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Many Real-World Scenarios are Multi-Agent Systems
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𝑁 Agent

(Unknown)
Environment

For each agent 𝑛 = 1,… ,𝑁
• Actions 𝑎! ∼ 𝜋! ⋅ 𝑠!

For each agent 𝑛 = 1,… ,𝑁
• Rewards 𝑟! ∼ 𝑟!(𝑠", … , 𝑠# , 𝑎", … , 𝑎!), 
• Transition 𝑠!′ ∼ ℙ!(⋅ |𝑠! , … , 𝑠# , 𝑎", … , 𝑎!)
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Main Objective: Learn equilibrium policies 𝜋!, … , 𝜋", s.t. no agent can increase its return by deviation.

𝑁 Agent

(Unknown)
Environment

For each agent 𝑛 = 1,… ,𝑁
• Actions 𝑎! ∼ 𝜋! ⋅ 𝑠!

For each agent 𝑛 = 1,… ,𝑁
• Rewards 𝑟! ∼ 𝑟!(𝑠", … , 𝑠# , 𝑎", … , 𝑎!), 
• Transition 𝑠!′ ∼ ℙ!(⋅ |𝑠! , … , 𝑠# , 𝑎", … , 𝑎!)



Challenges for Large 𝑁
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Main Challenge: Curse of “Multi-Agency”

State space grows as exp(𝑁), and exploration over entire state space is intractable.
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• Transition 𝑠!′ ∼ ℙ!(⋅ |𝑠! , … , 𝑠# , 𝑎", … , 𝑎!)

Leveraging additional problem structures can be helpful!



N-Player Games with Homogeneous Agents

Special Structures: Symmetricity

• All the agents share the state/action space and dynamics

• transitions & rewards only affected through empirical state (action) distributions
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When 𝑁 is large, known as Mean-Field Games [Huang et al., 2006], [Lasry & Lions, 2007]
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When 𝑁 is large, known as Mean-Field Games [Huang et al., 2006], [Lasry & Lions, 2007]

Various applications in finance [Carmona, 2020], economics [Gomes et al., 2017], industrial engineering [Paola et al., 2019]

Our main focus!



Mean-Field Games

(Episodic) Mean-Field Games
• 𝑀 ≔ 𝜇!, 𝒮,𝒜, 𝐻, ℙ, 𝑟

• If all agents take the same 𝜋 ≔ {𝜋!, … , 𝜋"}

• For a representative agent, 
• start with 𝑠! ∼ 𝜇!

• for ℎ = 1,… , 𝐻:
• Take action 𝑎# ∼ 𝜋# ⋅ 𝑠#
• Observe next state 𝑠#$! ∼ ℙ# ⋅ 𝑠#, 𝑎#, 𝜇#% , and reward 𝑟# ∼ 𝑟(𝑠#, 𝑎#, 𝜇#%)
• Density evolves 𝜇#$!% ⋅ = ∑&$,($ 𝜇#

% 𝑠# 𝜋 𝑎# 𝑠# ℙ# ⋅ 𝑠#, 𝑎#, 𝜇#%

• No curse of multi-agency issue
• Only the density matters
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Mean-Field Games

(Episodic) Mean-Field Games
• Nash Equilibrium (NE)

• Given a policy 𝜋 and a possible deviation 3𝜋, define

𝐽# 3𝜋, 𝜋 ≔ 𝔼$%,# % [ 7
'∈ "

𝑟 𝑠' , 𝑎' , 𝜇'% ]

• NE is defined to be 𝜋#)*

∀𝜋, 𝐽# 𝜋#)*, 𝜋#)* ≥ 𝐽#(𝜋, 𝜋#)*)

• 𝜖- NE is defined to be ?𝜋#)*
∀𝜋, 𝐽# ?𝜋#)*, ?𝜋#)* ≥ 𝐽# 𝜋, ?𝜋#)* − 𝜖

07.07.24 6



Mean-Field Games

(Episodic) Mean-Field Games
• Nash Equilibrium (NE)

• Given a policy 𝜋 and a possible deviation 3𝜋, define

𝐽# 3𝜋, 𝜋 ≔ 𝔼$%,# % [ 7
'∈ "

𝑟 𝑠' , 𝑎' , 𝜇'% ]

• NE is defined to be 𝜋#)*

∀𝜋, 𝐽# 𝜋#)*, 𝜋#)* ≥ 𝐽#(𝜋, 𝜋#)*)

• 𝜖- NE is defined to be ?𝜋#)*
∀𝜋, 𝐽# ?𝜋#)*, ?𝜋#)* ≥ 𝐽# 𝜋, ?𝜋#)* − 𝜖

07.07.24 6

Short note of 𝔼 ⋅ ∀ℎ, 𝑎'∼ 3𝜋, 𝑠' ∼ ℙ ⋅ 𝑠' , 𝑎' , 𝜇'% , 𝑟' ∼ 𝑟(𝑠' , 𝑎' , 𝜇'%)]
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Key Question and Motivation

1. Usually, the learner does not have full knowledge about the Mean-Field model 𝑀
• Efficient exploration is needed

2. Real-world applications has rich observation and action spaces
• Function approximation (e.g. neural networks) is necessary

3. Understanding of sample efficiency of learning NE in MFGs is limited
• MFGs has special structure. Results in single-agent RL or Markov Games usually cannot be 

generalized here.
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Key Question:
What is the fundamental sample complexity of learn 𝜖-NE in MFGs 

with general function approximation?
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Basic Setting

• Model-Based Function Approximation
• A model class ℳ available, ℳ < +∞
• Only consider unknown transition in this paper

• Each 𝑀 ∈ ℳ associates the same known reward 𝑟 and different transition functions ℙ#
• Can be extended to unknown reward setting

• Assumptions
• Realizability: true unknown model 𝑀∗ ∈ ℳ
• Lipschitz in density: ∀𝑀 ∈ ℳ,∀ℎ ∈ 𝐻 , ∀ 𝜋, 𝜋′

• ||ℙ# ⋅ 𝑠' , 𝑎' , 𝜇#,'% − ℙ# ⋅ 𝑠' , 𝑎' , 𝜇#,'%! ||! ≤ 𝐿,||𝜇#,'% − 𝜇#,'%! ||!
• |𝑟(𝑠' , 𝑎' , 𝜇#,'% ) − 𝑟(𝑠' , 𝑎' , 𝜇#,'%- )| ≤ 𝐿.||𝜇#,'% − 𝜇#,'%- ||!
• NE may not exist if not Lipshictz

• Comparing with assumptions in MFGs literature:
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Contractivity 
[Guo et al. 2019]

Monotonicity 
[Perolat et al. 2021]

𝐿, , 𝐿. are small and others 𝐿, = 0 and others



Main Results
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Main Theorem (Informal)
Learning 𝜖-NE in MFG is as sample-efficient as solving log|ℳ| single-agent RL problems

Sample complexity = Poly(1 + 𝐿. , 1 + 𝐿/ ,
!
0
, 𝐻, log ℳ

2
, dimPE(ℳ), )

• Concrete Examples
• Tabular MFG: dimPE(ℳ) ≤ 𝑆𝐴

• Tabular MFG is sample-efficient in general
• Linear MFG: dimPE(ℳ) ≤ 𝑑

• ℙ 𝑠- 𝑠, 𝑎, 𝜇 = 𝜙 𝑠, 𝑎 3𝑈 𝜇 𝜓(𝑠′) with known 𝜙 𝑠, 𝑎 ∈ ℝ4
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For k = 1,2… , 𝑂(log ℳ ), (start with ℳ! = ℳ)
• Find a desired policy 𝜋)
• Construct ℳ|%%

) ≔ {𝑀|%%, 𝑀 ∈ ℳ)}

• 𝑀|%% is the single-agent model with 𝑟 ⋅,⋅, 𝜇+,#%% , ℙ+ ⋅ ⋅,⋅, 𝜇+,#%%

#∈[.]
• Collect samples and ℳ)$! ← 𝑀 ∈ ℳ) 𝑀|%% agrees with 𝑀|%%

∗ }
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#∈[.]
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• mode elimination in single-agent function class
• the only step require samples, origin of dependence on dimPE(ℳ)
• any single-agent model learning algorithm.
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How to find the “desired policy” for fast learning?
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Visualization of ℳ|"!"
#

(dots represent models in ℳ|"!"
# )

Model distance

𝑀′|$!"

𝑀|$!"

Consider 𝜖-cover for 
policy space 
Π! ≔ {𝜋!", 𝜋!#…}
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How to find the “desired policy” for fast learning?
• Case 1 (Non-Concentrated): Existence of 𝜋() , s.t. no model cluster contains half of models
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How to find the “desired policy” for fast learning?
• Case 2 (Concentrated): ∀𝜋 ∈ Π(, there is a cluster with half of models

• Key Observation [Local Alignment Lemma]: If 𝑀|/ ≈ 𝑀|/
∗ and 𝜋 is NE of 𝑀, then 𝜋 ≈ NE of 𝑀∗
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Combining with Case 1, for each 𝑘
• either ℳ*+" ≤ |ℳ

$

-
|

• or 𝜋* ≈ 𝜋12
which concludes our main results
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