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Many Real-World Scenarios are Multi-Agent Systems

Foreachagentn=1,..,N
« Rewards r™* ~ r*(si,..,sV,al, ..., a"),
« Transition s™ ~ P"(- |s™, ...,s",al, ..., a")

(Unknown)
Environment

Foreachagentn=1,..,N
* Actions a™ ~ (- |s™)
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Many Real-World Scenarios are Multi-Agent Systems

Foreachagentn=1,..,N
« Rewards r™* ~ r*(si,..,sV,al, ..., a"),
« Transition s™ ~ P"(- |s™, ...,s",al, ..., a")

(Unknown)
Environment

Foreachagentn=1,..,N
* Actions a™ ~ (- |s™)

Main Objective: Learn equilibrium policies rr%, ..., ", s.t. no agent can increase its return by deviation.
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Challenges for Large N

Foreachagentn=1,..,N
« Rewards r™* ~ r*(si,..,sV,al, ..., a"),
« Transition s™ ~ P"(- |s™, ...,s",al, ..., a")

(Unknown)
Environment

Foreachagentn=1,..,N
* Actions a™ ~ (- |s™)

Main Challenge: Curse of “Multi-Agency”

State space grows as exp(N), and exploration over entire state space is intractable.

E'HZUFiCh 07.07.24



Challenges for Large N
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Foreachagentn=1,..,N
« Rewards r™* ~ r*(si,..,sV,al, ..., a"),
« Transition s™ ~ P"(- |s™, ...,s",al, ..., a")

(Unknown)
Environment

Foreachagentn=1,..,N
* Actions a™ ~ (- |s™)

Main Challenge: Curse of “Multi-Agency”

State space grows as exp(N), and exploration over entire state space is intractable.

Leveraging additional problem structures can be helpful!
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N-Player Games with Homogeneous Agents
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Special Structures: Symmetricity

« All the agents share the state/action space and dynamics
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ai ~ ﬂj(si)’ T; = R(Siaaiﬂﬁt)’ 3i+1 ~ P('lsi’aiiﬁt)

« transitions & rewards only affected through empirical state (action) distributions
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Special Structures: Symmetricity

« All the agents share the state/action space and dynamics

« transitions & rewards only affected through empirical state (action) distributions

When N is large, known as Mean-Field Games [Huang et al., 2006], [Lasry & Lions, 2007]

E'HZUFiCh 07.07.24



N-Player Games with Homogeneous Agents
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Special Structures: Symmetricity
« All the agents share the state/action space and dynamics

« transitions & rewards only affected through empirical state (action) distributions
When N is large, known as Mean-Field Games [Huang et al., 2006], [Lasry & Lions, 2007]

Various applications in finance [Carmona, 2020], economics [Gomes et al., 2017], industrial engineering [Paola et al., 2019]
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N-Player Games with Homogeneous Agents

@m Zurich > Luzern
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ai ~ ﬂj(si)’ T; = R(Siaaiﬂﬁt)’ 3i+1 ~ P('lsi’aiiﬁt)
Special Structures: Symmetricity

« All the agents share the state/action space and dynamics

« transitions & rewards only affected through empirical state (action) distributions

When N is large, known asl Mean-Field Games|[Huang et al., 2006], [Lasry & Lions, 2007]

Various applications in finance [Carmona, 2020], economics [Gowes et al., 2017], industrial engineering [Paola et al., 2019]

I Our main focus! I
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Mean-Field Games

(Episodic) Mean-Field Games
 M:=(u,S,AHP,T)

If all agents take the same « := {my, ..., 7y}

For a representative agent,
» start with s; ~ 14
e forh=1,..,H:
« Take action a; ~ (- |sp)
« Observe next state sy .1 ~ P, (- |sy, ap, ur), and reward r, ~ r(sp, ap, Up)

* Density evolves up 1 () = Xs; a, tn (Sp)T(an|sp)Pr( |Sp, ap, tp)

No curse of multi-agency issue
* Only the density matters
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Mean-Field Games

(Episodic) Mean-Field Games
* Nash Equilibrium (NE)
« Given a policy T and a possible deviation 7, define

In ) = Bl ) 7sn an, )]

he[H]
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Mean-Field Games

(Episodic) Mean-Field Games

* Nash Equilibrium (NE)
« Given a policy T and a possible deviation 7, define

I (@, 1) = Ex pom | Z 1(Sh, Qp, )]

he[H]

Short note Of E[|Vh) aAp~ ﬁ-) Sp ~ ]P)( |Sh) Ap, lufrf)l Th ~ T(Shi Ap, MZ)]
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Mean-Field Games

(Episodic) Mean-Field Games
* Nash Equilibrium (NE)
« Given a policy T and a possible deviation 7, define

In ) = Bl ) 7sn an, )]

he[H]
« NE is defined to be 7]E

VT, ]M(T[M ;T[M ) >]M(7T 7TM

+ e- NE is defined to be #NF
V1T, ]M(ﬁN , 1T NE) >]M(7T ﬂ E) —€
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Key Question and Motivation

Key Question:
What is the fundamental sample complexity of learn e-NE in MFGs
with general function approximation?
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Key Question:
What is the fundamental sample complexity of learn e-NE in MFGs
with general function approximation?

1. Usually, the learner does not have full knowledge about the Mean-Field model M
. Efficient exploration is needed
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Key Question:
What is the fundamental sample complexity of learn e-NE in MFGs
with general function approximation?

1. Usually, the learner does not have full knowledge about the Mean-Field model M
. Efficient exploration is needed

2. Real-world applications has rich observation and action spaces
. Function approximation (e.g. neural networks) is necessary
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Key Question and Motivation

Key Question:
What is the fundamental sample complexity of learn e-NE in MFGs
with general function approximation?

1. Usually, the learner does not have full knowledge about the Mean-Field model M
. Efficient exploration is needed

2. Real-world applications has rich observation and action spaces
. Function approximation (e.g. neural networks) is necessary

3. Understanding of sample efficiency of learning NE in MFGs is limited

. MFGs has special structure. Results in single-agent RL or Markov Games usually cannot be
generalized here.
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Basic Setting

 Model-Based Function Approximation
« A model class M available, |[M| < 4+
* Only consider unknown transition in this paper
« Each M € M associates the same known reward r and different transition functions P,
« Can be extended to unknown reward setting

E'HZUF/C/’) 07.07.24



Basic Setting

 Model-Based Function Approximation
« A model class M available, |[M| < 4+
* Only consider unknown transition in this paper
« Each M € M associates the same known reward r and different transition functions P,
« Can be extended to unknown reward setting

« Assumptions
* Realizability: true unknown model M* € M
» Lipschitz in density: VM € M',Vh € [H|,Vn, T
* ”PM(' |Shr An, a1 1 ) - IP)M(' |Sh» ah»#ﬁ,h)||1 < Lr|lumn — Hamplly

¢ |T(Shi Ap, /i17\T/I,h) — T'(Sh, Ap, MI?/I’,h)l < Lrllﬂ;\-s[,h - MI7\T/II,h”1

* NE may not exist if not Lipshictz
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Basic Setting

* Model-Based Function Approximation
« A model class M available, |[M| < 4+
* Only consider unknown transition in this paper
« Each M € M associates the same known reward r and different transition functions P,
« Can be extended to unknown reward setting

* Assumptions
* Realizability: true unknown model M* € M
» Lipschitz in density: VM € M',Vh € [H|,Vn, T
o 1Py (- |5 an n ) = Paa(- |m @n )l < Lyl — wally

* |r(sn ah;ﬂzﬁ,h) — 1(Sh, ah;ﬂzﬁ’,hﬂ < Lr||#17\T/1,h - M17\T/1’,h||1

* NE may not exist if not Lipshictz

« Comparing with assumptions in MFGs literature:

Contractivity Monotonicity
[Guo et al. 2019] [Perolat et al. 2021]

ETHzurich Ly, L, are small and others Ly = 0 and others 07.07.24



Main Results

Main Theorem (Informal)
Learning e-NE in MFG is as sample-efficient as solving log|M | single-agent RL problems

Sample complexity = Poly(1 + L,., 1 + Lp,i, H, log%l, dimPE(M),)
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Main Results

Main Theorem (Informal)
Learning e-NE in MFG is as sample-efficient as solving log|M | single-agent RL problems

Sample complexity = Poly(1 + L,., 1 + Lp,é, H, log%, dimPE(M),)

N

Partial Model-Based Eluder Dimension:
Can be regarded as the complexity of the
single-agent model class converted from M
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Main Results

Main Theorem (Informal)
Learning e-NE in MFG is as sample-efficient as solving log|M | single-agent RL problems

Sample complexity = Poly(1 + L,., 1 + Lp,i, H, log%l, dimPE(M),)

N

Partial Model-Based Eluder Dimension:
* Concrete Examples Can be regarded as the complexity of the

* Tabular MFG: dimPE(M) < SA single-agent model class converted from M

« Tabular MFG is sample-efficient in general
* Linear MFG: dimPE(M) < d
o P(s'|s,a,u) = p(s,a) TU(u)Y(s") with known ¢(s,a) € R?
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Algorithm Details

ETHzirich

Fork =1,2...,0(log|M)), (start with M* = M)
« Find a desired policy r*

« Construct ]\/[l’ftk = {M 0, M € M*}

* M,k is the single-agent model with {r (u}@kh)  Pum ( | 5 M

» Collect samples and M*** « {M € M*|M .« agrees with M i}

k

Jheun
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Algorithm Details

ETHzirich

Fork =1,2...,0(log|M)), (start with M* = M)

 Find a desired policy r*

» Construct M.%y = {Mx, M € M*}

. Mln" is the single-agent model with {r (uﬁkh) Py ( | -'.'M;\td]’{h)}he[H]

» | Collect samples and M*** « {M € M*|M_« agrees with M} }

mode elimination in single-agent function class
the only step require samples, origin of dependence on dimPE(M)

any single-agent model learning algorithm.
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Algorithm Details

Fork =1,2...,0(log|M)), (start with M* = M)
 Find a desired policy r*

« Construct ]\/[l’ftk = {M 0, M € M*}

. Mln" is the single-agent model with {r (uﬁkh) Py ( | '»'»ﬂ;\fll,{h)}hew]

» Collect samples and M*** « {M € M*|M .« agrees with M i}

How to find the “desired policy” for fast learning?
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Algorithm Details

Fork =1,2...,0(log|M)), (start with M* = M)
 Find a desired policy r*

« Construct ]\/[l’ftk = {M 0, M € M*}

. Mln" is the single-agent model with {r (uﬁkh) Py ( | '»'»ﬂ;\fll,{h)}hew]

» Collect samples and M*** « {M € M*|M .« agrees with M i}

How to find the “desired policy” for fast learning?

A M Model distance

o,

|me
Consider e-cover for
policy space

N, = {nl,n?.}

v

Visualization of M,
(dots represent models in ]Vfl’;%)
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Algorithm Details
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 Find a desired policy r*
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» Collect samples and M*** « {M € M*|M .« agrees with M i}

How to find the “desired policy” for fast learning?

« Case 1 (Non-Concentrated): Existence of rl, s.t. no model cluster contains half of models
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Algorithm Details

Fork =1,2...,0(log|M)), (start with M* = M)
 Find a desired policy r*

« Construct ]\/[l’ftk = {M 0, M € M*}

. Mln" is the single-agent model with {r (uﬁkh) Py ( | '»'»ﬂ;\fll,{h)}hew]

» Collect samples and M*** « {M € M*|M .« agrees with M i}

How to find the “desired policy” for fast learning?

« Case 1 (Non-Concentrated): Existence of rl, s.t. no model cluster contains half of models

. Mk
+ Setn* =mnl, then |M**| < |2—|

A M, Model distance 4
T M7y
Consider e-cover for
policy space
N, = {nl,n?.}
. . . k
Visualization of M, Visualization of M, Visualization of M, .
(dots represent models in J\/El’fT%) (dots represent models in ]Vfl’;g) (dots represent models in ]\/[lné)
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Algorithm Details

Fork =1,2...,0(log|M)), (start with M* = M)
 Find a desired policy r*

« Construct ]\/[l’ftk = {M 0, M € M*}

» Collect samples and M*** « {M € M*|M .« agrees with M i}

. Mln" is the single-agent model with {r (uﬁkh) Py ( | ';':Hﬁl,{h)}hew]

How to find the “desired policy” for fast learning?

» Case 2 (Concentrated): vrr € I1,, there is a cluster with half of models

|e

A Mg Model distance 4
T S

Consider e-cover for
policy space
N, = {nl,n?.} Q

Visualization of ]Vﬁlfrg Visualization of J\/[l'frg
(dots represent models in J\/El’;%) (dots represent models in ]Vfl’;g)

v

v
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Algorithm Details

Fork =1,2...,0(log|M)), (start with M* = M)
 Find a desired policy r*

« Construct ]\/[l’ftk = {M 0, M € M*}

» Collect samples and M*** « {M € M*|M .« agrees with M i}

. Mln" is the single-agent model with {r (uﬁkh) Py ( | '»'»ﬂ;\fll,{h)}hew]

How to find the “desired policy” for fast learning?

» Case 2 (Concentrated): vrr € I1,, there is a cluster with half of models

Consider e-cover for
policy space
N, = {nl,n?.}

ETHzirich

A

M1 Model distance 4
€
<\> M’ 1 Q

-

v

v

Visualization of ]Vﬁlfrg Visualization of J\/[l'frg
(dots represent models in ]Vfl’fT%) (dots represent models in ]Vfl’;g)

Key Observation [Local Alignment Lemma]: If M|, ~ M, and & is NE of M, then = ~ NE of M~

4 Q/v Mt

v

Visualization of M ;
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Algorithm Details

Fork =1,2...,0(log|M)), (start with M* = M)
 Find a desired policy r*

« Construct ]v[l’ftk = {M 0, M € M*}

. Mln" is the single-agent model with {r (uﬁkh) Py ( | ""”’%)}he[y]

» Collect samples and M*** « {M € M*|M .« agrees with M i}

How to find the “desired policy” for fast learning?

» Case 2 (Concentrated): vrr € I1,, there is a cluster with half of models
 Key Observation [Local Alignment Lemma]: If M|, ~ M, and & is NE of M, then = ~ NE of M~

4 Q/v Mt

» Under Lipschitz continuity, by construction (Algorithm 3 in paper, omitted here),
there exists a mL, such that =l ~ NE of any M, € Q

v

Visualization of M ;
€
(dots represent models in ]\/[l';i)
€
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Algorithm Details

Fork =1,2...,0(log|M)), (start with M* = M)
 Find a desired policy r*

« Construct ]v[l’ftk = {M 0, M € M*}

. . . ) . . ok
M« is the single-agent model with { (,,MM h) IPM( | uﬂM,h)}he[H]
» Collect samples and M*** « {M € M*|M .« agrees with M i}

How to find the “desired policy” for fast learning?

» Case 2 (Concentrated): vrr € I1,, there is a cluster with half of models
 Key Observation [Local Alignment Lemma]: If M|, ~ M, and & is NE of M, then = ~ NE of M~

» Under Lipschitz continuity, by construction (Algorithm 3 in paper, omitted here),
there exists a mL, such that =l ~ NE of any M, € Q

« Setnk =nl

T Q € MK+ it implies: 4 Q/v My
M’ ;€ Oandne NE of M*

e

. If QGEM"“ it implies:
- M leEOand |]v[k+1|< i

v

Visualization of ]\/[I’:Tl
€

(dots represent models in ]\/[l’; )
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Algorithm Details

Fork =1,2...,0(log|M)), (start with M* = M)
 Find a desired policy r*

« Construct ]\/[l’ftk = {M 0, M € M*}

. . . ) . . ok
M« is the single-agent model with { (,,MM h) IPM( | ;:ﬂM,h)}he[H]
» Collect samples and M*** « {M € M*|M .« agrees with M i}

How to find the “desired policy” for fast learning?
» Case 2 (Concentrated): vrr € I1,, there is a cluster with half of models
 Key Observation [Local Alignment Lemma]: If M|, ~ M, and & is NE of M, then = ~ NE of M~

* Under Lipschitz continuity, by construction (Algorithm 3 in paper, omitted here),
there exists a mL, such that =l ~ NE of any M, €

« Setnk =nl

. If Q € M**1 it implies: 4 Q/v My
Mﬂl € Oandne NE of M*

e

. If QGEM"“ it implies:
° Ml ; &Oand |Mk+1|< |

v

Combining with Case 1, for each k Visualization of M
|me

. Mk
« either |]V[k+1| < |7| (dots represent models in ]\/[li‘Té)
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Summary

Take Aways
* A new complexity measure: Partial Model Based Eluder Dimension

* A novel model elimination algorithm for Mean-Field Games setting

Under realizability and Lipschitz conditions
Model-Based RL for Mean-Field Games is not Statistically Harder than Single-Agent RL
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Summary

Take Aways
* A new complexity measure: Partial Model Based Eluder Dimension

* A novel model elimination algorithm for Mean-Field Games setting

Under realizability and Lipschitz conditions
Model-Based RL for Mean-Field Games is not Statistically Harder than Single-Agent RL

Future Directions
» Decentralized learning?

« Computationally efficient solutions?
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Thank you!
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