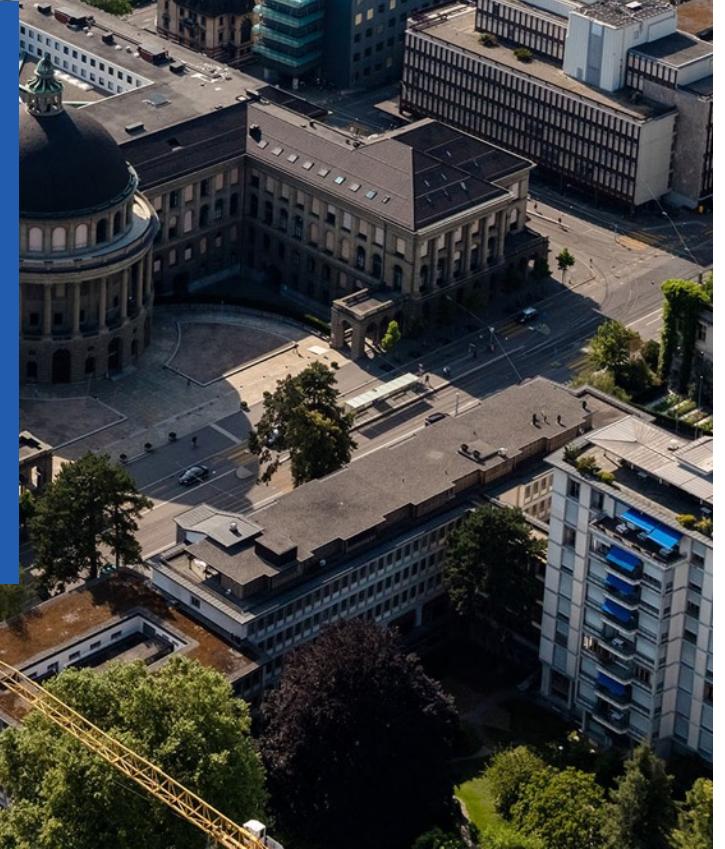
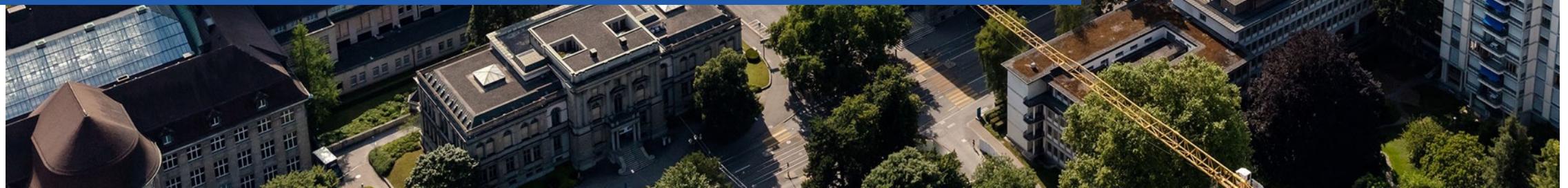
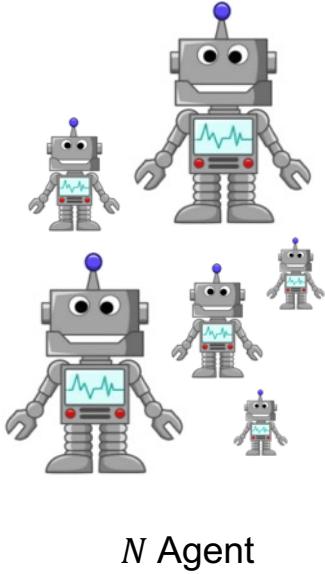


Model-Based RL for Mean-Field Games is not Statistically Harder than Single-Agent RL

Jiawei Huang, Niao He, Andreas Krause
ETH Zurich

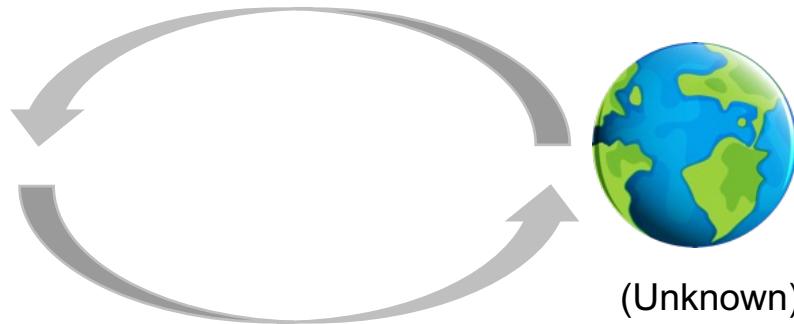


Many Real-World Scenarios are Multi-Agent Systems



For each agent $n = 1, \dots, N$

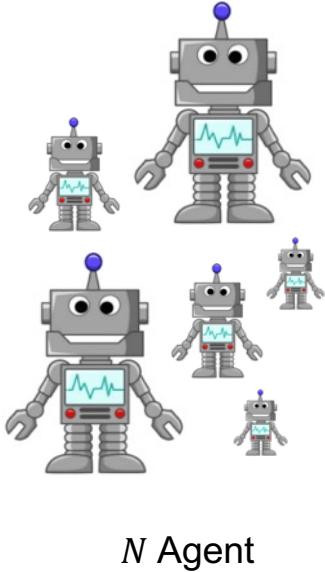
- Rewards $r^n \sim r^n(s^1, \dots, s^N, a^1, \dots, a^n)$,
- Transition $s^{n'} \sim \mathbb{P}^n(\cdot | s^n, \dots, s^N, a^1, \dots, a^n)$



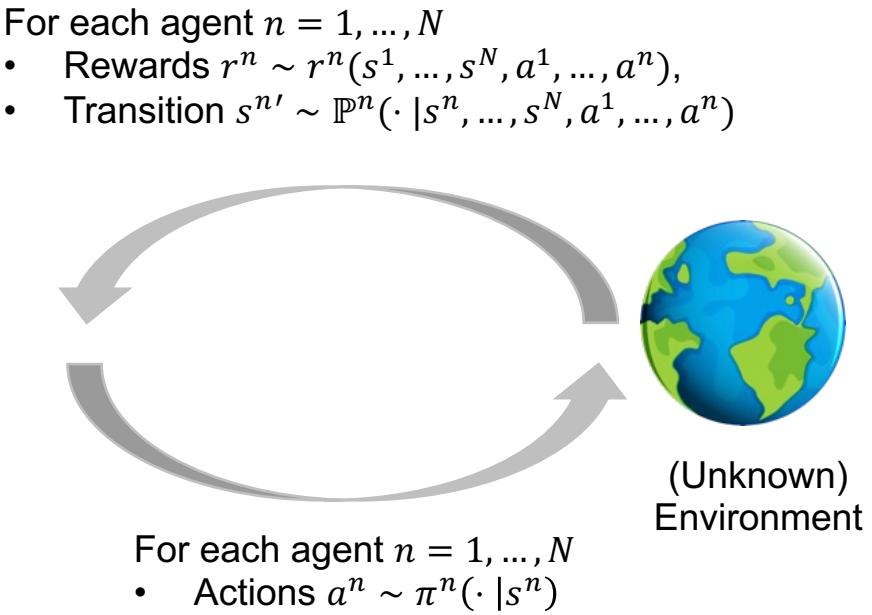
For each agent $n = 1, \dots, N$

- Actions $a^n \sim \pi^n(\cdot | s^n)$

Many Real-World Scenarios are Multi-Agent Systems

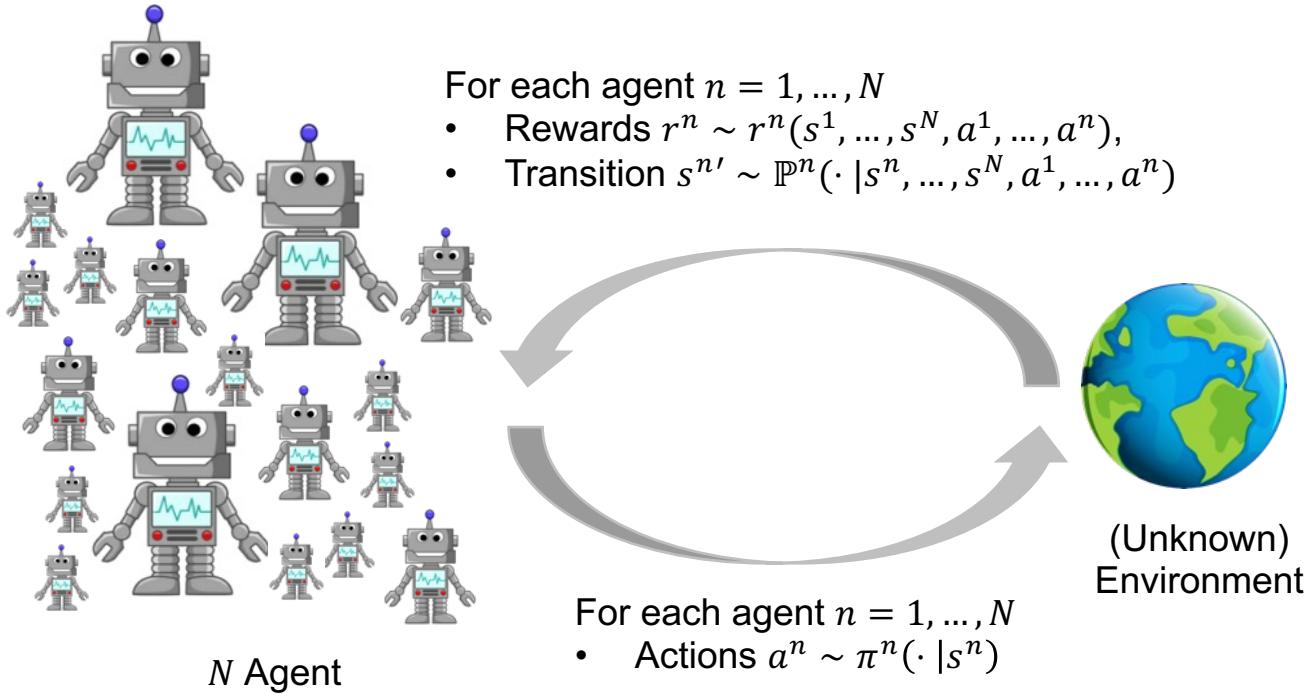


N Agent



Main Objective: Learn equilibrium policies π^1, \dots, π^N , s.t. no agent can increase its return by deviation.

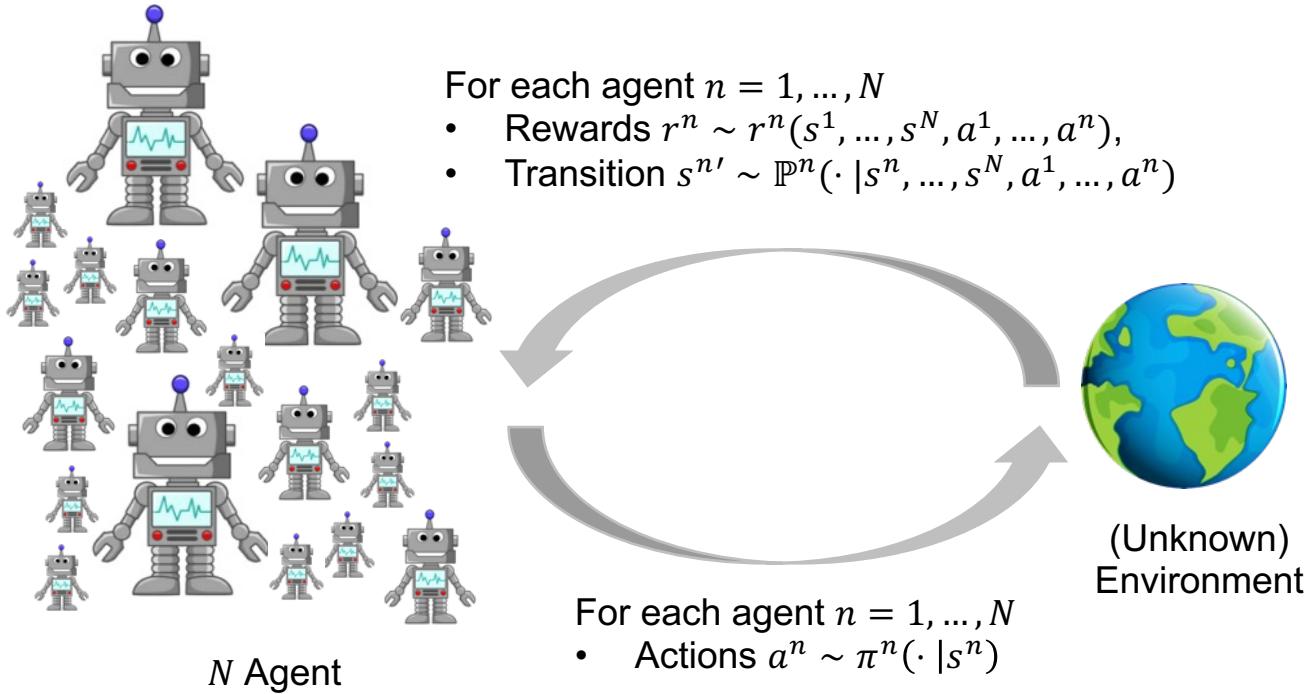
Challenges for Large N



Main Challenge: Curse of “Multi-Agency”

State space grows as $\exp(N)$, and exploration over entire state space is intractable.

Challenges for Large N

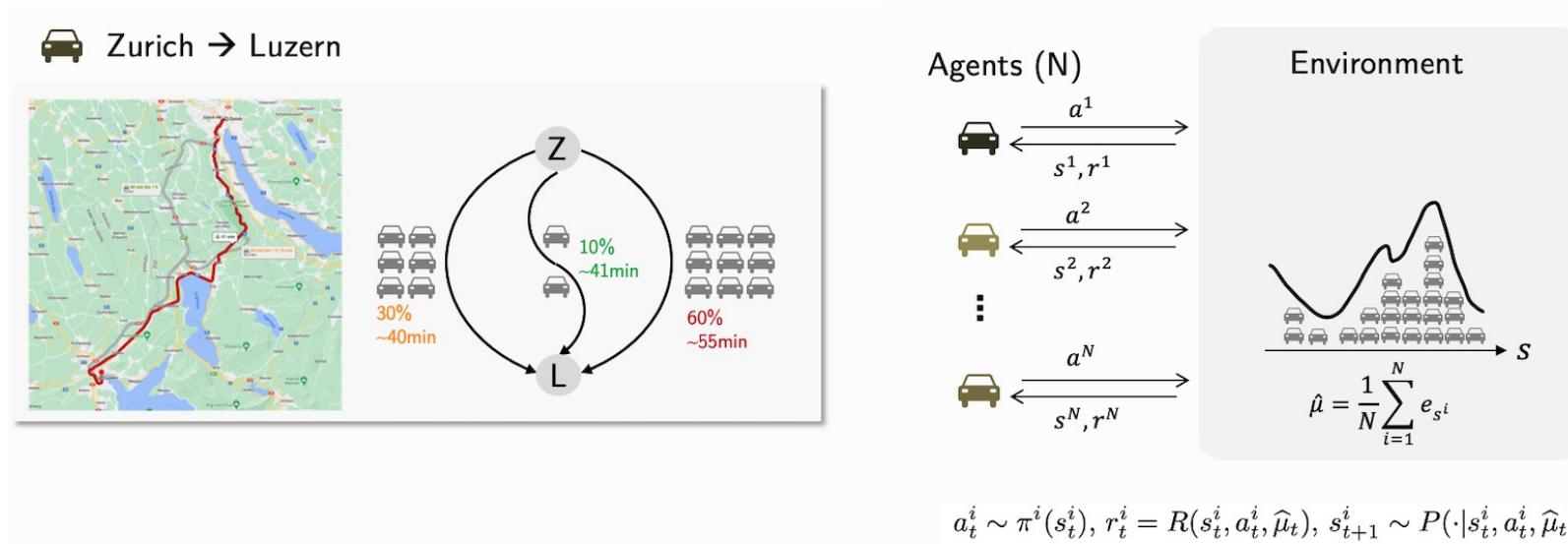


Main Challenge: Curse of “Multi-Agency”

State space grows as $\exp(N)$, and exploration over entire state space is intractable.

Leveraging additional problem structures can be helpful!

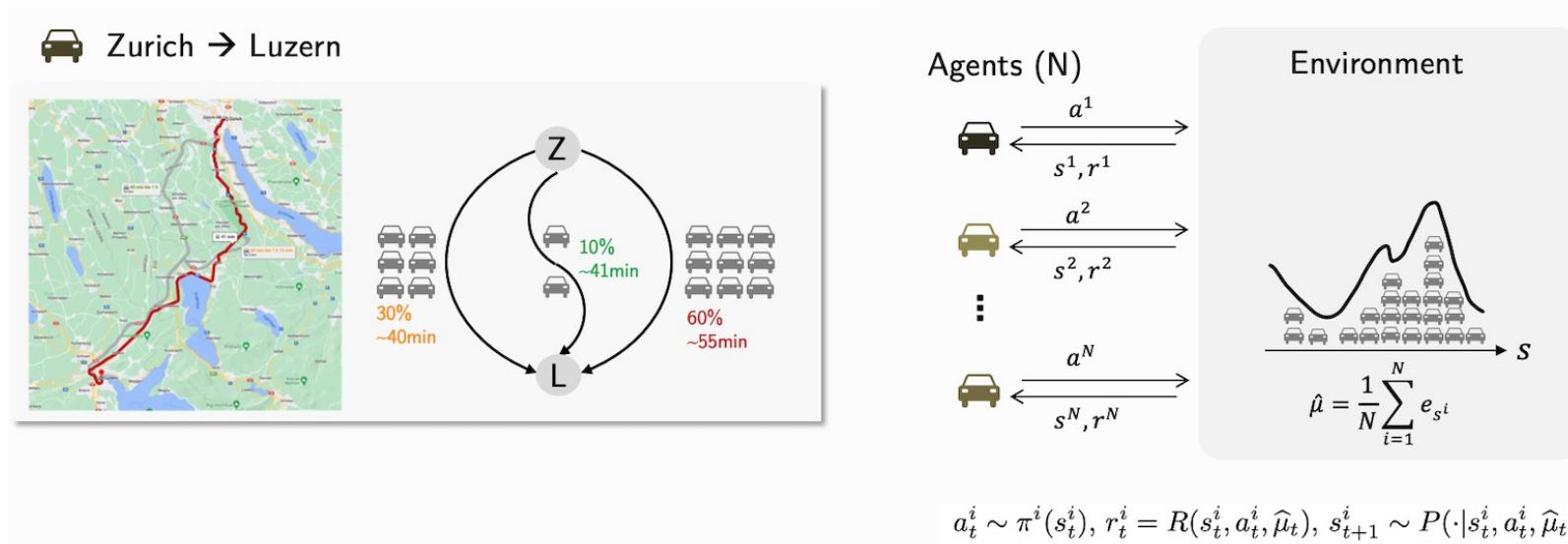
N-Player Games with Homogeneous Agents



Special Structures: Symmetry

- All the agents share the state/action space and dynamics
- transitions & rewards only affected through empirical state (action) distributions

N-Player Games with Homogeneous Agents

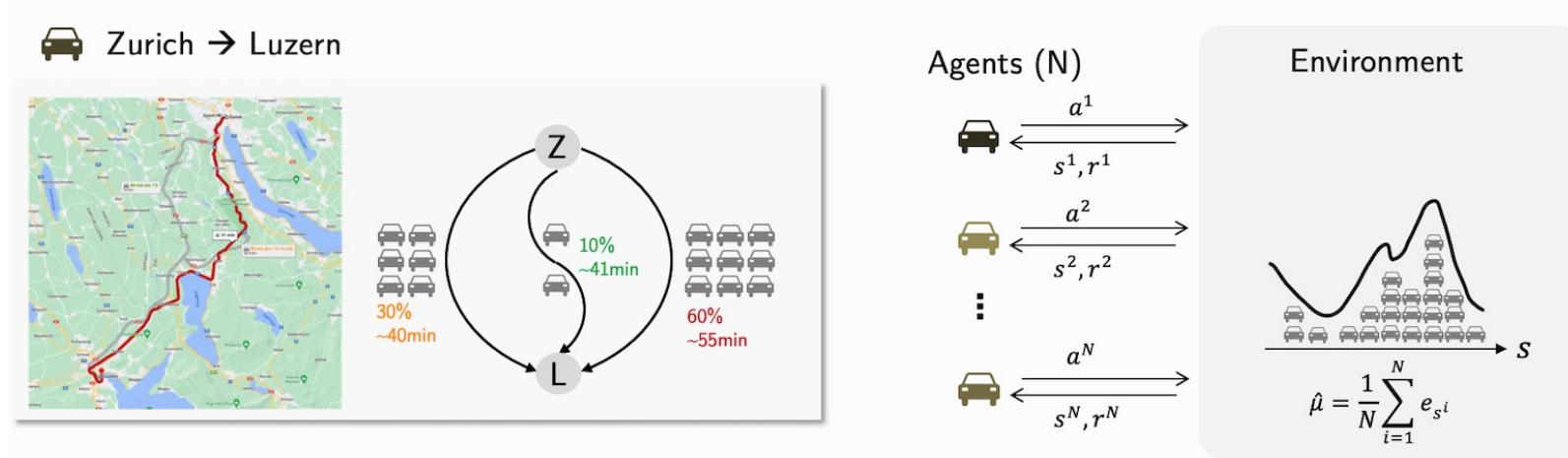


Special Structures: Symmetry

- All the agents share the state/action space and dynamics
- transitions & rewards only affected through empirical state (action) distributions

When N is large, known as **Mean-Field Games** [Huang et al., 2006], [Lasry & Lions, 2007]

N-Player Games with Homogeneous Agents



$$a_t^i \sim \pi^i(s_t^i), r_t^i = R(s_t^i, a_t^i, \hat{\mu}_t), s_{t+1}^i \sim P(\cdot | s_t^i, a_t^i, \hat{\mu}_t)$$

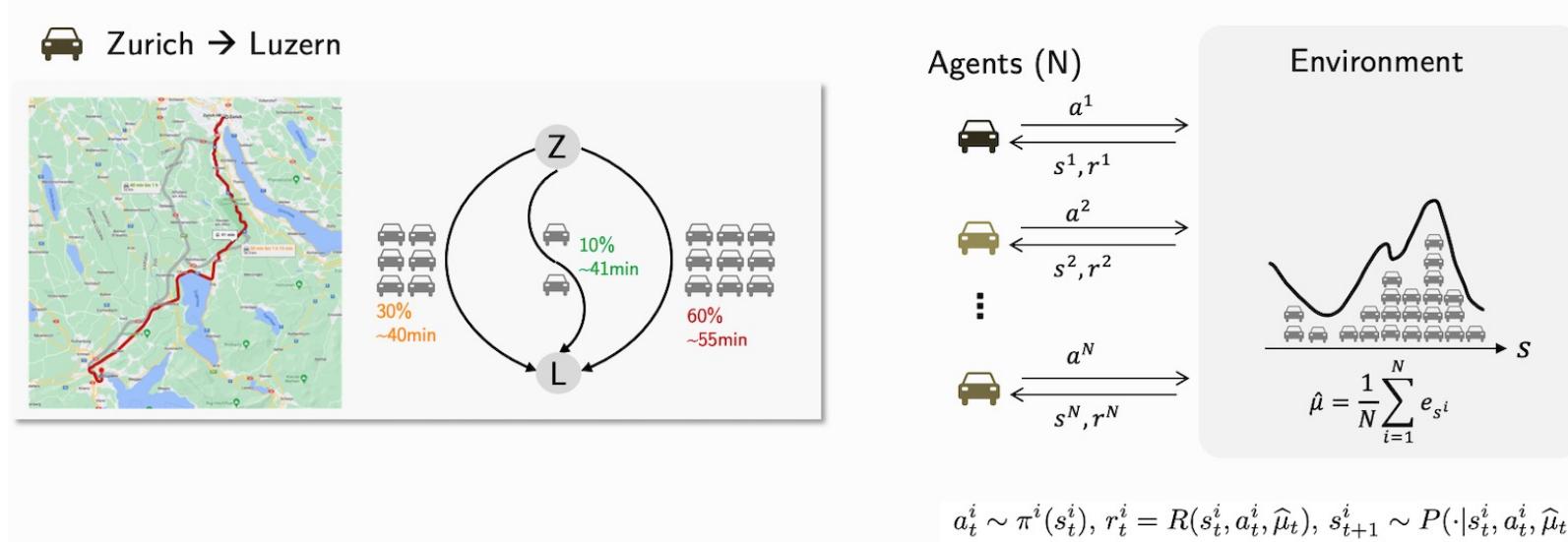
Special Structures: Symmetry

- All the agents share the state/action space and dynamics
- transitions & rewards only affected through empirical state (action) distributions

When N is large, known as **Mean-Field Games** [Huang et al., 2006], [Lasry & Lions, 2007]

Various applications in **finance** [Carmona, 2020], **economics** [Gomes et al., 2017], **industrial engineering** [Paola et al., 2019]

N-Player Games with Homogeneous Agents



Special Structures: Symmetry

- All the agents share the state/action space and dynamics
- transitions & rewards only affected through empirical state (action) distributions

When N is large, known as **Mean-Field Games** [Huang et al., 2006], [Lasry & Lions, 2007]

Various applications in **finance** [Carmona, 2020], **economics** [Gomes et al., 2017], **industrial engineering** [Paola et al., 2019]

Our main focus!

Mean-Field Games

(Episodic) Mean-Field Games

- $M := (\mu_1, \mathcal{S}, \mathcal{A}, H, \mathbb{P}, r)$
- If all agents take the same $\pi := \{\pi_1, \dots, \pi_H\}$
- For a representative agent,
 - start with $s_1 \sim \mu_1$
 - for $h = 1, \dots, H$:
 - Take action $a_h \sim \pi_h(\cdot | s_h)$
 - Observe next state $s_{h+1} \sim \mathbb{P}_h(\cdot | s_h, a_h, \mu_h^\pi)$, and reward $r_h \sim r(s_h, a_h, \mu_h^\pi)$
 - Density evolves $\mu_{h+1}^\pi(\cdot) = \sum_{s_h, a_h} \mu_h^\pi(s_h) \pi(a_h | s_h) \mathbb{P}_h(\cdot | s_h, a_h, \mu_h^\pi)$
- No curse of multi-agency issue
 - Only the density matters

Mean-Field Games

(Episodic) Mean-Field Games

- Nash Equilibrium (NE)
 - Given a policy π and a possible deviation $\tilde{\pi}$, define

$$J_M(\tilde{\pi}, \pi) := \mathbb{E}_{\tilde{\pi}, M(\pi)} \left[\sum_{h \in [H]} r(s_h, a_h, \mu_h^\pi) \right]$$

Mean-Field Games

(Episodic) Mean-Field Games

- Nash Equilibrium (NE)
 - Given a policy π and a possible deviation $\tilde{\pi}$, define

$$J_M(\tilde{\pi}, \pi) := \mathbb{E}_{\tilde{\pi}, M(\pi)} \left[\sum_{h \in [H]} r(s_h, a_h, \mu_h^\pi) \right]$$

Short note of $\mathbb{E}[\cdot | \forall h, a_h \sim \tilde{\pi}, s_h \sim \mathbb{P}(\cdot | s_h, a_h, \mu_h^\pi), r_h \sim r(s_h, a_h, \mu_h^\pi)]$

Mean-Field Games

(Episodic) Mean-Field Games

- Nash Equilibrium (NE)
 - Given a policy π and a possible deviation $\tilde{\pi}$, define

$$J_M(\tilde{\pi}, \pi) := \mathbb{E}_{\tilde{\pi}, M(\pi)} \left[\sum_{h \in [H]} r(s_h, a_h, \mu_h^\pi) \right]$$

- NE is defined to be π_M^{NE}

$$\forall \pi, \quad J_M(\pi_M^{\text{NE}}, \pi_M^{\text{NE}}) \geq J_M(\pi, \pi_M^{\text{NE}})$$

- ϵ - NE is defined to be $\hat{\pi}_M^{\text{NE}}$

$$\forall \pi, \quad J_M(\hat{\pi}_M^{\text{NE}}, \hat{\pi}_M^{\text{NE}}) \geq J_M(\pi, \hat{\pi}_M^{\text{NE}}) - \epsilon$$

Key Question and Motivation

Key Question:

What is the fundamental sample complexity of learn ϵ -NE in MFGs
with ***general function approximation***?

Key Question and Motivation

Key Question:

What is the fundamental sample complexity of learn ϵ -NE in MFGs
with ***general function approximation***?

1. Usually, the learner does not have full knowledge about the Mean-Field model M
 - Efficient exploration is needed

Key Question and Motivation

Key Question:

What is the fundamental sample complexity of learn ϵ -NE in MFGs
with ***general function approximation***?

1. Usually, the learner does not have full knowledge about the Mean-Field model M
 - Efficient exploration is needed
2. Real-world applications has rich observation and action spaces
 - Function approximation (e.g. neural networks) is necessary

Key Question and Motivation

Key Question:

What is the fundamental sample complexity of learn ϵ -NE in MFGs with ***general function approximation***?

1. Usually, the learner does not have full knowledge about the Mean-Field model M
 - Efficient exploration is needed
2. Real-world applications has rich observation and action spaces
 - Function approximation (e.g. neural networks) is necessary
3. Understanding of sample efficiency of learning NE in MFGs is limited
 - MFGs has special structure. Results in single-agent RL or Markov Games usually cannot be generalized here.

Basic Setting

- Model-Based Function Approximation
 - A model class \mathcal{M} available, $|\mathcal{M}| < +\infty$
 - Only consider unknown transition in this paper
 - Each $M \in \mathcal{M}$ associates the same known reward r and different transition functions \mathbb{P}_M
 - Can be extended to unknown reward setting

Basic Setting

- Model-Based Function Approximation
 - A model class \mathcal{M} available, $|\mathcal{M}| < +\infty$
 - Only consider unknown transition in this paper
 - Each $M \in \mathcal{M}$ associates the same known reward r and different transition functions \mathbb{P}_M
 - Can be extended to unknown reward setting
- Assumptions
 - **Realizability**: true unknown model $M^* \in \mathcal{M}$
 - **Lipschitz in density**: $\forall M \in \mathcal{M}, \forall h \in [H], \forall \pi, \pi'$
 - $\|\mathbb{P}_M(\cdot | s_h, a_h, \mu_{M,h}^\pi) - \mathbb{P}_M(\cdot | s_h, a_h, \mu_{M,h}^{\pi'})\|_1 \leq L_T \|\mu_{M,h}^\pi - \mu_{M,h}^{\pi'}\|_1$
 - $|r(s_h, a_h, \mu_{M,h}^\pi) - r(s_h, a_h, \mu_{M,h}^{\pi'})| \leq L_r \|\mu_{M,h}^\pi - \mu_{M,h}^{\pi'}\|_1$
 - NE may not exist if not Lipschitz

Basic Setting

- Model-Based Function Approximation
 - A model class \mathcal{M} available, $|\mathcal{M}| < +\infty$
 - Only consider unknown transition in this paper
 - Each $M \in \mathcal{M}$ associates the same known reward r and different transition functions \mathbb{P}_M
 - Can be extended to unknown reward setting
- Assumptions
 - **Realizability**: true unknown model $M^* \in \mathcal{M}$
 - **Lipschitz in density**: $\forall M \in \mathcal{M}, \forall h \in [H], \forall \pi, \pi'$
 - $\|\mathbb{P}_M(\cdot | s_h, a_h, \mu_{M,h}^\pi) - \mathbb{P}_M(\cdot | s_h, a_h, \mu_{M,h}^{\pi'})\|_1 \leq L_T \|\mu_{M,h}^\pi - \mu_{M,h}^{\pi'}\|_1$
 - $|r(s_h, a_h, \mu_{M,h}^\pi) - r(s_h, a_h, \mu_{M,h}^{\pi'})| \leq L_r \|\mu_{M,h}^\pi - \mu_{M,h}^{\pi'}\|_1$
 - NE may not exist if not Lipschitz
- Comparing with assumptions in MFGs literature:

Contractivity
[Guo et al. 2019]

Monotonicity
[Perolat et al. 2021]

L_T, L_r are small and others

$L_T = 0$ and others

Main Results

Main Theorem (Informal)

Learning ϵ -NE in MFG is **as sample-efficient as** solving $\log|\mathcal{M}|$ single-agent RL problems

$$\text{Sample complexity} = \text{Poly}\left(1 + L_r, 1 + L_P, \frac{1}{\epsilon}, H, \log \frac{|\mathcal{M}|}{\delta}, \text{dimPE}(\mathcal{M}), \right)$$

Main Results

Main Theorem (Informal)

Learning ϵ -NE in MFG is **as sample-efficient as** solving $\log|\mathcal{M}|$ single-agent RL problems

$$\text{Sample complexity} = \text{Poly}\left(1 + L_r, 1 + L_P, \frac{1}{\epsilon}, H, \log \frac{|\mathcal{M}|}{\delta}, \text{dimPE}(\mathcal{M}), \right)$$

Partial Model-Based Eluder Dimension:
Can be regarded as the complexity of the
single-agent model class converted from \mathcal{M}

Main Results

Main Theorem (Informal)

Learning ϵ -NE in MFG is **as sample-efficient as** solving $\log|\mathcal{M}|$ single-agent RL problems

$$\text{Sample complexity} = \text{Poly}\left(1 + L_r, 1 + L_P, \frac{1}{\epsilon}, H, \log \frac{|\mathcal{M}|}{\delta}, \text{dimPE}(\mathcal{M}), \right)$$

- Concrete Examples
 - Tabular MFG: $\text{dimPE}(\mathcal{M}) \leq SA$
 - Tabular MFG is sample-efficient in general
 - Linear MFG: $\text{dimPE}(\mathcal{M}) \leq d$
 - $\mathbb{P}(s'|s, a, \mu) = \phi(s, a)^\top U(\mu) \psi(s')$ with known $\phi(s, a) \in \mathbb{R}^d$

Partial Model-Based Eluder Dimension:
Can be regarded as the complexity of the
single-agent model class converted from \mathcal{M}

Algorithm Details

For $k = 1, 2, \dots, O(\log|\mathcal{M}|)$, (start with $\mathcal{M}^1 = \mathcal{M}$)

- Find a desired policy π^k
- Construct $\mathcal{M}_{|\pi^k}^k := \{M_{|\pi^k}, M \in \mathcal{M}^k\}$
 - $M_{|\pi^k}$ is the single-agent model with $\{r(\cdot, \cdot, \mu_{M,h}^{\pi^k}), \mathbb{P}_M(\cdot | \cdot, \cdot, \mu_{M,h}^{\pi^k})\}_{h \in [H]}$
- Collect samples and $\mathcal{M}^{k+1} \leftarrow \{M \in \mathcal{M}^k \mid M_{|\pi^k} \text{ agrees with } M_{|\pi^k}^*\}$

Algorithm Details

For $k = 1, 2, \dots, O(\log|\mathcal{M}|)$, (start with $\mathcal{M}^1 = \mathcal{M}$)

- Find a desired policy π^k
- Construct $\mathcal{M}_{|\pi^k}^k := \{M_{|\pi^k}, M \in \mathcal{M}^k\}$
 - $M_{|\pi^k}$ is the single-agent model with $\{r(\cdot, \cdot, \mu_{M,h}^{\pi^k}), \mathbb{P}_M(\cdot | \cdot, \cdot, \mu_{M,h}^{\pi^k})\}_{h \in [H]}$
- Collect samples and $\mathcal{M}^{k+1} \leftarrow \{M \in \mathcal{M}^k \mid M_{|\pi^k} \text{ agrees with } M_{|\pi^k}^*\}$

- mode elimination in single-agent function class
- the only step require samples, origin of dependence on $\text{dimPE}(\mathcal{M})$
- any single-agent model learning algorithm.

Algorithm Details

For $k = 1, 2, \dots, O(\log|\mathcal{M}|)$, (start with $\mathcal{M}^1 = \mathcal{M}$)

- Find a **desired policy** π^k
- Construct $\mathcal{M}_{|\pi^k}^k := \{M_{|\pi^k}, M \in \mathcal{M}^k\}$
 - $M_{|\pi^k}$ is the single-agent model with $\{r(\cdot, \cdot, \mu_{M,h}^{\pi^k}), \mathbb{P}_M(\cdot | \cdot, \cdot, \mu_{M,h}^{\pi^k})\}_{h \in [H]}$
- Collect samples and $\mathcal{M}^{k+1} \leftarrow \{M \in \mathcal{M}^k \mid M_{|\pi^k} \text{ agrees with } M_{|\pi^k}^*\}$

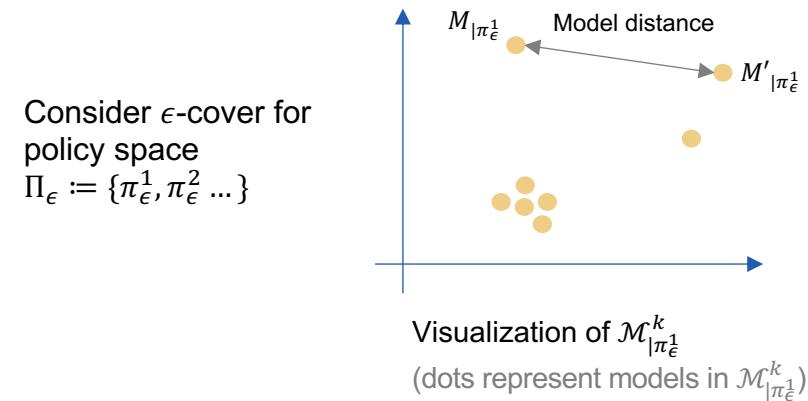
How to find the “desired policy” for fast learning?

Algorithm Details

For $k = 1, 2, \dots, O(\log|\mathcal{M}|)$, (start with $\mathcal{M}^1 = \mathcal{M}$)

- Find a **desired policy** π^k
- Construct $\mathcal{M}_{|\pi^k}^k := \{M_{|\pi^k}, M \in \mathcal{M}^k\}$
 - $M_{|\pi^k}$ is the single-agent model with $\{r(\cdot, \cdot, \mu_{M,h}^{\pi^k}), \mathbb{P}_M(\cdot | \cdot, \cdot, \mu_{M,h}^{\pi^k})\}_{h \in [H]}$
- Collect samples and $\mathcal{M}^{k+1} \leftarrow \{M \in \mathcal{M}^k \mid M_{|\pi^k} \text{ agrees with } M_{|\pi^k}^*\}$

How to find the “desired policy” for fast learning?

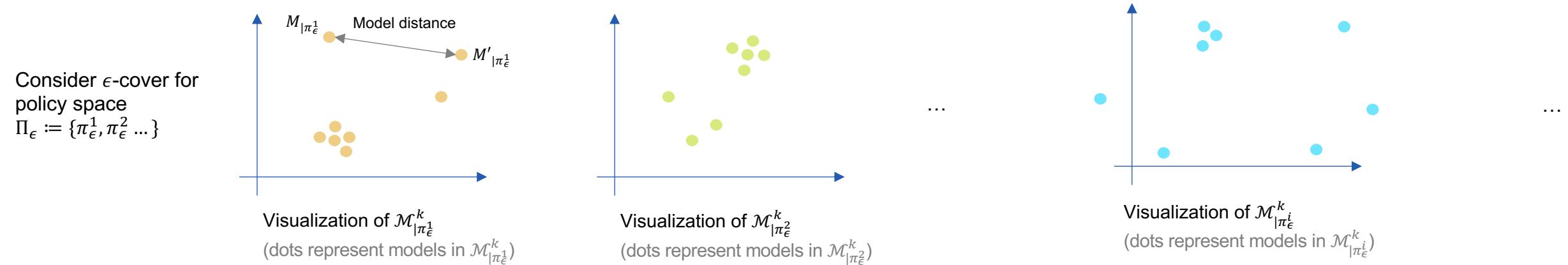


Algorithm Details

For $k = 1, 2, \dots, O(\log|\mathcal{M}|)$, (start with $\mathcal{M}^1 = \mathcal{M}$)

- Find a **desired policy** π^k
- Construct $\mathcal{M}_{|\pi^k}^k := \{M_{|\pi^k}, M \in \mathcal{M}^k\}$
 - $M_{|\pi^k}$ is the single-agent model with $\{r(\cdot, \cdot, \mu_{M,h}^{\pi^k}), \mathbb{P}_M(\cdot | \cdot, \cdot, \mu_{M,h}^{\pi^k})\}_{h \in [H]}$
- Collect samples and $\mathcal{M}^{k+1} \leftarrow \{M \in \mathcal{M}^k \mid M_{|\pi^k} \text{ agrees with } M_{|\pi^k}^*\}$

How to find the “desired policy” for fast learning?



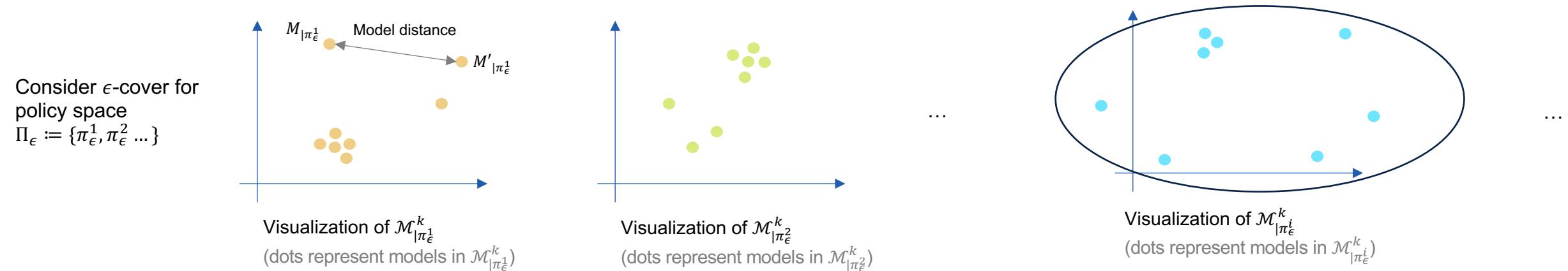
Algorithm Details

For $k = 1, 2, \dots, O(\log|\mathcal{M}|)$, (start with $\mathcal{M}^1 = \mathcal{M}$)

- Find a **desired policy** π^k
- Construct $\mathcal{M}_{|\pi^k}^k := \{M_{|\pi^k}, M \in \mathcal{M}^k\}$
 - $M_{|\pi^k}$ is the single-agent model with $\{r(\cdot, \cdot, \mu_{M,h}^{\pi^k}), \mathbb{P}_M(\cdot | \cdot, \cdot, \mu_{M,h}^{\pi^k})\}_{h \in [H]}$
- Collect samples and $\mathcal{M}^{k+1} \leftarrow \{M \in \mathcal{M}^k \mid M_{|\pi^k} \text{ agrees with } M_{|\pi^k}^*\}$

How to find the “desired policy” for fast learning?

- Case 1 (Non-Concentrated): Existence of π_ϵ^i , s.t. no model cluster contains half of models



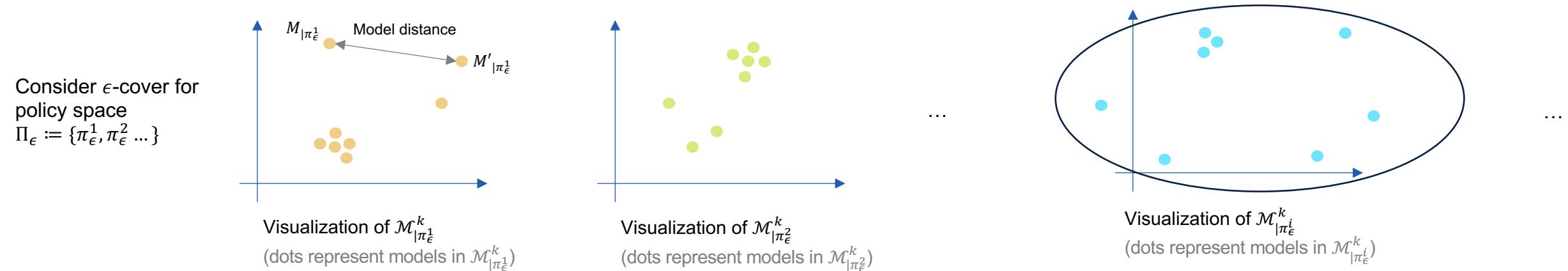
Algorithm Details

For $k = 1, 2, \dots, O(\log|\mathcal{M}|)$, (start with $\mathcal{M}^1 = \mathcal{M}$)

- Find a **desired policy** π^k
- Construct $\mathcal{M}_{|\pi^k}^k := \{M_{|\pi^k}, M \in \mathcal{M}^k\}$
 - $M_{|\pi^k}$ is the single-agent model with $\{r(\cdot, \cdot, \mu_{M,h}^{\pi^k}), \mathbb{P}_M(\cdot | \cdot, \cdot, \mu_{M,h}^{\pi^k})\}_{h \in [H]}$
- Collect samples and $\mathcal{M}^{k+1} \leftarrow \{M \in \mathcal{M}^k \mid M_{|\pi^k} \text{ agrees with } M_{|\pi^k}^*\}$

How to find the “desired policy” for fast learning?

- Case 1 (Non-Concentrated): Existence of π_ϵ^i , s.t. no model cluster contains half of models
 - Set $\pi^k = \pi_\epsilon^i$, then $|\mathcal{M}^{k+1}| \leq \frac{|\mathcal{M}^k|}{2}$



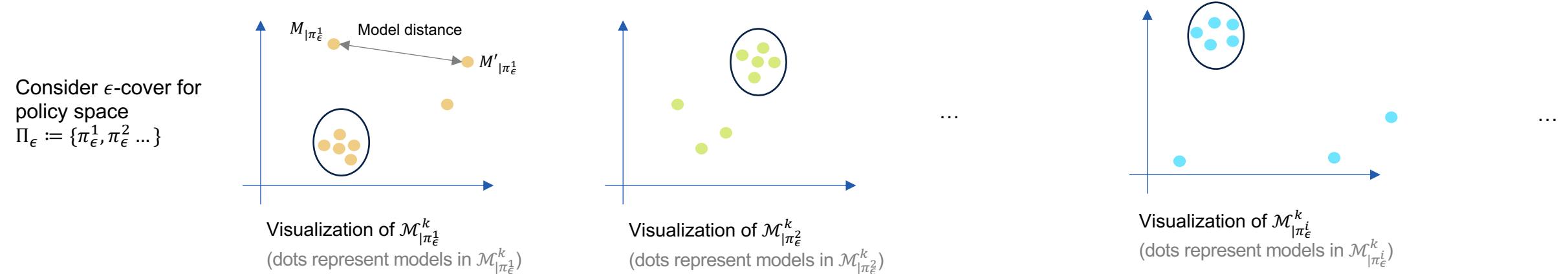
Algorithm Details

For $k = 1, 2, \dots, O(\log|\mathcal{M}|)$, (start with $\mathcal{M}^1 = \mathcal{M}$)

- Find a **desired policy** π^k
- Construct $\mathcal{M}_{|\pi^k}^k := \{M_{|\pi^k}, M \in \mathcal{M}^k\}$
 - $M_{|\pi^k}$ is the single-agent model with $\{r(\cdot, \cdot, \mu_{M,h}^{\pi^k}), \mathbb{P}_M(\cdot | \cdot, \cdot, \mu_{M,h}^{\pi^k})\}_{h \in [H]}$
- Collect samples and $\mathcal{M}^{k+1} \leftarrow \{M \in \mathcal{M}^k \mid M_{|\pi^k} \text{ agrees with } M_{|\pi^k}^*\}$

How to find the “desired policy” for fast learning?

- Case 2 (Concentrated): $\forall \pi \in \Pi_\epsilon$, there is a cluster with half of models



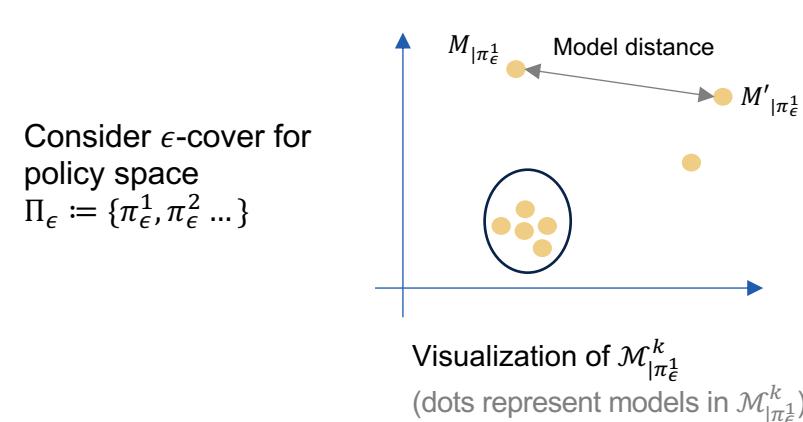
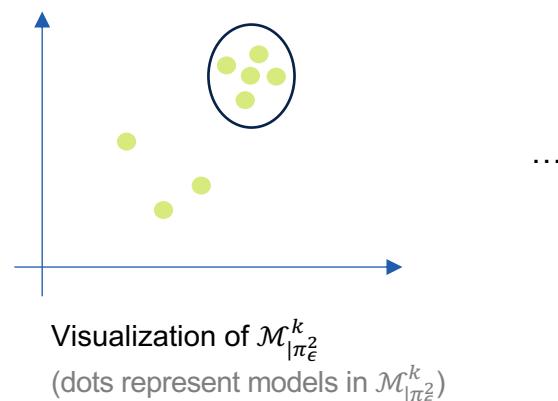
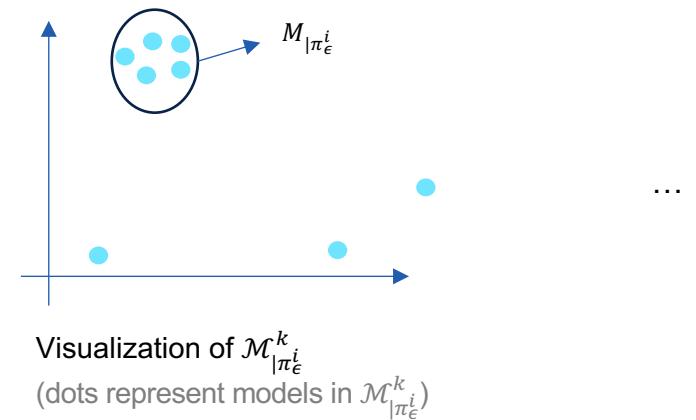
Algorithm Details

For $k = 1, 2, \dots, O(\log|\mathcal{M}|)$, (start with $\mathcal{M}^1 = \mathcal{M}$)

- Find a **desired policy** π^k
- Construct $\mathcal{M}_{|\pi^k}^k := \{M_{|\pi^k}, M \in \mathcal{M}^k\}$
 - $M_{|\pi^k}$ is the single-agent model with $\{r(\cdot, \cdot, \mu_{M,h}^{\pi^k}), \mathbb{P}_M(\cdot | \cdot, \cdot, \mu_{M,h}^{\pi^k})\}_{h \in [H]}$
- Collect samples and $\mathcal{M}^{k+1} \leftarrow \{M \in \mathcal{M}^k \mid M_{|\pi^k} \text{ agrees with } M_{|\pi^k}^*\}$

How to find the “desired policy” for fast learning?

- Case 2 (Concentrated): $\forall \pi \in \Pi_\epsilon$, there is a cluster with half of models
 - **Key Observation [Local Alignment Lemma]:** If $M_{|\pi} \approx M_{|\pi}^*$ and π is NE of M , then $\pi \approx \text{NE of } M^*$



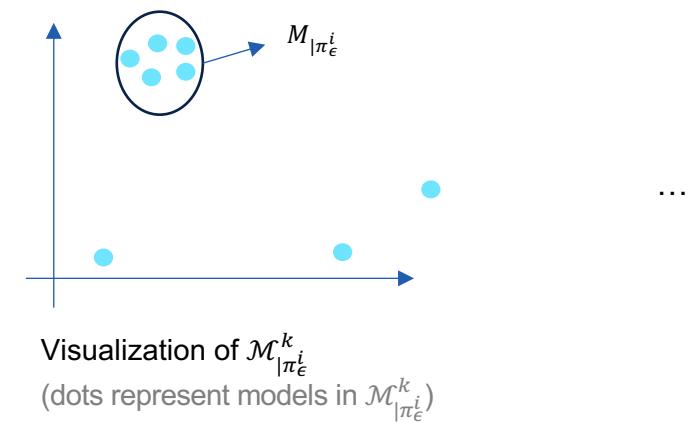
Algorithm Details

For $k = 1, 2, \dots, O(\log|\mathcal{M}|)$, (start with $\mathcal{M}^1 = \mathcal{M}$)

- Find a **desired policy** π^k
- Construct $\mathcal{M}_{|\pi^k}^k := \{M_{|\pi^k}, M \in \mathcal{M}^k\}$
 - $M_{|\pi^k}$ is the single-agent model with $\{r(\cdot, \cdot, \mu_{M,h}^{\pi^k}), \mathbb{P}_M(\cdot | \cdot, \cdot, \mu_{M,h}^{\pi^k})\}_{h \in [H]}$
- Collect samples and $\mathcal{M}^{k+1} \leftarrow \{M \in \mathcal{M}^k \mid M_{|\pi^k} \text{ agrees with } M_{|\pi^k}^*\}$

How to find the “desired policy” for fast learning?

- Case 2 (Concentrated): $\forall \pi \in \Pi_\epsilon$, there is a cluster with half of models
 - **Key Observation [Local Alignment Lemma]:** If $M_{|\pi} \approx M_{|\pi}^*$ and π is NE of M , then $\pi \approx \text{NE of } M^*$
 - Under Lipschitz continuity, by construction (Algorithm 3 in paper, omitted here), there exists a π_ϵ^i , such that $\pi_\epsilon^i \approx \text{NE of any } M_{|\pi_\epsilon^i} \in \dots$



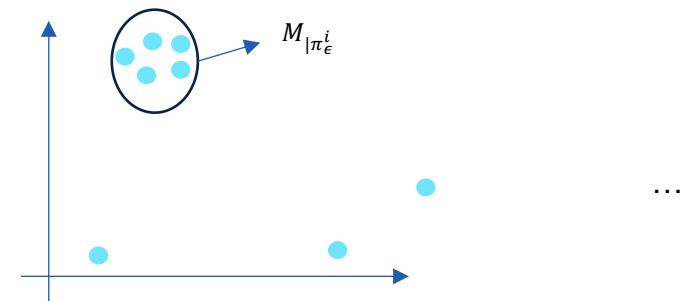
Algorithm Details

For $k = 1, 2, \dots, O(\log|\mathcal{M}|)$, (start with $\mathcal{M}^1 = \mathcal{M}$)

- Find a **desired policy** π^k
- Construct $\mathcal{M}_{|\pi^k}^k := \{M_{|\pi^k}, M \in \mathcal{M}^k\}$
 - $M_{|\pi^k}$ is the single-agent model with $\{r(\cdot, \cdot, \mu_{M,h}^{\pi^k}), \mathbb{P}_M(\cdot | \cdot, \cdot, \mu_{M,h}^{\pi^k})\}_{h \in [H]}$
- Collect samples and $\mathcal{M}^{k+1} \leftarrow \{M \in \mathcal{M}^k \mid M_{|\pi^k} \text{ agrees with } M_{|\pi^k}^*\}$

How to find the “desired policy” for fast learning?

- Case 2 (Concentrated): $\forall \pi \in \Pi_\epsilon$, there is a cluster with half of models
 - **Key Observation [Local Alignment Lemma]:** If $M_{|\pi} \approx M_{|\pi}^*$ and π is NE of M , then $\pi \approx \text{NE of } M^*$
 - Under Lipschitz continuity, by construction (Algorithm 3 in paper, omitted here), there exists a π_ϵ^i , such that $\pi_\epsilon^i \approx \text{NE of any } M_{|\pi_\epsilon^i} \in \text{circle}$
 - Set $\pi^k = \pi_\epsilon^i$
 - If $\text{circle} \in \mathcal{M}^{k+1}$, it implies:
 - $M_{|\pi_\epsilon^i}^* \in \text{circle}$ and $\pi_\epsilon^i \approx \text{NE of } M^*$
 - If $\text{circle} \notin \mathcal{M}^{k+1}$, it implies:
 - $M_{|\pi_\epsilon^i}^* \notin \text{circle}$ and $|\mathcal{M}^{k+1}| \leq \frac{|\mathcal{M}^k|}{2}$



Visualization of $\mathcal{M}_{|\pi_\epsilon^i}^k$
(dots represent models in $\mathcal{M}_{|\pi_\epsilon^i}^k$)

Algorithm Details

For $k = 1, 2, \dots, O(\log|\mathcal{M}|)$, (start with $\mathcal{M}^1 = \mathcal{M}$)

- Find a **desired policy** π^k
- Construct $\mathcal{M}_{|\pi^k}^k := \{M_{|\pi^k}, M \in \mathcal{M}^k\}$
 - $M_{|\pi^k}$ is the single-agent model with $\{r(\cdot, \cdot, \mu_{M,h}^{\pi^k}), \mathbb{P}_M(\cdot | \cdot, \cdot, \mu_{M,h}^{\pi^k})\}_{h \in [H]}$
- Collect samples and $\mathcal{M}^{k+1} \leftarrow \{M \in \mathcal{M}^k \mid M_{|\pi^k} \text{ agrees with } M_{|\pi^k}^*\}$

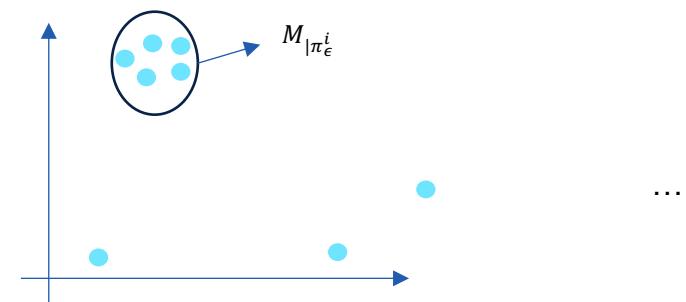
How to find the “desired policy” for fast learning?

- Case 2 (Concentrated): $\forall \pi \in \Pi_\epsilon$, there is a cluster with half of models
 - **Key Observation [Local Alignment Lemma]:** If $M_{|\pi} \approx M_{|\pi}^*$ and π is NE of M , then $\pi \approx \text{NE of } M^*$
 - Under Lipschitz continuity, by construction (Algorithm 3 in paper, omitted here), there exists a π_ϵ^i , such that $\pi_\epsilon^i \approx \text{NE of any } M_{|\pi_\epsilon^i} \in \dots$
 - Set $\pi^k = \pi_\epsilon^i$
 - If $\dots \in \mathcal{M}^{k+1}$, it implies:
 - $M_{|\pi_\epsilon^i}^* \in \dots$ and $\pi_\epsilon^i \approx \text{NE of } M^*$
 - If $\dots \notin \mathcal{M}^{k+1}$, it implies:
 - $M_{|\pi_\epsilon^i}^* \notin \dots$ and $|\mathcal{M}^{k+1}| \leq \frac{|\mathcal{M}^k|}{2}$

Combining with Case 1, for each k

- either $|\mathcal{M}^{k+1}| \leq \frac{|\mathcal{M}^k|}{2}$
- or $\pi^k \approx \pi^{\text{NE}}$

which concludes our main results



Visualization of $\mathcal{M}_{|\pi_\epsilon^i}^k$
(dots represent models in $\mathcal{M}_{|\pi_\epsilon^i}^k$)

Summary

Take Aways

- A new complexity measure: Partial Model Based Eluder Dimension
- A novel model elimination algorithm for Mean-Field Games setting

Under realizability and Lipschitz conditions

Model-Based RL for Mean-Field Games is not Statistically Harder than Single-Agent RL

Summary

Take Aways

- A new complexity measure: Partial Model Based Eluder Dimension
- A novel model elimination algorithm for Mean-Field Games setting

Under realizability and Lipschitz conditions

Model-Based RL for Mean-Field Games is not Statistically Harder than Single-Agent RL

Future Directions

- Decentralized learning?
- Computationally efficient solutions?

Thank you!