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Mutual Information: Properties:

- Non-negativity

- Transformation Invariance

- Data Processing Inequality

- Chain Rule

- …

Mutual Information
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Advantages:

- Robustness

- Comprehensive Dependence 

Measure

- Nonlinear Sensitivity

- …
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Mutual Information in Adversarial Learning

• Improves Disentanglement

• Enhances Data Generation

• Better Interpretability

Chen et al. “InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets” Neurips16

InfoGAN architecture.

InfoGAN

Enhances GAN by maximizing the 

mutual information between the 

generated samples and the 

interpretable latent variables.
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Mutual Information in Video Segmentation

Video Object Segmentation
object

context

minimal 
information 
exchange

• Self-supervised object 
segmentation

• No need of explicit regularizers

• Improves generalizability

Yang et al. “Unsupervised Moving Object Detection via Contextual Information Separation” CVPR 19

Minimize the mutual information 

between the pixels within and 

outside the region.
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Mutual Information for Controllable Scene Representation

Encode Mutual Information correlation into NeRFs

Xu & Yang et al. “JacobiNeRF: NeRF Shaping with Mutual Information Gradients” CVPR 23
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A is more correlated with B than with C

X is more correlated with Y than with Z
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Traditional Mutual Information Estimators

6A Kraskov et al “Estimating mutual information” Physical Review E 2004

• Non-differentiable

• Inefficiency

• Curse of dimensionality

• Histogram
• K-Nearest Neighbor
• Kernel Density Estimation

K-Nearest Neighbors Kernel Density EstimationHistogram



Mutual Information Neural Estimation (MINE)
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MI estimation as functional optimization

However, for each pair of X 

and Y, a new MLP must be 

trained from scratch. Time-

consuming and unstable.

where

Belghazi et al, “Mutual Information Neural Estimation” ICML 2018

MINE
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Donsker-Varadhan Representation:
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…~

optimization

Pre-learned Neural Network

No need to perform optimization, fast, and, differentiable!

Can we design a neural network that could pre-learn the 
mutual information from all distributions?

Mutual

Information

MINE
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Generalization Ability

Difficult to predict MI on unseen 

distributions.

How? Can we use pre-computed MI to supervise? 

Model

X

Y

Efficiency

• Precomputing MI on various 

sequences is time-consuming. 

• Performance will be upper-

bounded by these 

precomputing methods.

KSG Estimate 

MI
MINE

input

Supervise



InfoNet Architecture
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Mutual

Information

• Flexible input length

• Permutation invariance

• Separate process joint 

and marginal samples
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Estimate high-dimensional mutual information by randomly projecting data 

onto lower-dimensional subspaces and aggregating the results.

𝑆𝑑−1 denotes the d-dimensional sphere (its surface area is designated by 

𝑆𝑑−1).
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Using SMI, we can focus on 

the MI between all one-

dimensional XY pairs.

High-dimensional Estimation

Sliced Mutual Information(SMI)

Z Goldfeld et al “Sliced mutual information: A scalable measure of statistical dependence” Neurips 2021

Random projection
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Copula Transformation

• Transform the original sample into uniform marginals on 

the interval [0,1] before training and testing

• Similar to applying rank data on 𝑋 and 𝑌 separately

• Mutual Information is invariant during the transformation

Original Data
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Processed data

Undifferentiable?

Using SoftRank instead in 

training tasks.

Inject Normalization

Advantages

• Only need to consider the relative position relationship.

• Reduce data complexity and improve the generalization 

ability of the model.
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Estimation Pipeline
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Original Inputs

𝑿

𝒀

Random 

Projections

𝜽𝑻𝑿

𝝓𝑻𝒀

Copula
InfoNet 𝕀(𝜃𝑇𝑋; 𝜙𝑇𝑌)

Mean

𝑺𝑴𝑰(𝑿; 𝒀)……

……



Training Data and Time
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Gaussian Mixture Models

GMM with three 

Gauss components

• Strong generalization ability

• Approximate any arbitrary 

distribution well with a sufficient 

number of  Gauss components

𝑝 𝑧 = ෍

𝑖=1

𝐾

𝜋𝑖𝒩(𝑧|𝜇𝑖 , Σ𝑖)

A weighted sum of multiple Gaussian 

distributions, each defined by its own 

mean and variance.

5 hours to converge on RTX 4090

Much faster than estimating the MI of 

all training data using MINE individually.

Training Time
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Seen Distributions Unseen Distributions

InfoNet performs well on seen and unseen distributions



16

SEQ. LENGTH 200 500 1000 2000 5000

KSG 0.009 0.024 0.049 0.098 0.249

KDE 0.004 0.021 0.083 0.32 1.801

MINE-2000 3.350 3.455 3.607 3.930 4.157

MINE-500 0.821 0.864 0.908 0.991 1.235

MINE-10 0.017 0.017 0.019 0.021 0.027

InfoNet-16 0.001 0.002 0.002 0.002 0.003

InfoNet is test-time efficient

• MINE-500: train MINE for 500 iterations. 

• InfoNet-16: estimate 16 distributions using InfoNet 

simultaneously (batchsize=16)
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In practice, correlation order is more critical for decision making  

Given one reference variable A, and two test variables B & C,  𝕀(A,B) > 𝕀(A,C) or 𝕀(A,B) < 𝕀(A,C)?

InfoNet is robust in correlation order prediction



Mutual Information between point trajectories
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Mutual information of trajectories between motion of video points. 

𝑇 represents point trajectory in the video.

InfoNet is suitable for other complex data

Zheng et al. “PointOdyssey: A Large-Scale Synthetic Dataset for Long-Term Point Tracking” ICCV 23

𝕀 𝑻𝒔𝒆𝒍𝒆𝒄𝒕𝒆𝒅 𝒑𝒐𝒊𝒏𝒕, 𝑻𝒑𝒐𝒊𝒏𝒕 𝒇𝒓𝒐𝒎 𝒔𝒂𝒎𝒆 𝒐𝒃𝒋𝒆𝒄𝒕 > 𝕀 𝑻𝒔𝒆𝒍𝒆𝒄𝒕𝒆𝒅 𝒑𝒐𝒊𝒏𝒕, 𝑻𝒑𝒐𝒊𝒏𝒕 𝒇𝒓𝒐𝒎 𝒐𝒕𝒉𝒆𝒓 𝒐𝒃𝒋𝒆𝒄𝒕
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1. InfoNet is the first mutual information estimate model pre-

learns from various different distributions.

2. It has extra fast estimation speed and strong 

generalization ability, and numerous potential applications 

in the future.

3. Estimating high-dimensional MI requires more slices, 

reducing speed. Our current research aims to design a 

new architecture to address this issue.

Conclusion and Discussion
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Conclusion and Discussion

Thanks! 
Q & A
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