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» Reusing Pre-trained Models in Downstream Tasks
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» Reusing Pre-trained Models in Downstream Tasks
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» Visual (Adversarial) Reprogramming
Visual (Adversarial) Reprogramming
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» Visual (Adversarial) Reprogramming
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» Drawback Over Individual Images
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> Drawback in The Statistical View

. : : . .. S
Using the Shared Full Watermarking (All-One Matrix Mask): Loss Increase Amplitude After Training i Hecess
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The training loss for some samples even rises!
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» Framework and Modules
» Module 1: Lightweight Mask Generator
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» Module 2: Patch-wise Interpolation
— Interpolating by Copying
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» Experimental Results

PRE-TRAINED | RESNET-18 (IMAGENET-1K) | RESNET-50 (IMAGENET- 1K) PRE-TRAINED | VIT-B32 (IMAGENET-1K)
METHODS | PAD NARROW  MEDIUM FULL OURS | PAD NARROW  MEDIUM FULL OURS METHOD | PAD NARROW MEDIUM FULL QOURS
CIFARI10 65.5+0.1 68.6x28 68.8x1.1 68.9x04 T2.8:0.7 | 76.620.3 77.420.5 77.840.2  79.3203 81.4:056 CIFARI10 62.4 96.6 06.5 95.8 97.4
CIFARI100 24.8+0.1 36.9+0.6 34.9:+0.2 33.8¢0.2 39.4:06 | 38.9:03 42.5202 43.820.2 47.220.1  49.0:0.2 CIFARI100 31.6 74.4 75.3 75.0 82.6

SVHN 75.2+0.2 58.5=+1.1 71.1x1.0 78.320.3  84.4+2.0 | 75.8:04  59.1x13 71.520.8 79.5205 82.6+2.0 SVHN 80.2 85.0 87.4 87.8 89.7
GTSRB 52.0x1.2 46.1x1.5 56.4x1.0 76.8209  80.4:£1.2 | 52.5:1.4  38.9:13 52.6x1.3 76.5x1.3 78.2:1.1 GTSRB 62.3 57.8 68.6 75.5 80.5
FLOWERS102 27.9+0.7 22.1x0.1 22.60.5 23.2205  38.7:0.7 | 24.6x0.6 19.9+0.6 20.920.6  22.620.1 35.9:05 FLOWERS102 | 57.3 55.3 56.6 55.9 79.1
DTD 35.3200 33.1x1.3 31.7+0.5 29.0+0.7 33.6x04 | 40.5205 37.820.7 38.420.2  34.7x13 41.1:1.1 DTD 43.7 37.3 38.5 37.7 45.6
UCF101 23.9+0.5 27.2+0.9 26.1x0.3 24,4209  28.7:08 | 34.6x0.2  38.4x0.2 37.220.2 35.2202 38.9:0.5 UCF101 33.6 44.5 44.8 40.9 42.6
FooDp101 14.8x0.2 14.0+0.1 14.4:0.3 13.220.1 17.510.1 17.0x0.3 18.320.2 18.320.2 16.720.2 19.8:0.0 FooD101 37.4 47.3 48.6 49.4 64.8
SUN397 13.00.2 15.320.1 14.210.1 13.420.2 16.0:0.3 | 20.320.2  22.0x0.1 21.520.1 21.1z0.1  22.9:0.0 SUN397 21.8 29.0 29.4 28.8 36.7
EUROSAT 85.2+0.6 82.810.4 83.810.5 84.3xz05 92.2:02 | 83.620.7 83.7:04 85.820.1 86.9203 92.0:0.6 EUROSAT 95.9 90.9 00.9 80.1 03.5

OXFORDPETS | 65.4x0.7 73.7+0.2 71.4:0.2 70.0:0.6 74.1x04 | 76.2:0.6  76.420.3 75.620.3  73.4203 T78.1:0.2 OXFORDPETS | 57.6 82.5 81.0 75.3 83.8
AVERAGE 43.91 43.48 45.04 46.85 52.53 49.15 46.76 49.39 52.10 56.35 AVERAGE 53.1 63.7 65.2 64.7 72.4

« Applying SMM yields higher accuracy across commonly-used downstream datasets

« Compatible with different pre-trained model architectures
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» Impact of Masking

T(I) + fmask('r(ﬁc)) ® 0

» Impact of Patch Size
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Shared Reprogramming
Pattern
é
(a) SVHN Dataset
Generated Masks
y —— annual crop land
river i —— pasture land
fmask (r(x‘)) — sea or lake == hgrbaceous vegetationland  _ parmanent crop land
forest = highwayorroad —— residential buildings
—— industrial buildings
. Original Image Padding-based Method Watermarking (Narrow)
Reprogramming
Pattern with Mask
8 Of mask (r(x1))
Reprogrammed Image

r(x)+ § © fmask(r(x i))

» Successfully resolves incorrectly clustered classes in the output feature space
« Able to retain the important parts of the image and remove the interference e
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