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Overview
Bayesian Optimization (BO)

It the budget is exhausted Black-box g(z)

Model with a Gaussian process f(z)
conditioned on given initial observations of g(z)
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Better designs for a given budget, in terms of order of
l o ot vatonianat ot "1™ complexity: the bigger the budget or higher the

target accuracy, the more gain there is to be had.
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(Non-myopic] Key contributions:
1. Improved asymptotic runtime O(c 2) for MSE O(£?)
2. Reduced cost of the whole BO

Acquisition function
New observation

Look-ahead
(Jiang et al., 2020)

Repeat until computational budget exhausted
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Look-ahead acquisition function

Look-ahead construction:
1 N
ag(x; D) == Eyp.py[r Zr
(2 D) = Eg [ (F,2) + maxE, (1, o (S m)]}

~1iy [ro”’(:c; D)+ (max 57 Z“f”(ﬁ”’i(x)”)}

z] j=1

where

@ f is a Gaussian process given the current observation data D

e r(f,x) is a stage-wise reward characterizing the acquisition function

o Di(2) = DU{(x, f(a; D))}

@ E¢(,p) denotes the expectations over the Gaussian process f given data D.
Complexity O(e*) — O(e72) for MSE O(g?) with MLMC
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Multilevel Monte Carlo
The MLMC (Giles (2015)) approximation to E[p] is
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where ¢_1 =0 and g, ©1, Y2, ..., ¢, denotes the sequence of approximations
with increasing accuracy and cost over levels [.
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BO Results, MLMC & MC: NMSE vs time ({)
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Figure: Convergence of the BO algorithm with respect to the cumulative wall time in
seconds, with error bars (computed with 20 realizations). The Matérn kernel is applied.
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(b) Ackley (d=2)

(e) Hartmann6 (d=6)

The initial BO run starts with 2 x d observations.
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Thank you for listening!

[ Scan me for the Paper J [ Scan me for the Codes J
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