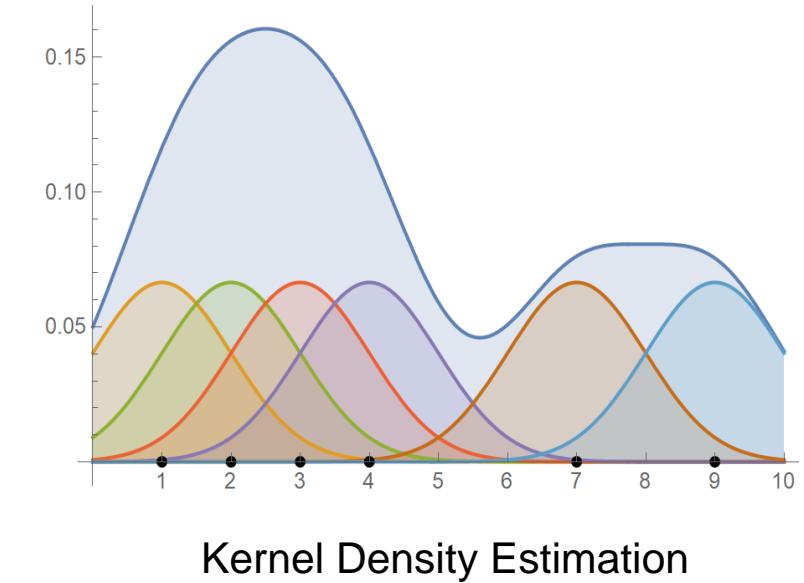




# Traditional Mutual Information Estimators

- **Histogram**
- **K-Nearest Neighbor**
- **Kernel Density Estimation**

- Non-differentiable
- Inefficiency
- Curse of dimensionality





# Mutual Information Neural Estimation (MINE)

## MINE

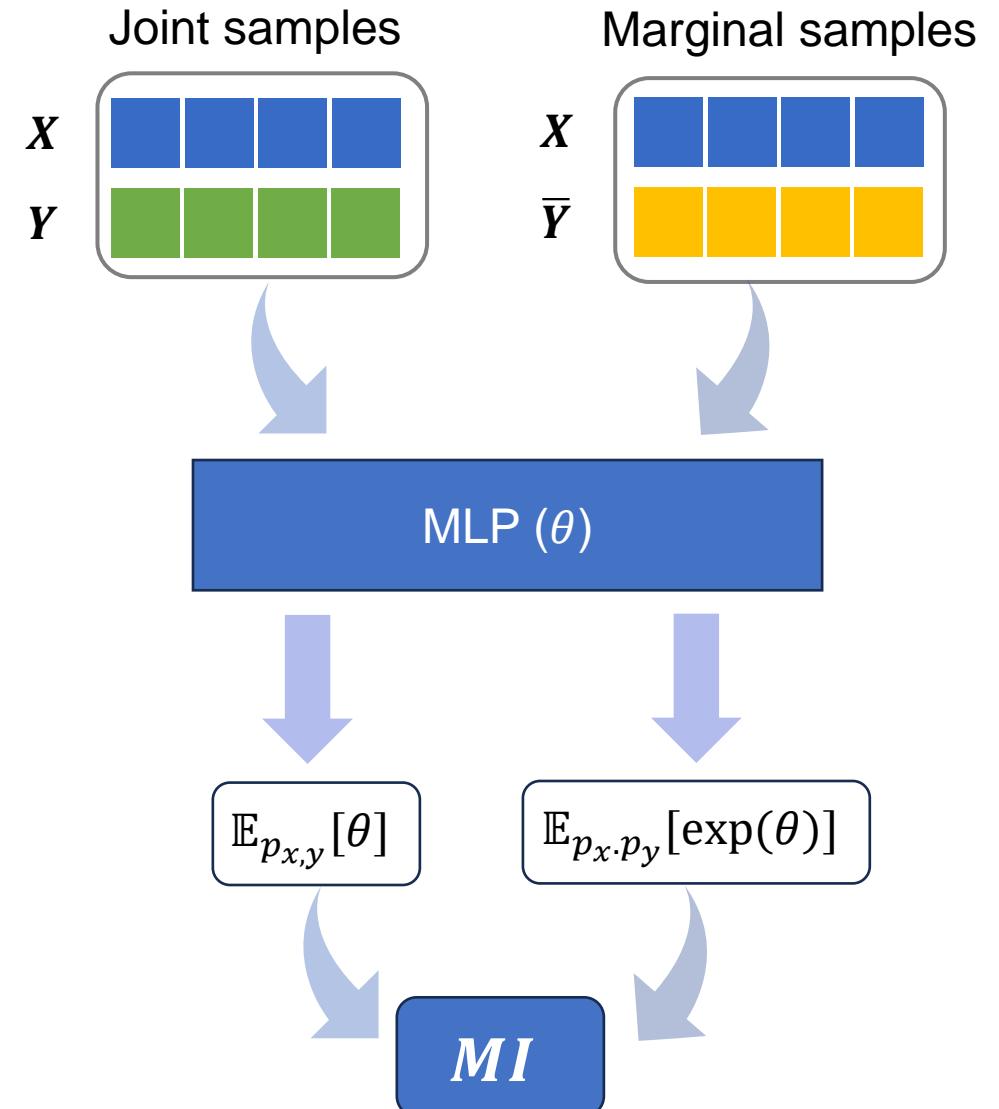
MI estimation as *functional optimization*

**Donsker-Varadhan Representation:**

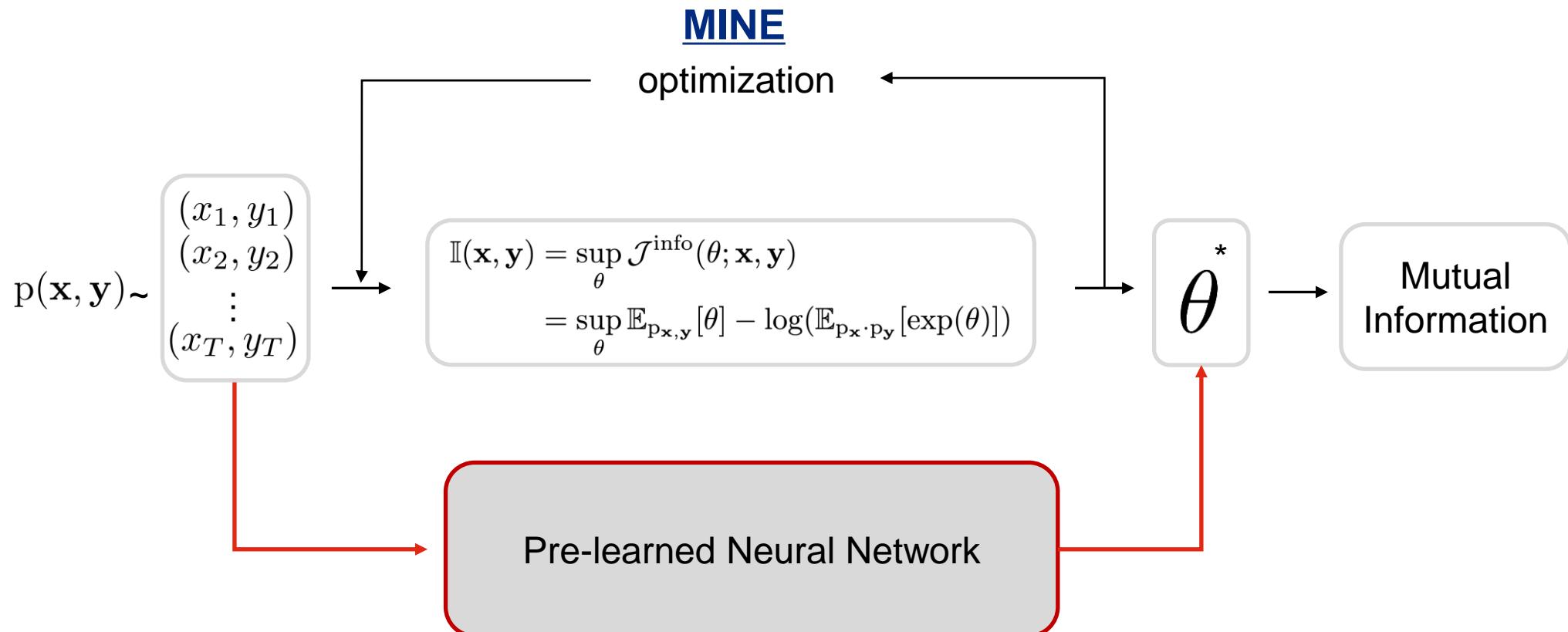
$$\begin{aligned}\mathbb{I}(\mathbf{x}, \mathbf{y}) &= \sup_{\theta} \mathcal{J}^{\text{info}}(\theta; \mathbf{x}, \mathbf{y}) \\ &= \sup_{\theta} \mathbb{E}_{p_{\mathbf{x}, \mathbf{y}}}[\theta] - \log(\mathbb{E}_{p_{\mathbf{x}} \cdot p_{\mathbf{y}}}[\exp(\theta)])\end{aligned}$$

where  $\theta : \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R}$

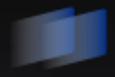
However, for each pair of  $X$  and  $Y$ , a new MLP must be trained from scratch. Time-consuming and unstable.



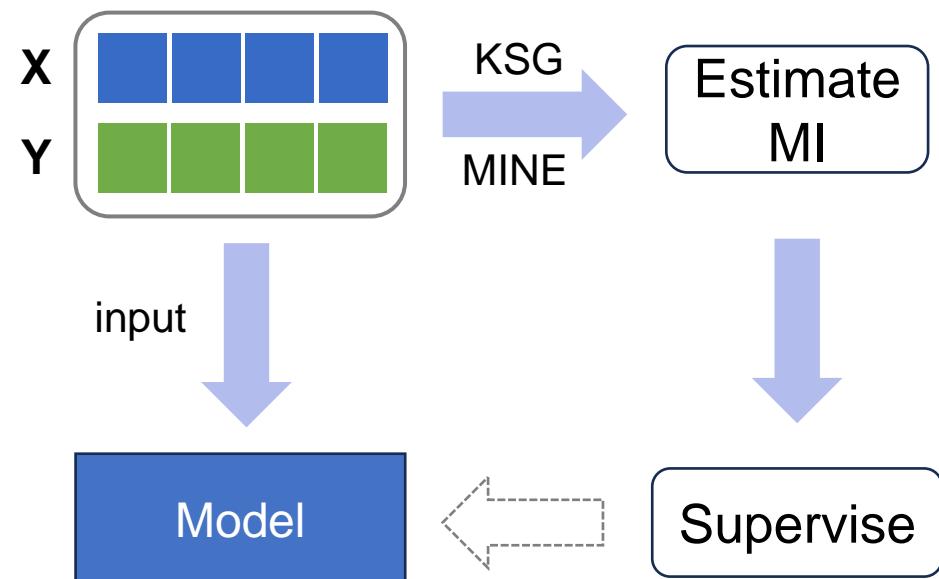
# Can we design a neural network that could pre-learn the mutual information from all distributions?



No need to perform optimization, fast, and, differentiable!



# How? Can we use pre-computed MI to supervise?



## Generalization Ability

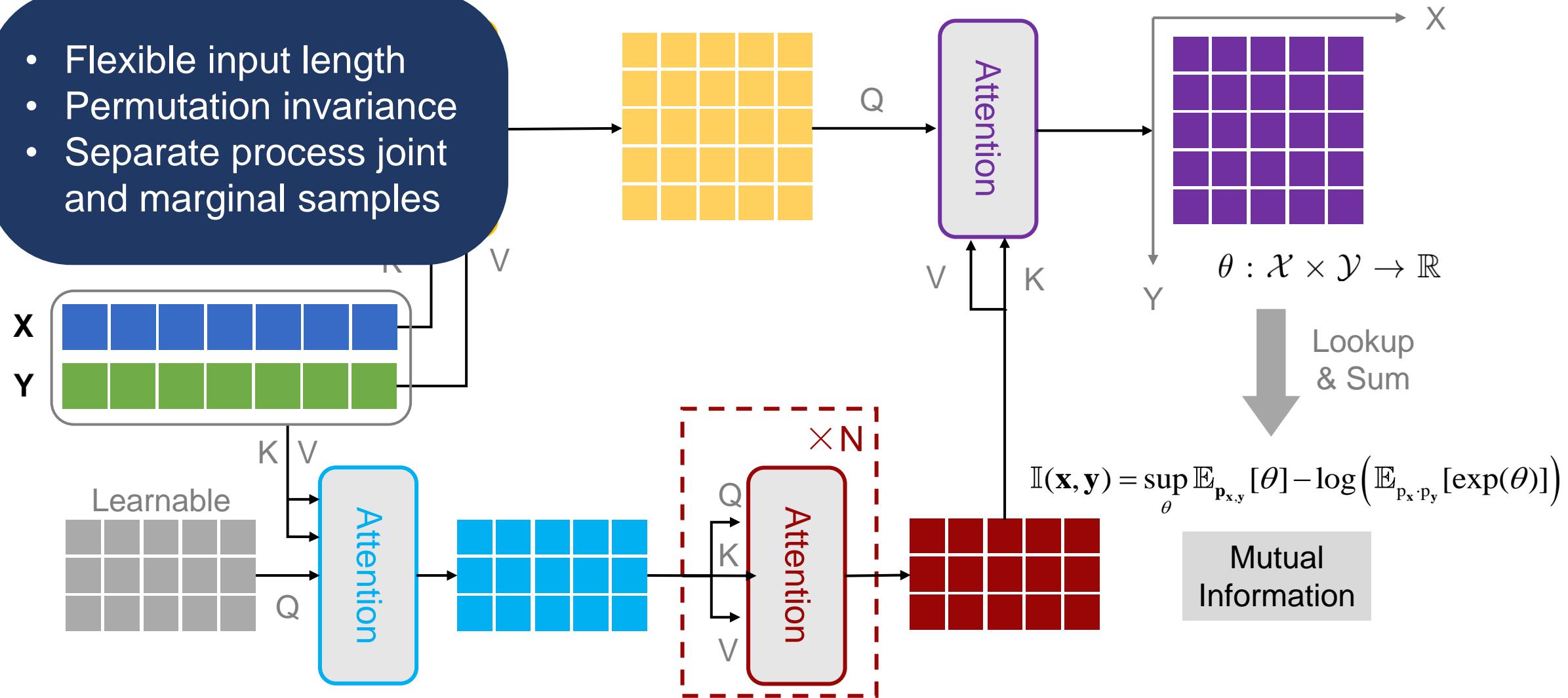
Difficult to predict MI on unseen distributions.

## Efficiency

- Precomputing MI on various sequences is **time-consuming**.
- Performance will be upper-bounded by these precomputing methods.

# InfoNet Architecture

- Flexible input length
- Permutation invariance
- Separate process joint and marginal samples

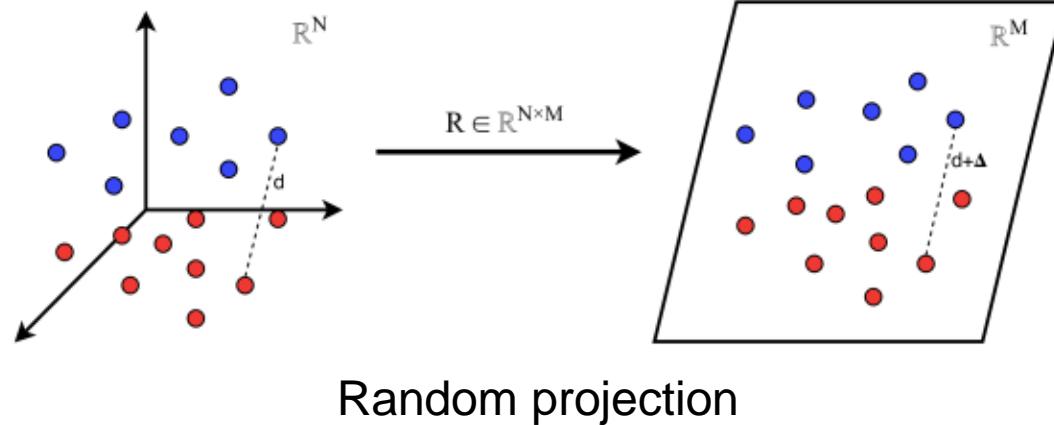


## Sliced Mutual Information(SMI)

Estimate high-dimensional mutual information by randomly projecting data onto lower-dimensional subspaces and aggregating the results.

$$SI(X;Y) = \frac{1}{S_{d_x-1} S_{d_y-1}} \int_{S_{d_x-1}} \int_{S_{d_y-1}} I(\theta^T X; \phi^T Y) d\theta d\phi$$

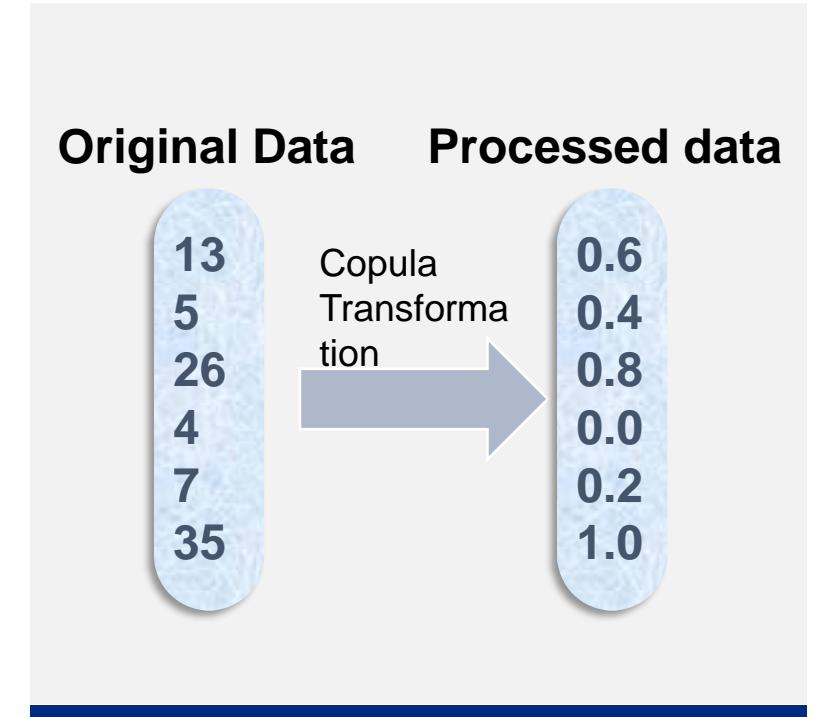
$S^{d-1}$  denotes the d-dimensional sphere (its surface area is designated by  $S_{d-1}$ ).



Using SMI, we can focus on the MI between all **one-dimensional** XY pairs.

## Copula Transformation

- Transform the original sample into uniform marginals on the interval  $[0,1]$  before training and testing
- Similar to applying rank data on  $X$  and  $Y$  separately
- Mutual Information is invariant during the transformation



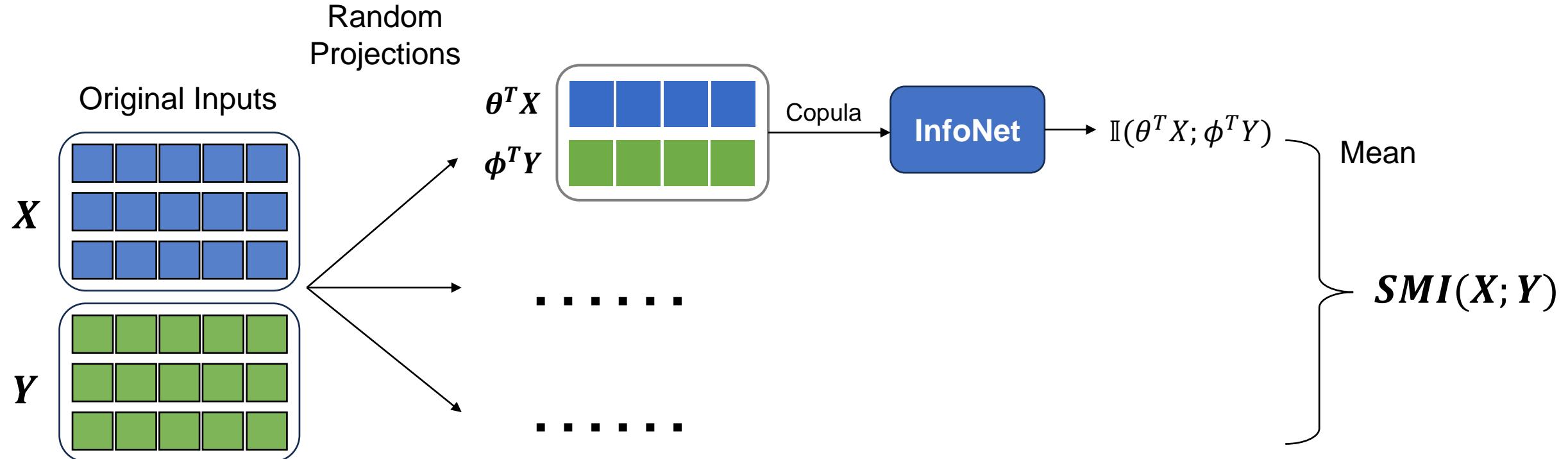
## Advantages

- Only need to consider the relative position relationship.
- Reduce data complexity and improve the generalization ability of the model.

Undifferentiable?  
Using SoftRank instead in training tasks.



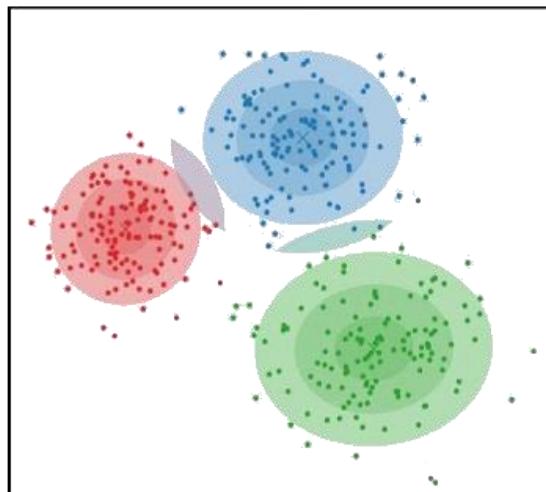
# Estimation Pipeline



## Gaussian Mixture Models

A weighted sum of multiple Gaussian distributions, each defined by its own mean and variance.

$$p(z) = \sum_{i=1}^K \pi_i \mathcal{N}(z|\mu_i, \Sigma_i)$$



GMM with three Gauss components

- Strong generalization ability
- Approximate any arbitrary distribution well with a sufficient number of Gauss components

### Training Time

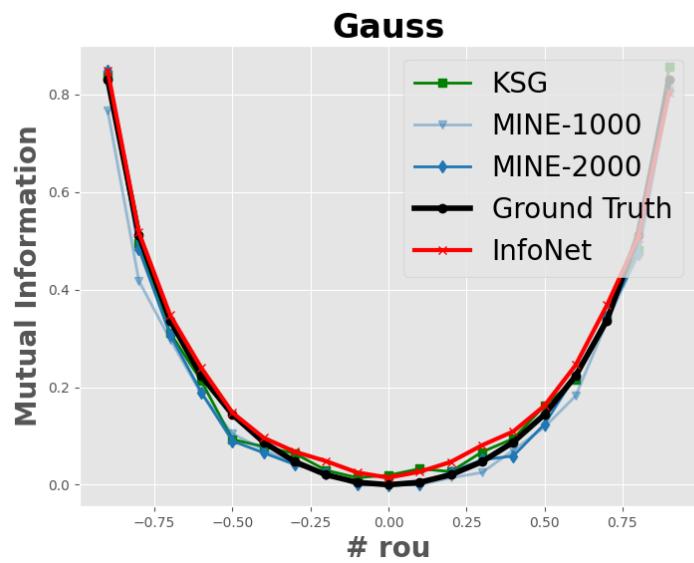
5 hours to converge on RTX 4090

Much faster than estimating the MI of all training data using MINE individually.

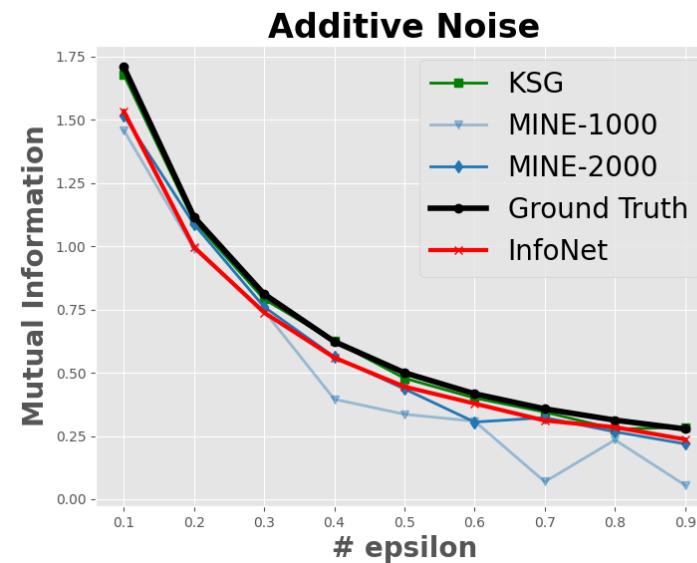
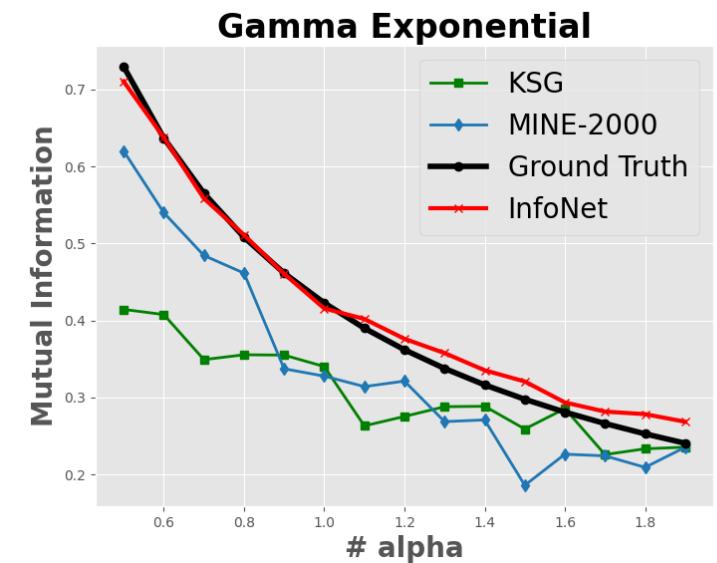


# InfoNet performs well on seen and unseen distributions

## Seen Distributions



## Unseen Distributions





# InfoNet is test-time efficient

| SEQ. LENGTH       | 200          | 500          | 1000         | 2000         | 5000         |
|-------------------|--------------|--------------|--------------|--------------|--------------|
| <b>KSG</b>        | 0.009        | 0.024        | 0.049        | 0.098        | 0.249        |
| <b>KDE</b>        | 0.004        | 0.021        | 0.083        | 0.32         | 1.801        |
| <b>MINE-2000</b>  | 3.350        | 3.455        | 3.607        | 3.930        | 4.157        |
| <b>MINE-500</b>   | 0.821        | 0.864        | 0.908        | 0.991        | 1.235        |
| <b>MINE-10</b>    | 0.017        | 0.017        | 0.019        | 0.021        | 0.027        |
| <b>InfoNet-16</b> | <b>0.001</b> | <b>0.002</b> | <b>0.002</b> | <b>0.002</b> | <b>0.003</b> |

- **MINE-500:** train MINE for 500 iterations.
- **InfoNet-16:** estimate 16 distributions using InfoNet simultaneously (batchsize=16)



# InfoNet is robust in correlation order prediction

In practice, correlation order is more critical for decision making

Given one reference variable A, and two test variables B & C,  $\mathbb{I}(A,B) > \mathbb{I}(A,C)$  or  $\mathbb{I}(A,B) < \mathbb{I}(A,C)$ ?

| NO. OF COMPS.   | K=1         | K=2         | K=3         | K=4         | K=5         | K=6         | K=7         | K=8         | K=9         | K=10        |
|-----------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| <b>KSG</b>      | 98.7        | 99.0        | 98.2        | 98.0        | 97.9        | 97.7        | 97.6        | 97.5        | 97.0        | 97.3        |
| <b>KDE</b>      | 97.4        | 97.7        | 97.9        | 97.5        | 97.9        | 97.8        | 97.0        | 97.4        | 97.4        | 97.4        |
| <b>MINE-500</b> | 98.5        | 91.2        | 90.8        | 87.2        | 84.5        | 83.7        | 81.2        | 79.6        | 81.3        | 78.1        |
| <b>MINE-100</b> | 94.6        | 77.1        | 75.4        | 71.6        | 67.5        | 69.4        | 66.5        | 66.3        | 68.7        | 66.4        |
| <b>MINE-10</b>  | 60.9        | 56.1        | 55.1        | 54.3        | 52.4        | 54.9        | 53.7        | 50.4        | 53.1        | 52.5        |
| <b>INFONET</b>  | <b>99.8</b> | <b>99.5</b> | <b>99.0</b> | <b>99.2</b> | <b>99.1</b> | <b>99.2</b> | <b>99.0</b> | <b>99.2</b> | <b>99.3</b> | <b>99.5</b> |

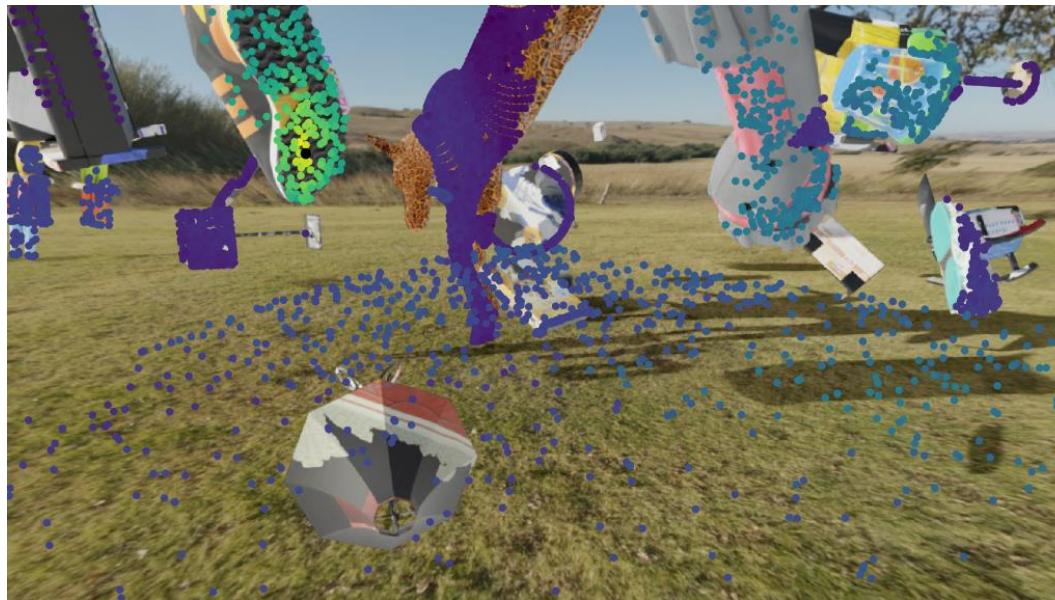
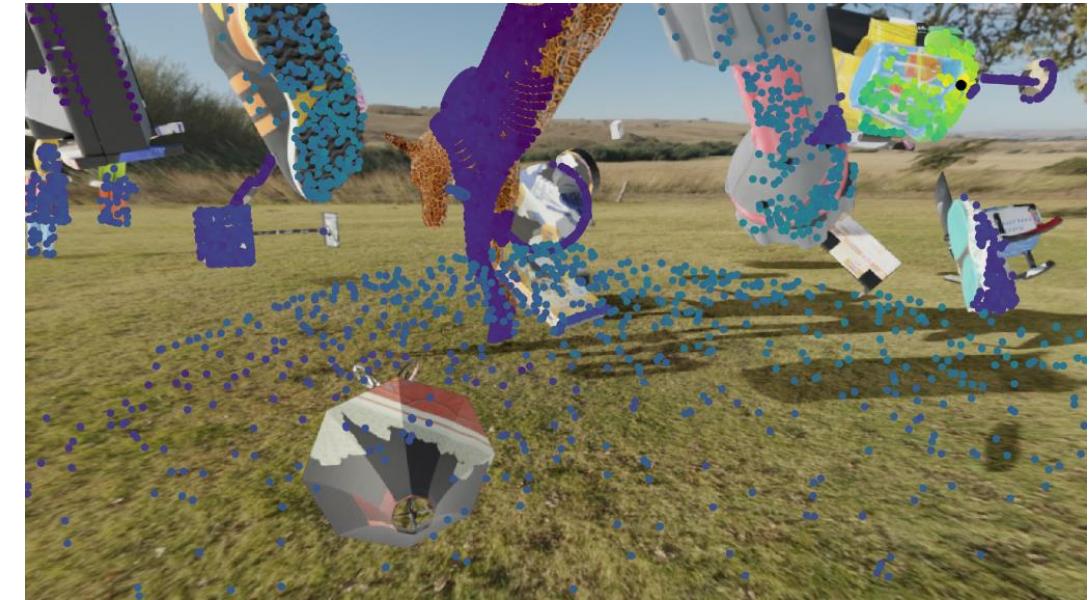


## Mutual Information between point trajectories

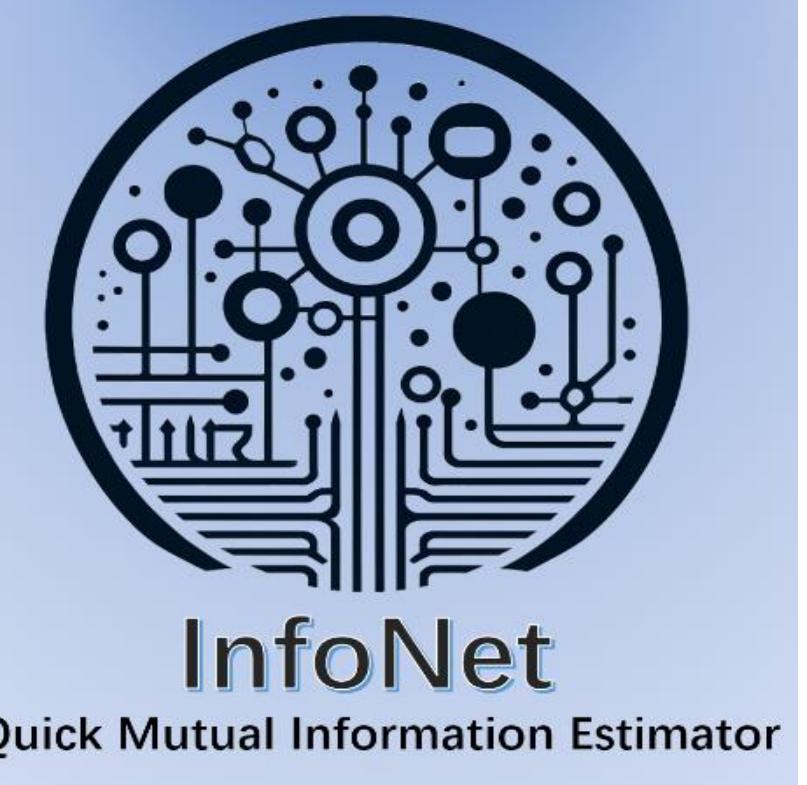
Mutual information of trajectories between motion of video points.

$T$  represents point trajectory in the video.

$$\mathbb{I}(T_{\text{selected point}}, T_{\text{point from same object}}) > \mathbb{I}(T_{\text{selected point}}, T_{\text{point from other object}})$$



1. InfoNet is the first mutual information estimate model pre-learns from various different distributions.
2. It has extra fast estimation speed and strong generalization ability, and numerous potential applications in the future.
3. Estimating high-dimensional MI requires more slices, reducing speed. Our current research aims to design a new architecture to address this issue.



Thanks!  
Q & A

