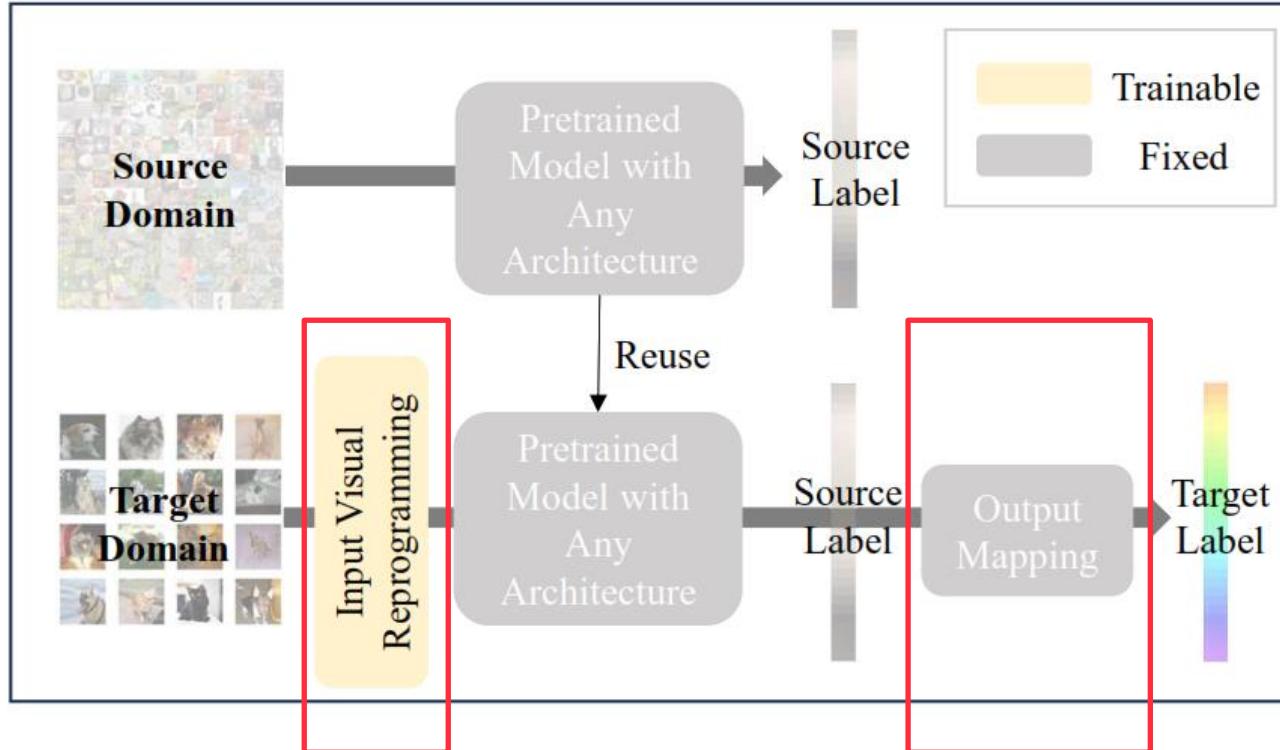


Sample-specific Masks for Visual Reprogramming-based Prompting

Background: Visual Reprogramming-based Prompting

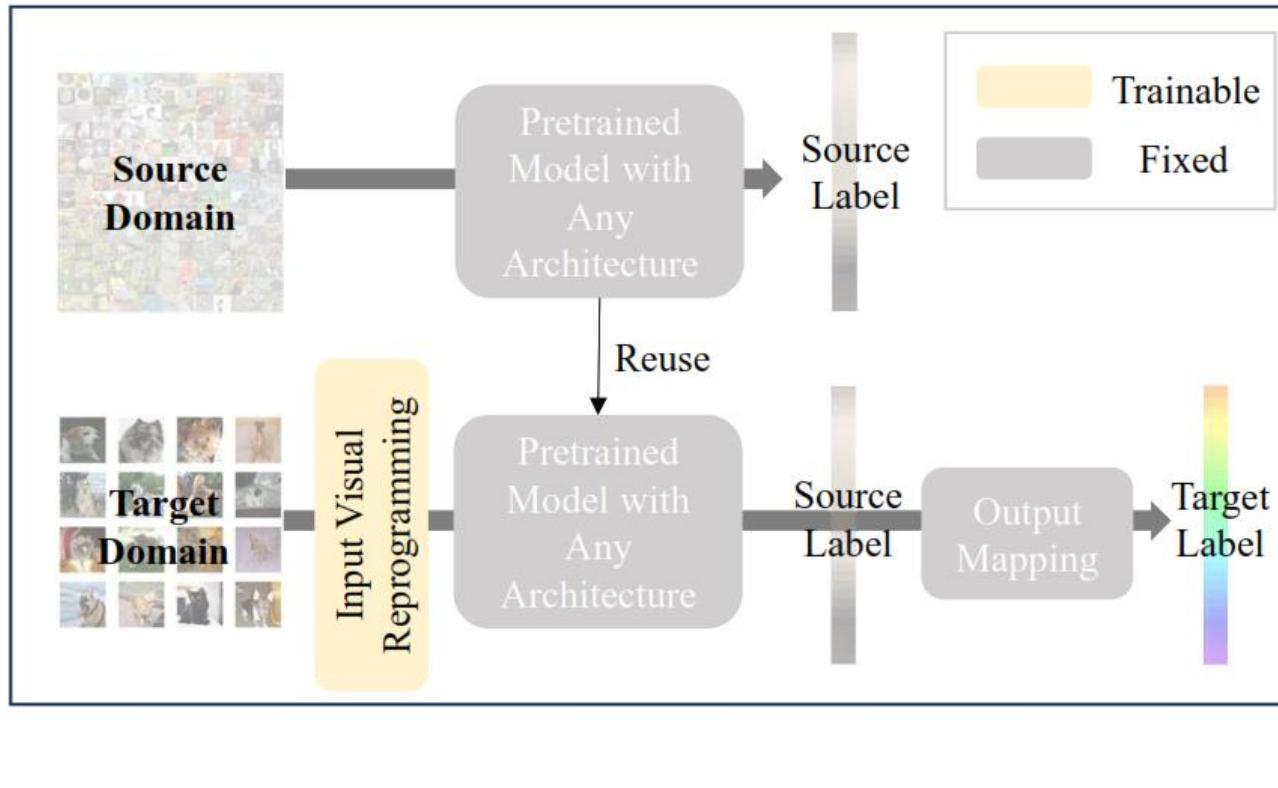
➤ Reusing Pre-trained Models in Downstream Tasks



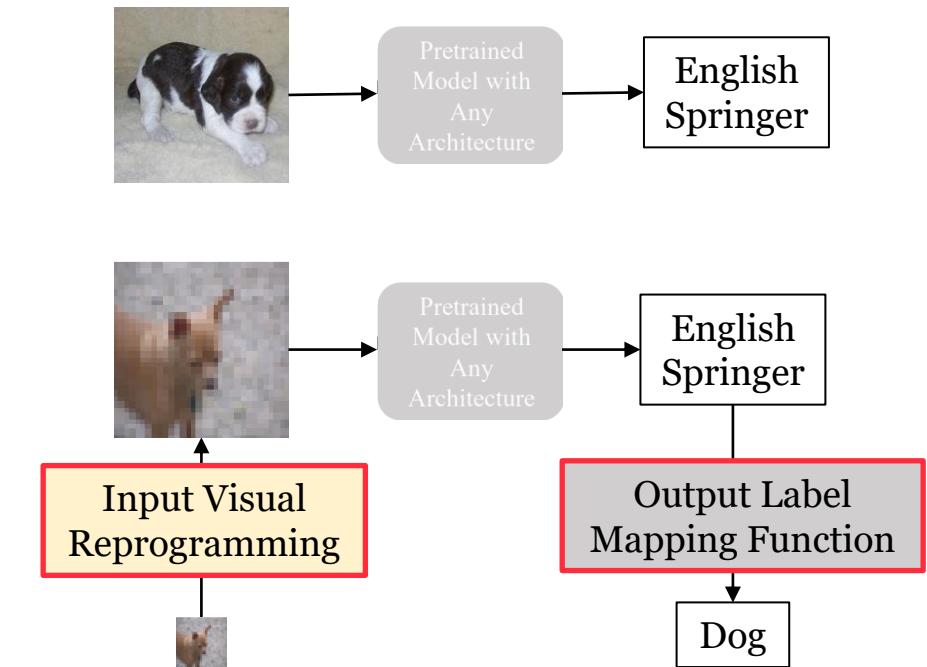
- Reusing Pre-trained Vision Models:
 - (1) Input Visual Reprogramming
 - (2) Output Mapping

Background: Visual Reprogramming-based Prompting

➤ Reusing Pre-trained Models in Downstream Tasks



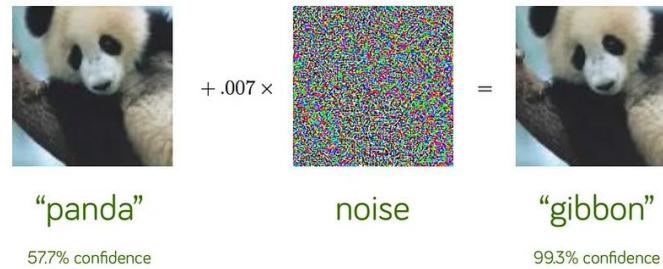
- Example
ImageNet-1k \rightarrow CIFAR10



Background: Visual Reprogramming-based Prompting

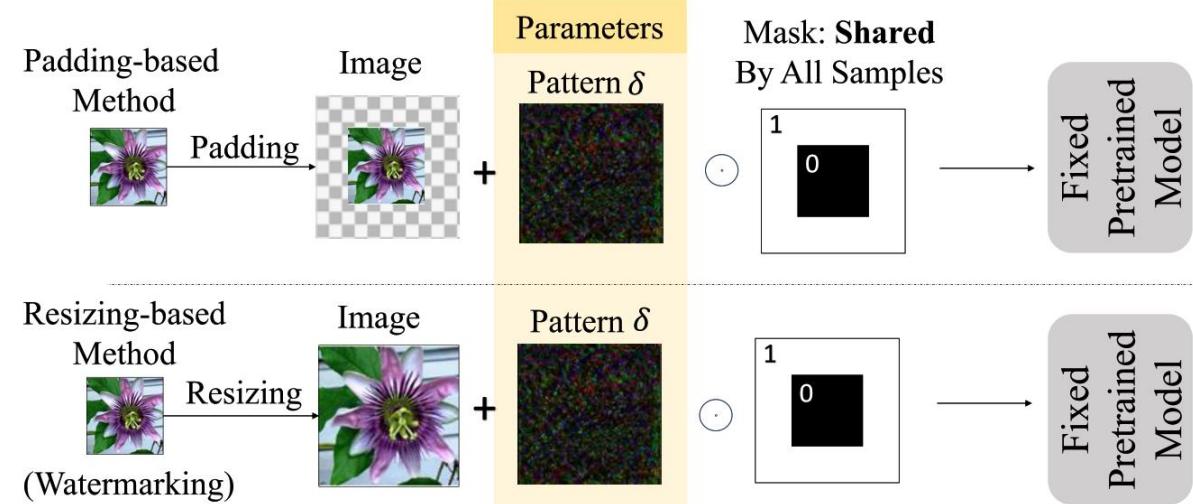
➤ Visual (Adversarial) Reprogramming

Origin of the Concept: Adversarial Attacks



VS

Visual (Adversarial) Reprogramming



Goal: Hindering Pre-Trained Models

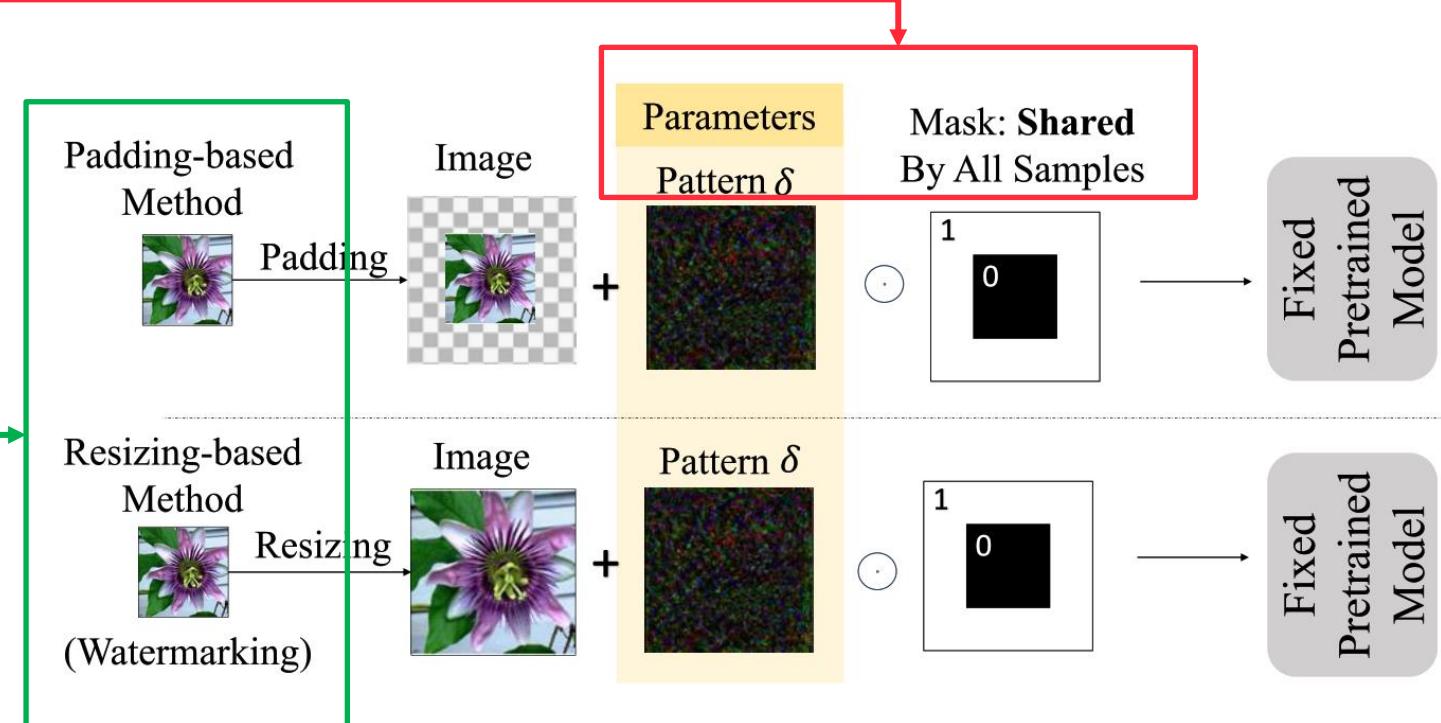
Goal: Reusing Pre-Trained Models

Background: Visual Reprogramming-based Prompting

➤ Visual (Adversarial) Reprogramming

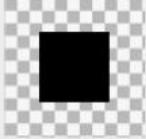
Two Main Components:
(1) Trainable Noise Patterns
(2) Shared Masks

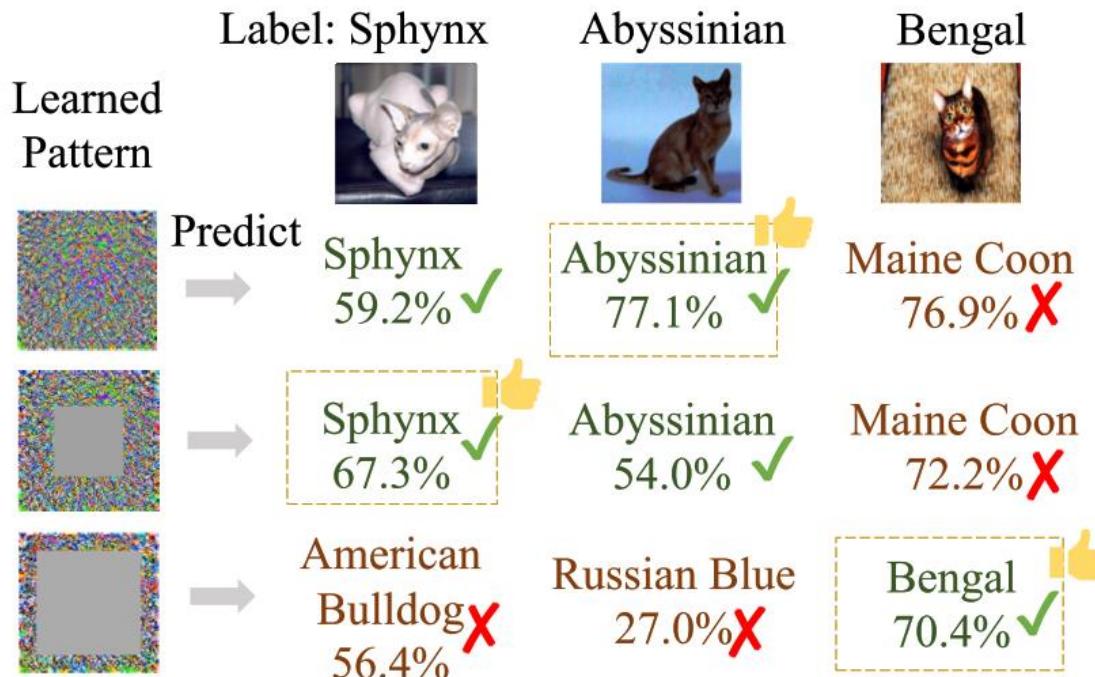
Two Types of Methods:
(1) Padding-based
(2) Resizing-based (Watermarking)



Drawbacks of Shared Masks

➤ Drawback Over Individual Images

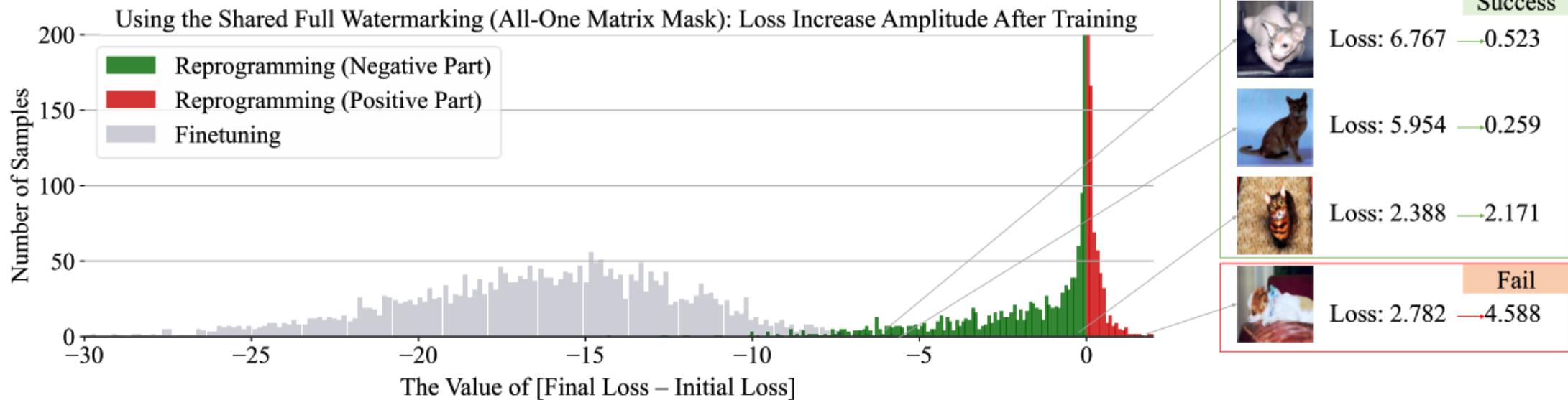
Different Masks	
Full Watermarking	
Medium Watermarking	
Narrow Watermarking	



Different masks
are needed for
individual
images!

Drawbacks of Shared Masks

➤ Drawback in The Statistical View



The training loss for some samples even rises!

Sample-specific Multi-channel Masks (SMM)

➤ Problem Setting and Goal

$$\min_{\theta \in \Theta, \omega \in \Omega} \frac{1}{n} \sum_{i=1}^n \ell(f_{\text{out}}(f_{\text{P}}(f_{\text{in}}(x_i^{\text{T}} | \theta)) | \mathcal{Y}_{\text{sub}}^{\text{P}}, \omega), y_i^{\text{T}})$$

Input VR – trainable parameters: $f_{\text{in}}(\cdot | \theta) : \mathcal{X}^{\text{T}} \mapsto \mathcal{X}^{\text{P}}$

Output Label Mapping – non-parametric function: $f_{\text{out}}(\cdot | \mathcal{Y}_{\text{sub}}^{\text{P}}, \omega) : \mathcal{Y}_{\text{sub}}^{\text{P}} \mapsto \mathcal{Y}^{\text{T}}$

➤ Methods

A Shared Mask:

$$\mathcal{F}^{\text{shr}}(f'_{\text{P}}) = \{f | f(x) = f'_{\text{P}}(r(x) + M \odot \delta), \forall x \in \mathcal{X}\}$$

Resizing Function

Shared Masks

Reprogramming Pattern

Sample-specific Patterns:

$$\mathcal{F}^{\text{sp}}(f'_{\text{P}}) = \{f | f(x) = f'_{\text{P}}(r(x) + f_{\text{mask}}(r(x))), \forall x \in \mathcal{X}\}$$

Sample-specific Masks

Our SMM:

$$\mathcal{F}^{\text{smm}}(f'_{\text{P}}) = \{f | f(x) = f'_{\text{P}}(r(x) + f_{\text{mask}}(r(x)) \odot \delta), \forall x \in \mathcal{X}\}$$

➤ Theory

Approximation Error

$$\text{Err}_{\mathcal{D}_{\text{T}}}^{\text{apx}}(\mathcal{F}^{\text{sp}}(f'_{\text{P}})) \geq \text{Err}_{\mathcal{D}_{\text{T}}}^{\text{apx}}(\mathcal{F}^{\text{smm}}(f'_{\text{P}})) \quad \text{Err}_{\mathcal{D}_{\text{T}}}^{\text{apx}}(\mathcal{F}^{\text{shr}}(f'_{\text{P}})) \geq \text{Err}_{\mathcal{D}_{\text{T}}}^{\text{apx}}(\mathcal{F}^{\text{smm}}(f'_{\text{P}})) \rightarrow \text{Lower}$$

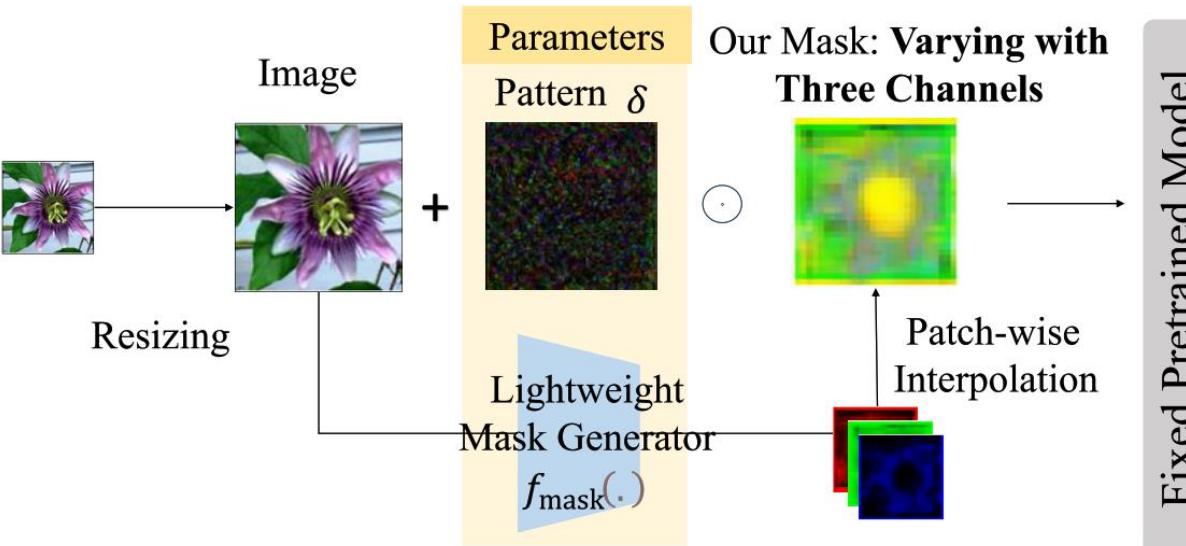
Estimation Error

Introducing less than 0.2% extra parameters
Not increasing the risk of over-fitting in experiments

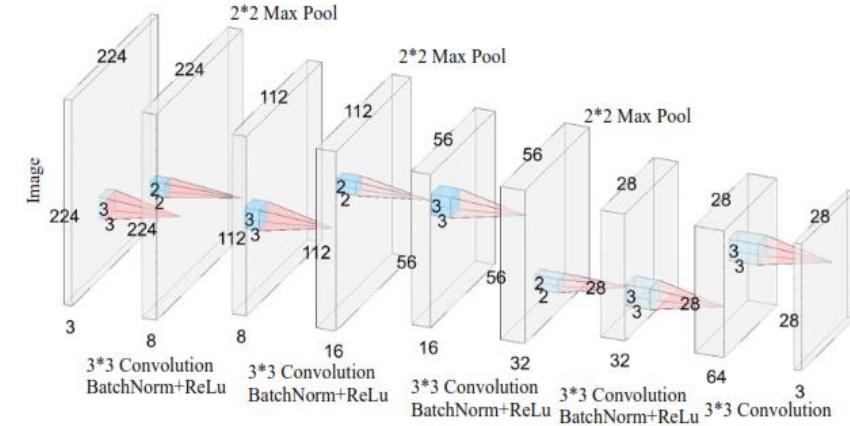
→ Negligible

Sample-specific Multi-channel Masks (SMM)

➤ Framework and Modules



➤ Module 1: Lightweight Mask Generator



➤ Module 2: Patch-wise Interpolation → Interpolating by Copying

Sample-specific Multi-channel Masks (SMM)

➤ Experimental Results

PRE-TRAINED		RESNET-18 (IMAGENET-1K)					RESNET-50 (IMAGENET-1K)					PRE-TRAINED		ViT-B32 (IMAGENET-1K)				
METHODS		PAD	NARROW	MEDIUM	FULL	OURS	PAD	NARROW	MEDIUM	FULL	OURS	METHOD		PAD	NARROW	MEDIUM	FULL	OURS
CIFAR10		65.5 ±0.1	68.6 ±2.8	68.8 ±1.1	68.9 ±0.4	72.8 ±0.7	76.6±0.3	77.4±0.5	77.8±0.2	79.3±0.3	81.4±0.6	CIFAR10		62.4	96.6	96.5	95.8	97.4
CIFAR100		24.8±0.1	36.9±0.6	34.9±0.2	33.8±0.2	39.4±0.6	38.9±0.3	42.5±0.2	43.8±0.2	47.2±0.1	49.0±0.2	CIFAR100		31.6	74.4	75.3	75.0	82.6
SVHN		75.2±0.2	58.5±1.1	71.1±1.0	78.3±0.3	84.4±2.0	75.8±0.4	59.1±1.3	71.5±0.8	79.5±0.5	82.6±2.0	SVHN		80.2	85.0	87.4	87.8	89.7
GTSRB		52.0±1.2	46.1±1.5	56.4±1.0	76.8±0.9	80.4±1.2	52.5±1.4	38.9±1.3	52.6±1.3	76.5±1.3	78.2±1.1	GTSRB		62.3	57.8	68.6	75.5	80.5
FLOWERS102		27.9±0.7	22.1±0.1	22.6±0.5	23.2±0.5	38.7±0.7	24.6±0.6	19.9±0.6	20.9±0.6	22.6±0.1	35.9±0.5	FLOWERS102		57.3	55.3	56.6	55.9	79.1
DTD		35.3±0.9	33.1±1.3	31.7±0.5	29.0±0.7	33.6±0.4	40.5±0.5	37.8±0.7	38.4±0.2	34.7±1.3	41.1±1.1	DTD		43.7	37.3	38.5	37.7	45.6
UCF101		23.9±0.5	27.2±0.9	26.1±0.3	24.4±0.9	28.7±0.8	34.6±0.2	38.4±0.2	37.2±0.2	35.2±0.2	38.9±0.5	UCF101		33.6	44.5	44.8	40.9	42.6
FOOD101		14.8±0.2	14.0±0.1	14.4±0.3	13.2±0.1	17.5±0.1	17.0±0.3	18.3±0.2	18.3±0.2	16.7±0.2	19.8±0.0	FOOD101		37.4	47.3	48.6	49.4	64.8
SUN397		13.0±0.2	15.3±0.1	14.2±0.1	13.4±0.2	16.0±0.3	20.3±0.2	22.0±0.1	21.5±0.1	21.1±0.1	22.9±0.0	SUN397		21.8	29.0	29.4	28.8	36.7
EUROSAT		85.2±0.6	82.8±0.4	83.8±0.5	84.3±0.5	92.2±0.2	83.6±0.7	83.7±0.4	85.8±0.1	86.9±0.3	92.0±0.6	EUROSAT		95.9	90.9	90.9	89.1	93.5
OXFORDPETS		65.4±0.7	73.7±0.2	71.4±0.2	70.0±0.6	74.1±0.4	76.2±0.6	76.4±0.3	75.6±0.3	73.4±0.3	78.1±0.2	OXFORDPETS		57.6	82.5	81.0	75.3	83.8
AVERAGE		43.91	43.48	45.04	46.85	52.53	49.15	46.76	49.39	52.10	56.35	AVERAGE		53.1	63.7	65.2	64.7	72.4

- Applying SMM yields **higher accuracy** across commonly-used downstream datasets
- **Compatible** with different pre-trained model architectures

Sample-specific Multi-channel Masks (SMM)

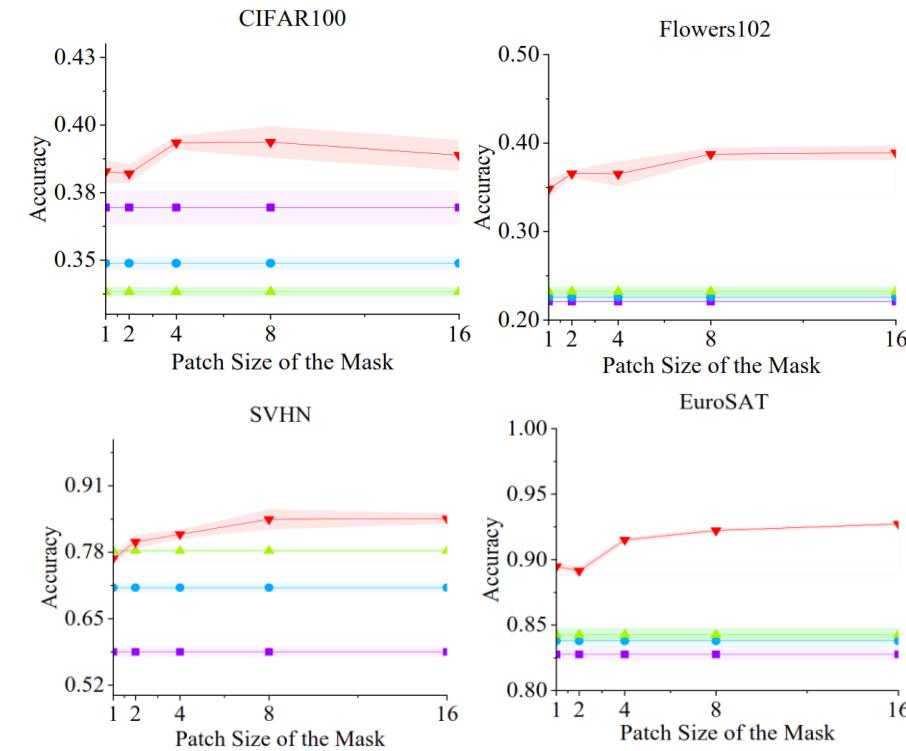
➤ Impact of Masking

$$r(x) + f_{\text{mask}}(r(x)) \odot \delta$$

	ONLY δ	ONLY f_{mask}	SINGLE- CHANNEL f_{mask}^s	OURS
CIFAR10	68.9 \pm 0.4	59.0 \pm 1.6	72.6 \pm 2.6	72.8\pm0.7
CIFAR100	33.8 \pm 0.2	32.1 \pm 0.3	38.0 \pm 0.6	39.4\pm0.6
SVHN	78.3 \pm 0.3	51.1 \pm 3.1	78.4 \pm 0.2	84.4\pm2.0
GTSRB	76.8 \pm 0.9	55.7 \pm 1.2	70.7 \pm 0.8	80.4\pm1.2
FLOWERS102	23.2 \pm 0.5	32.2 \pm 0.4	30.2 \pm 0.4	38.7\pm0.7
DTD	29.0 \pm 0.7	27.2 \pm 0.5	32.7 \pm 0.5	33.6\pm0.4
UCF101	24.4 \pm 0.9	25.7 \pm 0.3	28.0 \pm 0.3	28.7\pm0.8
FOOD101	13.2 \pm 0.1	13.3 \pm 0.1	15.8 \pm 0.1	17.5\pm0.1
SUN397	13.4 \pm 0.2	10.5 \pm 0.1	15.9 \pm 0.1	16.0\pm0.3
EUROSAT	84.3 \pm 0.5	89.2 \pm 0.9	90.6 \pm 0.5	92.2\pm0.2
OXFORDPETS	70.0 \pm 0.6	72.5 \pm 0.3	73.8 \pm 0.6	74.1\pm0.4
AVERAGE	46.85	42.59	49.70	52.53

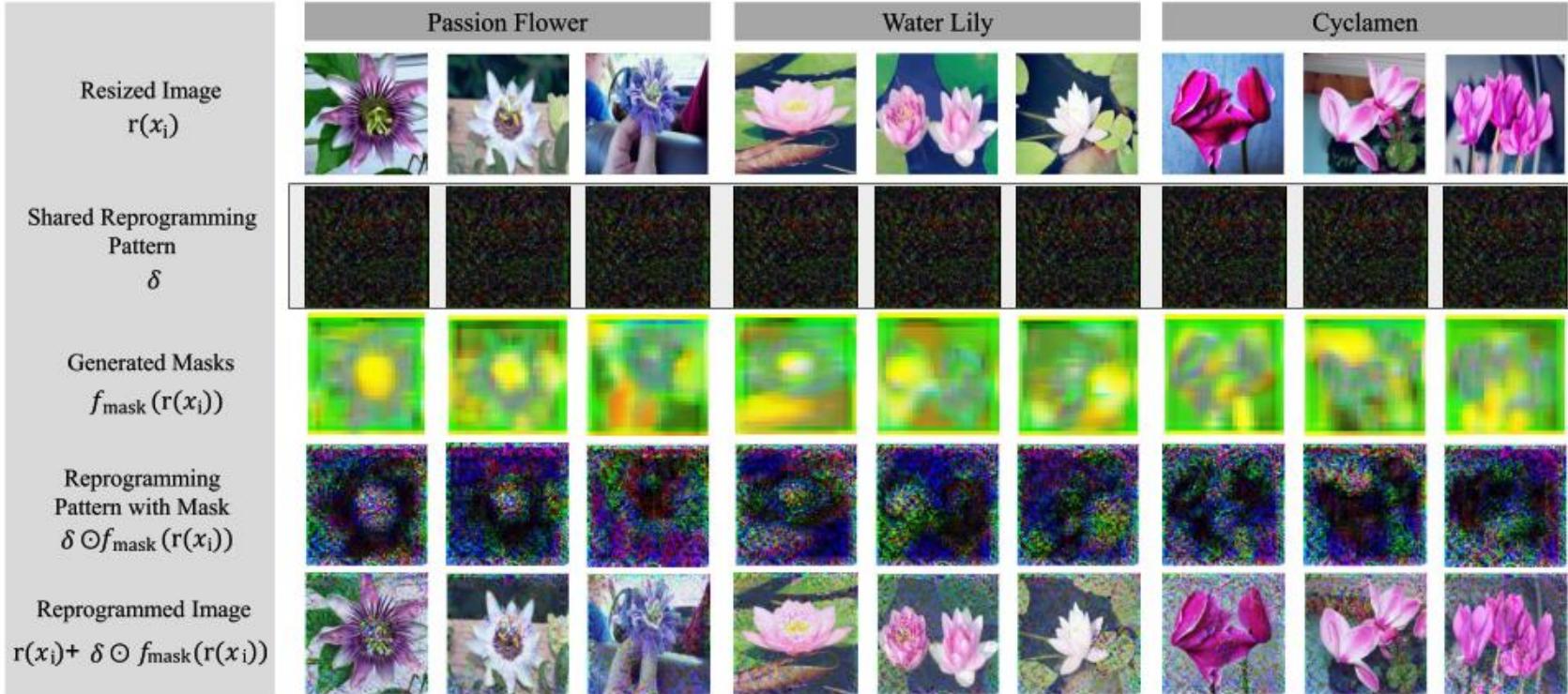
➤ Impact of Patch Size

—■— Watermarking (Narrow) —●— Watermarking (Medium) —▲— Watermarking (Full) —▼— Ours

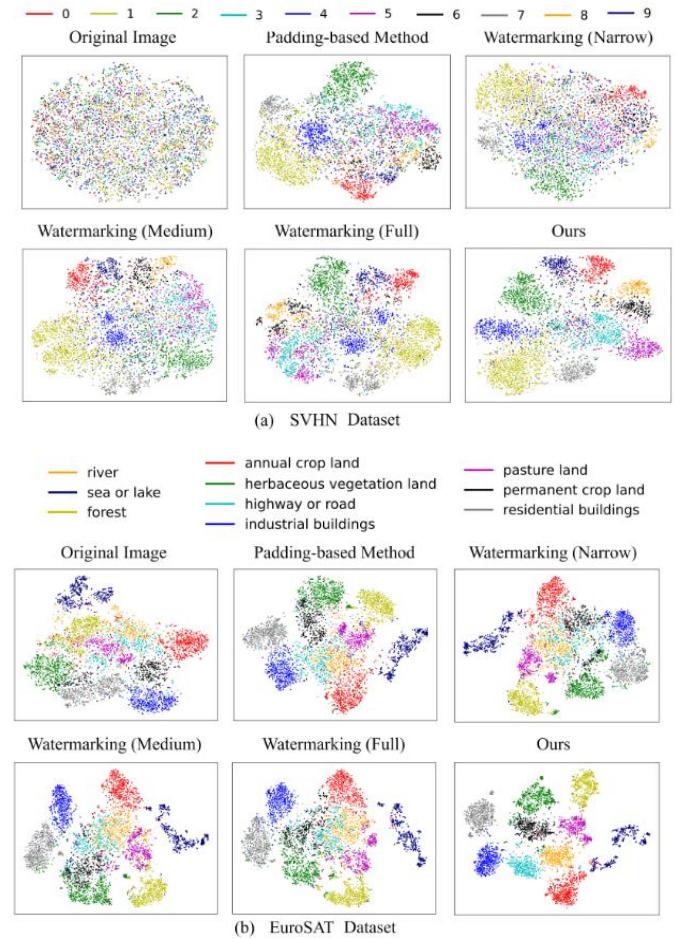


Sample-specific Multi-channel Masks (SMM)

➤ Visualization Results



- Successfully resolves incorrectly clustered classes in the output feature space
- Able to retain the important parts of the image and remove the interference



Thanks For Listening

THE UNIVERSITY OF
MELBOURNE