From Geometry to Causality: Ricci Curvature and the Reliability of Causal Inference on Networks

Amirhossein Farzam¹, Allen Tannenbaum², Guillermo Sapiro^{1,3}

1. Duke University 2. Stony Brook University 3. Apple

• Causal inference is critical for decision making and particularly challenging on networked units

Overview

- Causal inference is critical for decision making and particularly challenging on networked units
- Evaluating the reliability of the outcome of causal inference methods is fundamentally challenging

Overview

- Causal inference is critical for decision making and particularly challenging on networked units
- Evaluating the reliability of the outcome of causal inference methods is fundamentally challenging
- We connect graph geometry with causal inference; then predict the reliability of causal estimates

Problem setup :

Problem setup :

Given a network of treatment units, e.g., a social network of individuals (nodes) and friendship (edges)

Problem setup :

- Given a network of treatment units, e.g., a social network of individuals (nodes) and friendship (edges)
- We estimate a causal parameter on each unit, e.g., the individual treatment effect

Problem setup :

- Given a network of treatment units, e.g., a social network of individuals (nodes) and friendship (edges)
- We estimate a causal parameter on each unit, e.g., the individual treatment effect
- We want to evaluate how reliable these estimates are

Problem setup :

- Given a network of treatment units, e.g., a social network of individuals (nodes) and friendship (edges)
- We estimate a causal parameter on each unit, e.g., the individual treatment effect
- We want to evaluate how reliable these estimates are

Main contributions :

Problem setup :

- Given a network of treatment units, e.g., a social network of individuals (nodes) and friendship (edges)
- We estimate a causal parameter on each unit, e.g., the individual treatment effect
- We want to evaluate how reliable these estimates are

Main contributions :

Theoretical foundations :

Establish a theoretical connection between graph Ricci curvature and causal inference reliability

Problem setup :

- Given a network of treatment units, e.g., a social network of individuals (nodes) and friendship (edges)
- We estimate a causal parameter on each unit, e.g., the individual treatment effect
- We want to evaluate how reliable these estimates are

Main contributions :

Theoretical foundations :

Establish a theoretical connection between graph Ricci curvature and causal inference reliability

Application and experimental results :

Empirically demonstrate that Ricci curvature indicates accuracy of causal estimates

Problem setup :

- Given a network of treatment units, e.g., a social network of individuals (nodes) and friendship (edges)
- We estimate a causal parameter on each unit, e.g., the individual treatment effect
- We want to evaluate how reliable these estimates are

Main contributions :

Theoretical foundations :

Establish a theoretical connection between graph Ricci curvature and causal inference reliability

Application and experimental results :

Empirically demonstrate that Ricci curvature indicates accuracy of causal estimates

Methodological contribution :

Propose Ricci flow adjustment to improve causal estimation by flattening the network, reducing error

Ricci Curvature, Robustness, and Causal Parameters

- $\bullet\,$ Ricci curvature
 - measures how much the local geometry deviates from being Euclidean
 - can be extended to graphs to capture the extent of dispersion/volume change through an edge
 - is linked to *system robustness*

Ricci Curvature, Robustness, and Causal Parameters

- Ricci curvature
 - measures how much the local geometry deviates from being Euclidean
 - can be extended to graphs to capture the extent of dispersion/volume change through an edge
 - \blacksquare is linked to $system\ robustness$
- Learning causal parameters \leftrightarrow $distributionally\ robust\ estimation$

Ricci Curvature, Robustness, and Causal Parameters

- Ricci curvature
 - measures how much the local geometry deviates from being Euclidean
 - can be extended to graphs to capture the extent of dispersion/volume change through an edge
 - \blacksquare is linked to $system\ robustness$

- Learning causal parameters \leftrightarrow $distributionally\ robust\ estimation$
- The two notions of robustness are different, but we prove a connection :

More robust system \iff Positive Ricci curvature

- \implies Higher distributional robustness
- \implies More reliable causal estimates

• Main theoretical result :

Positive Ricci curvature makes accurate causal estimation more likely

• Main theoretical result :

Positive Ricci curvature makes accurate causal estimation more likely

• Implication :

Ricci curvature can gauge reliability of causal estimates

• Main theoretical result :

Positive Ricci curvature makes accurate causal estimation more likely

• Implication :

Ricci curvature can gauge reliability of causal estimates

• Empirical validation :

Ricci curvature is negatively correlated with treatment effect estimation error on empirical networks

• Most empirical networks are sparse \implies Many edges have negative curvature

Improve Causal Inference on Networks using the Ricci flow

- Most empirical networks are sparse \implies Many edges have negative curvature
- Flatten the network, using graph Ricci flow, before causal effect estimation

Improve Causal Inference on Networks using the Ricci flow

- Most empirical networks are sparse \implies Many edges have negative curvature
- Flatten the network, using graph Ricci flow, before causal effect estimation
- This preprocessing reduces error, and can be combined with any causal inference method

	BC	Flickr	Cornell	Texas	Wisconsin	chameleon	Cora	CiteSeer	Actor
T-Learner+RF	0.328	0.462	0.192	0.414	0.463	0.372	0.232	0.386	0.238
X-Learner+RF	5.612	5.745	5.928	3.827	3.815	3.709	8.626	5.606	5.231
TARNet	0.969	1.024	0.705	1.028	0.711	1.212	0.679	0.638	0.796
CFR	0.895	0.960	0.806	1.038	0.849	0.926	0.570	0.620	0.735
T-Learner+GNN	4.178	9.630	5.125	4.437	0.559	16.715	0.285	0.529	7.912
X-Learner+GNN	4.627	3.933	20.461	1.995	16.244	329.959	3.165	4.428	4.296
NetDeconf	1.092	1.251	0.900	1.137	0.952	1.207	0.791	0.752	0.895
f-TLearner+GNN	3.268	2.762	4.370	3.106	0.466	7.764	0.263	0.494	3.896
f-XLearner+GNN	4.222	3.859	17.395	2.020	20.815	251.290	3.053	3.919	3.967
f-NetDeconf	1.088	1.245	0.900	1.143	0.954	1.200	0.810	0.767	0.898
NetEst	0.069	0.213	0.165	0.330	0.147	0.247	0.082	0.176	0.094
f-NetEst (ours)	0.033	0.208	0.127	0.308	0.142	0.230	0.078	0.165	0.088

• We establish a connection between the reliability of causal estimates on networked treatment units and the graph geometry of their network

- We establish a connection between the reliability of causal estimates on networked treatment units and the graph geometry of their network
- This gives a computational tool to evaluate reliability of causal estimates
 - without any ground truth
 - independent of the causal inference method

- We establish a connection between the reliability of causal estimates on networked treatment units and the graph geometry of their network
- This gives a computational tool to evaluate reliability of causal estimates
 - without any ground truth
 - independent of the causal inference method
- Based on this, we propose a method to reduce causal estimation error. The proposed method
 - improves the accuracy of causal estimates
 - is a preprocessing that can be combined with any causal inference method
 - cannot target specific neighborhoods
 - is just a preprocessing and is not updated during training
 - **importantly** : alters the graph by weighting the edges. Is this change conceptually acceptable within the context of the problem in hand?

Thank You!

