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1.Despite the significant advancements made by multi-modal large language models (MLLMs) in biomedical 
applications, their practical application remains hindered by a high reliance on text and image labels. This 
dependency often leads to inaccuracies in medical diagnostics due to modal interference and the inability of 
current models to effectively interpret complex medical data.
2.Existing medical VQA systems lack efficient mechanisms for mapping instructions to accurate answers, often 
resulting in responses that do not align with the visual data provided. This issue is compounded by the absence 
of training strategies that focus on user-intent, leading to a disconnect between the questions posed and the 
answers generated.
3.There is a pressing need for models that can offer more granular visual explanations and align these 
explanations with textual instructions. The existing methods do not adequately support dynamic, instruction-
specific feature enhancements, resulting in potential misalignments between learned representations and actual 
medical queries.
4.To address current challenges, this paper introduces the Universal Instruction-Vision Navigator (Uni-Med) 
framework, which integrates the Instruct-to-Answer Clues Interpreter (IAI) to enhance Med-VQA 
interpretability. Uni-Med refines Med-VQA by aligning visual explanations with user instructions marked for 
'real intent', as shown in Figure 1. This approach not only improves the accuracy of answers but also ensures 
they are traceable and learnable through mechanisms like Token-Level Cut-Mix and Intention-guided Attention.
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Figure 1. Details of the construction of the IAI-Med VQA dataset with the Instruct-to-Answer Clues Interpreter 
(IAI). We design a Universal-Navigator Prompt (UNP) to guide MLLM to articulate the reasoning behind 
answers based on the visual content present in medical images and the context provided by existing question-
answer pairs.

Figure 3. The simplified version of prompt MLLM to generate task related explanation.

Figure 2. The Uni-Med Training Paradigm. (a): The IAI module, where UNP prompts MLLMs to identify 
instruction’s ”real intent” and generate visual explanations. The most aligned patches are selected to perform feature-
level enhancement by TC-Mix. Intention-Guided Attention focuses LLM on the ”real intent” to minimize modal 
interference.

Figure 4. The details of Task-guided Token-Level Cut-Mix.
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Abstract
Medical Visual Question Answering (Med-VQA) interprets complex medical imagery using 
user instructions for precise diagnostics, yet faces challenges due to diverse, inadequately 
annotated images. In this paper, we introduce the Universal Instruction-Vision Navigator 
(Uni-Med) framework for extracting instruction-to-answer relationships, facilitating the 
understanding of visual evidence behind responses. Specifically, we design the Instruct-to-
Answer Clues Interpreter (IAI) to generate visual explanations based on the answers and 
mark the core part of instructions with "real intent" labels. The IAI-Med VQA dataset, 
produced using IAI, is now publicly available to advance Med-VQA research. Additionally, 
our Token-Level Cut-Mix module dynamically aligns visual explanations with image patches, 
ensuring answers are traceable and learnable. We also implement intention-guided attention 
to minimize non-core instruction interference, sharpening focus on 'real intent'. Extensive 
experiments on SLAKE datasets show Uni-Med's superior accuracies ( 87.52 %closed, 86.12 
% overall), outperforming MedVInT-PMC-VQA by 1.22 % and 0.92 %. Code and dataset are 
available at: https://github.com/zhongzee/Uni-Med-master.
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Conclusions
I n  t h i s  p a p e r ,  w e  i n t r o d u c e  t h e  U n i - M e d  f r a m e w o r k ,  a n  a p p r o a c h  t h a t 
s i g n i f i c a n t l y  e n h a n c e s  t h e  i n t e r p r e t a t i o n  o f  c o m p l e x  m e d i c a l  i m a g e s 
through user instructions,which make the answer 'traceable' and 'learnable'.

We  des ign  an  Ins t ruc t - to -Answer  C lues  In te rp re te r  ( IAI )  to  gene ra t e  t h e 
IAI -Med  VQA da ta se t ,  wh ich  marks  the  " rea l  in t en t "  o f  in s t ruc t ions  and 
generates corresponding visual explanations. To minimize errors in medical 
i m a g e  a n a l y s i s ,  w e  d e v e l o p  a n  U n i v e r s a l - N a v i g a t o r  P r o m p t  ( U N P )  t o 
enhance medical image understanding and reasoning of MLLM.

We implement  a  task-gu ided  Token- leve l  Cut -Mix  (TC-Mix)  s t ra tegy  tha t 
leverages v isual  explanat ion a l igned wi th  user  ins t ruc t ions ,  mapping them 
to the most relevant  blocks in medical images for token-level enhancement.


