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Abstract
Implicit neural representations have emerged as
a powerful paradigm to represent signals such as
images and sounds. This approach aims to uti-
lize neural networks to parameterize the implicit
function of the signal. However, when represent-
ing implicit functions, traditional neural networks
such as ReLU-based multilayer perceptrons face
challenges in accurately modeling high-frequency
components of signals. Recent research has be-
gun to explore the use of Fourier Neural Networks
(FNNs) to overcome this limitation. In this paper,
we propose Quantum Implicit Representation
Network (QIREN), a novel quantum generaliza-
tion of FNNs. Furthermore, through theoretical
analysis, we demonstrate that QIREN possesses a
quantum advantage over classical FNNs. Lastly,
we conducted experiments in signal representa-
tion, image superresolution, and image generation
tasks to show the superior performance of QIREN
compared to state-of-the-art (SOTA) models. Our
work not only incorporates quantum advantages
into implicit neural representations but also un-
covers a promising application direction for Quan-
tum Neural Networks. Our code is available at
https://github.com/GGorMM1/QIREN.

1. Introduction
Implicit neural representations (INRs) are a novel research
field where traditional discrete grid-sampled signal represen-
tations (e.g., images as discrete grids of pixels) are replaced
by continuous functions. These continuous functions are
typically implicitly defined, and INRs approximate them
with deep neural networks which take low-dimensional coor-
dinates as inputs and output numerical values, such as color,
amplitude, and density, at corresponding positions. INRs
are not coupled to spatial resolution, thus offering improved
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Figure 1. The different frequency components of a real image (top)
and the image fitted by a ReLU-based MLP (bottom).

memory efficiency and overcoming resolution limitations
(Dupont et al., 2021a). Most of early research on INRs is
built on ReLU-based multilayer perceptrons (MLPs) (Park
et al., 2019; Sitzmann et al., 2019; Jiang et al., 2020; Genova
et al., 2019). However, there exists a frequency principle
(Xu et al., 2019; Rahaman et al., 2019) that the spectrum
of ReLU-based MLPs rapidly decays with increasing fre-
quency, which leads to the limited capability of ReLU-based
MLPs in modeling high-frequency components of signals,
as illustrated in Figure 1.

On one hand, recent studies (Mildenhall et al., 2021; Sitz-
mann et al., 2020; Tancik et al., 2020) have discovered that
employing Fourier Neural Networks can partially address
this issue. Specifically, by mapping the input using trigono-
metric functions or replacing the ReLU activation function
with trigonometric functions, the capacity of the network to
represent high-frequency components of the signal can be
significantly enhanced. However, faced with increasingly
complex fitting tasks in real-world applications, the classical
Fourier Neural Network also requires a growing number of
training parameters, which increases the demand for com-
puting resources. It is crucial for the field of INRs and even
machine learning to explore new solutions that can reduce
these parameters and alleviate computational consumption.

On the other hand, quantum machine learning has recently
been given heavy prominence in accelerating computing
and saving parameters. Among them, Quantum Neural Net-
works (Farhi & Neven, 2018), also known as variational
circuits (McClean et al., 2016), or quantum circuit learning
(Mitarai et al., 2018), have demonstrated quantum advan-
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Figure 2. Classical Fourier Neural Networks vs. Quantum Fourier Neural Networks.

tages over classical methods in various domains, including
classification (Schuld et al., 2020), generative adversarial
learning (Dallaire-Demers & Killoran, 2018), and deep re-
inforcement learning (Lockwood & Si, 2020). However,
there is relatively little work demonstrating quantum advan-
tages in real-world tasks that outperform classical methods.
Identifying practical applications that reveal the benefits of
quantum machine learning has been a goal of this commu-
nity. Recent advances (Schuld et al., 2021; Yu et al., 2022)
have found that data re-uploading quantum circuits, which
involve uploading data repeatedly into quantum circuits,
can be equivalently represented as Fourier series in the data.
This inspires us to explore the application of Quantum Neu-
ral Networks with data re-uploading quantum circuits as
core components in the field of INRs. We hope to achieve
a more fine-grained representation of the signal with fewer
parameters, as well as to find suitable task scenarios for
quantum machine learning.

In this paper, we first demonstrate the exponential advan-
tage of the data re-uploading quantum circuit over classical
methods in representing Fourier series under optimal condi-
tions. By combining these quantum circuits with classical
layers, we have designed QIREN. Theoretically, QIREN
has a stronger ability to fit the Fourier series than classical
FNNs. This is reflected in the fact that QIREN can achieve
a more refined signal representation with fewer parameters.
Experimental results verify that QIREN indeed exhibits ex-
cellent performance, with a reduction in fitting error of up
to 35% and a smaller number of parameters, compared to
the SOTA model on the signal representation task. Addi-
tionally, it demonstrates improvements in performance for
both image superresolution and image generation tasks. We

exhibit the core ideas and main conclusions of this paper in
Figure 2.

In summary, the following novel contributions are made in
this paper:

• We propose QIREN, a novel quantum generalization
of FNNs and highlight implicit neural representations
as a field where the potential advantages of Quantum
Neural Networks can truly be harnessed.

• We analyze the role of quantum circuits and classical
layers in QIREN and demonstrate the quantum advan-
tages of QIREN over classical FNNs.

• Through image representation and sound representa-
tion tasks, we show that QIREN outperforms SOTA
models in signal representation, particularly in mod-
eling high-frequency signals. Moreover, we have ex-
plored the application prospect of QIREN in tasks such
as image superresolution and image generation.

The following sections are organized as follows. In Section
2, we review related work on implicit neural representa-
tions and data re-uploading quantum circuits. In Section 3,
we introduce classical implicit representation networks. In
Section 4, we propose quantum implicit representation net-
works and theoretically demonstrate the quantum advantage
over classical implicit representation networks. In Section
5, we conduct experiments and show that QIREN has per-
formance beyond the SOTA model in the field of INRs. We
finally present our conclusions and outlook for future work
in Section 6.
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2. Related Work
2.1. Implicit Neural Representations

The original concept of INRs was first introduced in Compo-
sitional Pattern Producing Network (Stanley, 2007), which
is a neuroevolution-based model that is trained to represent
2D images. Subsequently, INRs gained significant popular-
ity in the field of 3D computer vision due to its provision
of continuous, memory-efficient implicit representations for
shape parts (Genova et al., 2019; Zhong et al., 2019), ob-
jects (Park et al., 2019), or scenes (Sitzmann et al., 2019;
Jiang et al., 2020). However, early works mostly utilized
ReLU-based MLPs, which lacked accuracy in modeling
the high-frequency components of signals (Xu et al., 2019;
Rahaman et al., 2019; Tancik et al., 2020). Mildenhall et al.
(2021) significantly improved the capability of modeling
high-frequency details in ReLU-based MLPs by applying
Random Fourier Features (RFF) mapping to the inputs. Sitz-
mann et al. (2020) proposed Sinusoidal Representation Net-
work (SIREN), which effectively represents high-frequency
signals by using the sine activation function. The models
proposed in these two works are considered SOTA models
in the field of INRs and have inspired many subsequent
works (Woo et al., 2023; Huang et al., 2022; Skorokhodov
et al., 2021; Chan et al., 2021). Nevertheless, the capac-
ity of these classical SOTA models to represent signals is
constrained by their linear growth with model size. Our
proposed model achieves a stronger signal representation
capability, by leveraging the exponential advantage of the
data re-uploading quantum circuit over classical methods in
representing Fourier series.

2.2. Data Re-uploading Quantum Circuits

Pérez-Salinas et al. (2020) first introduced the concept of
data re-uploading quantum circuits and demonstrated their
capability in handling certain point set classification tasks.
Wach et al. (2023) further explored their classification per-
formance and conducted experiments on image classifica-
tion. The aforementioned studies have only experimented
on simple synthetic datasets and have not found a suitable
practical application scenario for data re-uploading quantum
circuits.

Some studies concentrate on investigating the mathematical
properties of data re-uploading quantum circuits. Schuld
et al. (2021) revealed the fundamental nature of data re-
uploading quantum circuits as Fourier series. Yu et al.
(2022) further investigated the universality of single-qubit
data re-uploading circuits. These works only explore the
multi-layer single-qubit circuits or single-layer multi-qubit
circuits, and they do not compare with classical methods to
demonstrate the advantages of data re-uploading quantum
circuits. We extended our research to multi-layer multi-
qubit quantum circuits. Furthermore, we demonstrated that

data re-uploading circuits exhibit exponential advantages of
fitting Fourier series over classical methods.

3. Classical Implicit Representation Network
Two SOTA models in the field of implicit neural represen-
tations, ReLU-based MLPs with Random Fourier Features
and Sinusoidal Representation Network, have been shown
to be FNNs by Benbarka et al. (2022). We review this in
this section and further demonstrate that the signal repre-
sentation capability of these classical FNNs grows linearly
with model size.

A perceptron with RFF has the following form:

g(x) = W ·
(

cos(2πM · x)
sin(2πM · x)

)
+ b, (1)

where W ∈ R1×2m is the parameter matrix, M ∈ Rm×din
is the random Fourier mapping matrix (m determines the
size of the matrix, serving as a measure of the model size),
x ∈ Rdin is the input and b ∈ R is the bias. Next, we will
relate Eq. (1) to the general equation of Fourier series.

A Fourier series is a weighted sum of sine and cosine func-
tions. When the number of terms approaches infinity, the
Fourier series can approximate any periodic function. Even
though the function g(x) may not be periodic, the inputs are
generally bounded. Therefore, we can assume that g(x) is
periodic outside the boundaries of its inputs and its Fourier
series takes the following form:

g(x) =
∑

n∈Zdin

cne2πi
n
T ·x, (2)

where cn denotes the coefficient, and T denotes the period
of g(x). For real-valued functions, it holds that cn = c∗−n.
Therefore Eq. (2) can be rewritten as

g(x) =
∑

n∈Zdin

an cos(2π
n

T
· x) + bn sin(2π

n

T
· x). (3)

If we write Eq. (3) in vector form, we get

g(x) = (aN, bN) ·
(

cos(2πN · x)
sin(2πN · x)

)
, (4)

where N = { n
T}n∈Zdin denotes frequency spectrum. Now,

when we compare Eq. (1) and (4), we find similarities. Ob-
viously, a perceptron with RFF constructs a Fourier series,
where W includes coefficients of g(x), and M includes
frequencies of g(x).

SIREN is a MLP that utilizes the sine activation function.
Considering SIREN with one hidden layer, we get

g(x) = W2 · sin(2πW1 · x + θ) + b, (5)
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Figure 3. Architecture of QIREN. (a) presents the overall architecture of QIREN. (b) and (c) respectively illustrate the implementation
details of the parameter layer and the encoding layer.

where W1 ∈ R2m×din and W2 ∈ R1×2m are the parame-
ter matrices and θ ∈ R2m is the bias vector. We can consider
a specific case when θ = (π/2, . . . , π/2, 0, . . . , 0)T . In this
case, the SIREN and the perceptron with RFF have nearly
identical forms, except that W2 is a trainable parameter
matrix and M is an untrained random matrix. In fact, any
situation can be transformed into this special case, as we
can always express Eq. (5) as

g(x) = W2 · sin(2πW1 · x + θ̂ +

(
π
2
0

)
) + b, (6)

where θ̂ = θ −
(

π
2
0

)
.

At this point, we can conclude that both ReLU-based MLP
with RFF and SIREN are FNNs as their fundamental blocks
approximate functions in the form of Fourier series. Their
performance is directly correlated with the size of the
Fourier series they can represent. Therefore, the signal
representation capacity of classical FNNs increases lin-
early with the model size m.

4. Quantum Implicit Representation Network
In Section 4.1 and 4.2, we introduce the architecture of
QIREN and its nature as a Fourier Neural Network. In Sec-
tion 4.3, we analyze the role of each component in QIREN.

4.1. Overall Architecture of QIREN

The overall architecture of QIREN is shown in Figure 3(a),
which consists of N hybrid layers and a Linear layer at the

end. The model takes coordinates as inputs and outputs
signal values. Correspondingly, the dataset D = {(xi,yi)}
is a set of tuples of coordinates xi ∈ Rdin along with signals
yi ∈ Rdout . Next, we provide a detailed description of the
model.

The data xi initially enters the hybrid layer, starting with a
Linear layer and a BatchNorm layer. We get

hi = BatchNorm(Wxi + b), (7)

where W and b are parameters of the Linear layer. Then hi
is input to the data re-uploading quantum circuit QC (Prelim-
inaries of the quantum circuit is presented in the Appendix
A). In Figure 3(b) and (c), we present the implementation
structures for the parameter layer W and encoding layer
S(hi) of the quantum circuit. The parameter layer consists
of K stacked blocks. Each block contains Rot gates applied
to each qubit and CNOT gates that connects qubits in a
cyclic manner. The encoding layer applies RZ gates on
each qubit. Finally, we measure the expectation value of the
quantum state with observables. The output of the quantum
circuit is given by

fi = [QC(hi, O1), . . . ,QC(hi, Odf )], (8)

where O denotes an arbitrary observable. The output f
(n)
i

of the n-th hybrid layer will be used as the input of the
(n+1)-th layer. At the end, we add a Linear layer to receive
f
(N)
i and output y′i. We use Mean Squared Error (MSE) as

the loss function to train the model:

MSE =
1

|D|
∑
i

(yi − y′i)
2
. (9)
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4.2. QIREN as a Quantum Generalization of FNNs

Schuld et al. (2021) derives that the data re-uploading cir-
cuit is essentially the Fourier series and analyzes it on
single-layer multi-qubit and multi-layer single-qubit circuits.
Based on this, we generalize the analysis to multi-layer
multi-qubit circuits and show that QIREN is essentially a
Fourier Neural Network.

Each component of Eq. (8) can be defined as f(h), given
by the multi-layer multi-qubit data re-uploading quantum
circuit, which is represented as follows:

f(h) =
〈
0
∣∣U†(h)OU(h)

∣∣ 0〉 , (10)

where

U(h) = W (L)S(h)W (L−1) . . .W (2)S(h)W (1). (11)

In the data re-uploading quantum circuit, each encoding
layer has the form S(h) := e−ih1H ⊗ . . .⊗ e−ihdh

H , where
H is a d-qubit Hamiltonian that depends on the actual quan-
tum gates used, and there always exists an eigenvalue de-
composition H = V †ΣV . Without loss of generality, we
can assume that all Hamiltonians are diagonal as V and V †

can be absorbed into adjacent parameter layers. With this
assumption, we note that the S(h) is diagonal and l-th S(h)
has the form:

[S(h)]
(j

(l)
1 ,...,j

(l)
dh

),(j
(l)
1 ,...,j

(l)
dh

)
= e
−i
(
λ
j
(l)
1

,...,λ
j
(l)
dh

)
·h
,

(12)
where λ is the eigenvalue of H . We can rewrite Eq. (12)
by introducing the multi-index j(l) =

{
j
(l)
1 , . . . , j

(l)
dh

}
∈

{1, . . . , 2d}dh as follows:

[S(h)]j(l),j(l) = e
−iλ

j(l)
·h
, (13)

where λj(l) =

(
λ
j
(l)
1
, . . . , λ

j
(l)
dh

)
. In this way, we can de-

rive the mathematical expression of the quantum state |ψ〉:

|ψ〉i = [U(h)|0〉]i =
∑

j(1)...j(L−1)

e
−i
(
λ

j(1)
+···+λ

j(L−1)

)
·h

×W (L)

ij(L−1) . . .W
(2)

j(2)j(1)
W

(1)

j(1)1
,

(14)
where the subscript of W indicates the row and column. We
introduce another multi-index J =

{
j(1), . . . , j(L−1)

}
∈

{1, . . . , 2d}dh×(L−1) to simplify Eq. (14) as follows:

|ψ〉i =
∑
J

e−iΛJ·hW
(L)

ij(L−1) . . .W
(2)

j(2)j(1)
W

(1)

j(1)1
, (15)

where ΛJ = λj(1) + · · · + λj(L−1) . Next, according to
Eq. (10), we calculate the expectation value of |ψ〉 and its

conjugate transpose 〈ψ| with respect to O, and get

f(h) = 〈ψ|O|ψ〉 =
∑
K,J

ei(ΛK−ΛJ)·h
∑
i,i′
W †

(1)

k(1)1

W †
(2)

k(2)k(1) . . .W †
(L)

ik(L−1)Oi,i′W
(L)

i′j(L−1) . . .W
(2)

j(2)j(1)
W

(1)

j(1)1
.

(16)
We are currently not concerned with the specific form of
the observable O and the parameter layers. So we substitute
aK,J for the second summation term in Eq. (16), resulting
in a more intuitive form:

f(h) =
∑
K,J

aK,Jei(ΛK−ΛJ)·h, (17)

where aK,J denotes the coefficient, ΛK −ΛJ denotes the
frequency and {ΛK −ΛJ}K,J denotes the frequency spec-
trum. Eq. (17) is now evidently equivalent to the Fourier
series. Utilizing this quantum circuit enables QIREN to ap-
proximate functions in the form of the Fourier series. Thus,
we have demonstrated that QIREN is a quantum generaliza-
tion of FNNs.

4.3. Theoretical Analysis of QIREN

In this subsection, we analyze the roles of each component
in QIREN and demonstrate the quantum advantages of
QIREN over classical FNNs. We summarize them into
three claims.

Claim 1 The capability of the data re-uploading quantum
circuit to represent Fourier series grows exponentially with
the size of the circuit under optimal conditions.

We consider a specific quantum circuit with d× dh qubits,
where the data is repeatedly uploaded L times, and H =∑d

q=1 Z
(q)/2 (Z(q) denotes Pauli Z acting on the q-th

qubit). Regarding H , it has 2d eigenvalues with the d + 1
unique entries:

P = {p− d

2
, | p ∈ {0, . . . , d}}. (18)

In this case, the frequency spectrum of f(h) can be repre-
sented as

{ΛK−ΛJ}K,J
=
{
λk(1) + · · ·+ λk(L) − (λj(1) + · · ·+ λj(L))

}
=
{(
λ
k
(1)
1

+ · · ·+ λ
k
(L)
1

)
−
(
λ
j
(1)
1

+ · · ·+ λ
j
(L)
1

)
|

λ
k
(1)
1
, . . . , λ

k
(L)
1
, λ
j
(1)
1
, . . . , λ

j
(L)
1
∈ P

}dh
= {−dL, . . . , dL}dh .

(19)
It can be seen that the spectrum grows exponentially with
dh. With the help of the Linear layer, the spectrum can
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Method Sound Representation Image Representation Image Superresolution
Cello #params #mem(%) Astronaut Camera Coffee #params #mem(%) Astronaut Camera Coffee

Nearest - - - - - - - - 26.6 10.4 13.6
Bilinear - - - - - - - - 25.2 9.2 12.2
ReLU 6.8 831 16.9 9.9 2.7 4.2 841 17.9 33.8 11.3 13.5
Tanh 14.0 831 16.9 20.7 5.8 14.8 841 17.9 47.8 15.2 26.7

ReLU+RFF? 6.0 791 20.9 5.1 1.9 4.9 791 22.8 39.9 13.3 23.9
SIREN? 5.5 691 30.9 9.0 1.5 2.3 701 31.5 77.0 26.3 15.7

QIREN (ours) 5.5 649 35.1 4.0 1.1 1.5 657 35.8 24.3 7.9 9.4

Table 1. MSE (×10−3) of different models on signal representation and image superresolution tasks. The best results are highlighted in
bold. The models widely regarded as SOTA are marked with ?. #params denote the number of model parameters, and #mem denotes
the memory saved by the model compared to the discrete grid-sampled representation.

grow exponentially with the size of the circuit d × dh
at most, as will be explained in Claim 2. However, one
unsatisfactory point is that we cannot guarantee that the
coefficients aK,J are arbitrary because this would require
us to have the ability to construct arbitrary unitary matrices
to some extent. According to the Solovay-Kitaev theorem
(Nielsen & Chuang, 2010) which follows that any arbitrary
unitary matrix on n qubits can be approximated within an
error ε using O

(
n24n logc

(
n24n/ε

))
two-qubit gates (c is

a constant), constructing arbitrary unitary matrices would
consume exponential resources.

Fortunately, the coefficients of most functions we need to fit
in practice are not arbitrary but rather follow certain prior
distributions (e.g., the amplitudes of high-frequency compo-
nents are often small in natural signals). This can draw an
analogy to quantum many-body physics, where the majority
of natural systems have Hamiltonians that can be expressed
as a sum of local Hamiltonians (Gao et al., 2022). Theorem
1 (Poulin et al., 2011) states that approximating the evolu-
tion process of such a system only requires a polynomial
number of parameters.

Theorem 1 The time evolution operator corresponding to
a Hamiltonian composed of L k-body terms, with a total
evolution time of T , can be simulated by a quantum circuit
of polynomial size. The total number of standard universal
2-qubit quantum gates needed to approximate the complete
time evolution with an error ε is upper bounded by

Gtot = dSK
c2maxT

2L3

ε
logcSK(

c2maxT
2L3

ε2
) (20)

where cSK and dSK are constants, cmax is the maximum
norm of the k-body terms in the Hamiltonian.

Hence, we can assume that the Hamiltonian corresponding
to the function we aim to fit can also be decomposed into a
sum of local Hamiltonians. When the ansatz of the parame-
ter layer is well-adapted to approximate this Hamiltonian,
a polynomial number of parameters in the parameter layer
is sufficient to effectively fit the function. At this point, we
can conclude Claim 1. Furthermore, utilizing this quantum

circuit can empower QIREN with quantum advantages over
classical FNNs.

Claim 2 The role of the Linear layer is to further expand
the spectrum and adjust the frequency, leading to improved
fitting performance.

By observing Eq. (13), we can understand that applying
a Linear layer before uploading the data to the quantum
circuit is equivalent to adjusting the eigenvalues in the
Hamiltonian, ultimately affecting the frequency spectrum.
Using the Linear layer brings two advantages. First, it can
make the frequency spectrum larger. From Eq. (18) and
(19), it can be deduced that certain sums of eigenvalues
generate the same term in the spectrum. This redundancy
can be reduced by using the Linear layer, and the size of
the spectrum can be extended from (2dL + 1)dh to up
to ((3d − 1)L + 1)dh . Second, it enables the coverage
range of the frequency spectrum to be adjustable, aiming
to cover frequencies with larger coefficients, which are
more important. Therefore, incorporating Linear layers can
further enhance the fitting performance of QIREN. A more
detailed explanation of Claim 2 can be found in Appendix
B.

Claim 3 The role of the Batchnorm layer is to accelerate
the convergence of our quantum model.

In feedforward neural networks, the data often passes
through a BatchNorm layer before the activation function,
which effectively prevents the vanishing gradient problem
(Ioffe & Szegedy, 2015). Similarly, in QIREN, the quan-
tum circuits replace activation functions and play a role in
providing non-linearity (The quantum circuit itself is linear,
but the process of uploading classical data to the quantum
circuit is non-linear). Therefore, we add the BatchNorm
layer here, with the aim of stabilizing and accelerating the
convergence of the model. We have further validated its
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Figure 4. Results of sound representation. The Y-axis represents the normalized amplitude of the sound wave. The X-axis represents the
time.

Figure 5. Results of image representation.

effectiveness through ablation experiments in Appendix E.

5. Experiments
In Section 5.1, we validate the superior performance of
QIREN in representing signals, especially high-frequency
signals, through image representation and sound represen-
tation tasks. In Section 5.2 and 5.3, we show the expanded
applications of QIREN in tasks such as image superreso-
lution and image generation. To ensure a fair comparison,
we adjust the hyperparameters to approximately match the
number of parameters between the QIREN and the baseline
models. In each experiment, each model is trained five times,
and the best performance is selected as the comparison re-
sult. Further details regarding the model implementation
can be found in Appendix C. All our experiments are con-
ducted on a simulation platform, utilizing the Pennylane
(Bergholm et al., 2018) and TorchQauntum (Wang et al.,
2022).

5.1. Signal Representation

Task definition. The goal is to use neural networks to
represent signals. Specifically, we aim to train a model that

takes one-dimensional or two-dimensional coordinates as
input and outputs the corresponding amplitude or grayscale
value at that position.

Datasets and Evaluation. In the sound representation task,
we take a small section of one movement from Bach’s Cello
Suites, sample 1000 points at equal intervals, and normalize
the amplitudes. We set the corresponding timestamps to be
evenly spaced within [−1, 1]. In the image representation
task, we utilize three popular images: Astronaut, Camera,
and Coffee (Van der Walt et al., 2014). These images are
cropped and down-sampled to dimensions of 32×32 pixels,
resulting in three datasets, each consisting of 1024 pixels.
We select the following models as our baselines: ReLU-
based MLP, Tanh-based MLP, ReLU-based MLP with RFF
(Mildenhall et al., 2021) and SIREN (Sitzmann et al., 2020).
MSE is used as a metric to evaluate the difference between
the images or sound fitted by the model and the ground
truth.

Results. The experimental results are presented in Figure
4, Figure 5 and Table 1. QIREN and SIREN exhibit similar
performance on the sound representation task. Although
the performance of these two models seems comparable,

7



Quantum Implicit Neural Representations

Figure 6. The frequency spectrum of the output of models on the
sound representation task.

it is worth emphasizing that our model achieves a signifi-
cant memory saving of 35.1% with the minimum number of
parameters and the convergence of SIREN requires proper
setting of hyperparameters, whereas our model does not
encounter such limitations. Then we explored the output
of models from a frequency perspective. We visualize the
frequency spectrum of the output of models in Figure 6.
It is evident that the low-frequency distribution of the out-
puts from different models all resembles the ground truth.
However, when it comes to the high-frequency distribution,
QIREN and SIREN exhibit superior performance, followed
by the ReLU-based MLP with RFF. ReLU-based and Tanh-
based MLPs even lack the high-frequency parts.

QIREN achieved optimal performance with the fewest pa-
rameters on the image representation task, resulting in a
maximum reduction of 34.8% in error compared to the
SOTA model. To further explore the signal representation
capabilities of the models, we used filters to separate the
high-frequency and low-frequency components of their out-
puts and compared the fitting errors of these two compo-
nents individually. The results are presented in the Figure
7. QIREN consistently achieved the lowest error in fitting
both high-frequency and low-frequency components.

5.2. Image Superresolution

Task definition. The goal is to increase the resolution of
an image while maintaining its content and details as much
as possible. In this task, we partition the coordinates into
a grid of size 64× 64 and use them as input for the model
trained on 32× 32 pixel images to reconstruct 64× 64 pixel
images.

Datasets and Evaluation. This task directly utilizes the
models trained on image representation tasks. The images

Figure 7. The relative error of each model compared to the Tanh-
based MLP. The shaded area represents the low-frequency error,
while the non-shaded area represents the high-frequency error.

Astronaut, Camera, and Coffee are down-sampled to cre-
ate 64× 64 pixel images, which serve as the ground truth
for evaluation. For a more comprehensive comparison, in
addition to the baseline models used in the signal repre-
sentation task, we also include bilinear interpolation and
nearest-neighbor interpolation. The evaluation metric re-
mains MSE.

Results. The experimental results are presented in Figure
8 and Table 1. As observed in Table 1, the performance of
classical Implicit Representation Networks failed to surpass
that of interpolation methods, possibly due to the limited
number of parameters in the network. However, even in such
circumstances, QIREN outperforms interpolation methods
by achieving a maximum error reduction of 24.0%. This
stems from the superior signal representation capability of
QIREN, as compared to other models, the parameterized
implicit function of QIREN exhibits a distribution that is
more similar to the target function.

5.3. Image Generation

Task definition. The goal of this task is to generate facial
images that are indistinguishable from real images with the
INR-based generator. Recent advancements (Skorokhodov
et al., 2021; Shaham et al., 2021; Anokhin et al., 2021;
Dupont et al., 2021b; Chan et al., 2021) have introduced
a groundbreaking framework and extended INRs to image
generation. More specifically, this framework utilizes a
hypernetwork (Ha et al., 2016) that takes random distribu-
tions as input to generate the parameters of the Implicit
Representation Network. Subsequently, these generated
parameters are assigned to the Implicit Representation Net-
work. Finally, the Implicit Representation Network takes
coordinate-based inputs and generates images as output. An
adversarial approach (Goodfellow et al., 2020) is employed
to ensure the generated images align with our desired out-
comes. In this task, we adopt such a framework and build
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Figure 8. Results of image superresolution.

upon the foundation of StyleGAN2 (Karras et al., 2020).

Datasets and Evaluation. FFHQ is a high-resolution
dataset of 70k human faces (Karras et al., 2019) and CelebA-
HQ is a high-quality version of CelebA that consists of 30k
images (Karras et al., 2017). We downsample the images
in these two datasets to obtain 32 × 32 pixel images for
experimentation. In this task, we utilize the same baseline
models as those used in the signal representation task. We
evaluate the model using Frechet Inception Distance (FID)
(Heusel et al., 2017) metric using 50k images to compute
the statistics.

Results. The experimental results are presented in Table
2. We observed that the ReLU-based MLP is completely
inadequate for image generation tasks, whereas RFF can
significantly enhance its performance. Tanh-based MLP
and SIREN show similar performance. Compared to these
classical implicit representation networks, QIREN achieves
superior performance with the fewest number of parame-
ters. In Appendix D, we will show the images generated by
QIREN and further explore its exciting properties, such as
out-of-the-box superresolution and meaningful image-space
interpolation.

Method FFHQ CelebA-HQ #params

Tanh 26.98 25.17 1.16M
ReLU 84.94 110.81 1.16M

ReLU+RFF? 15.01 13.91 1.14M
SIREN? 22.31 20.97 1.16M

QIREN (ours) 11.53 11.78 1.13M

Table 2. FID scores of different models on FFHQ and CelebA-HQ
datasets.

6. Conclusion and Future Work
In this paper, we first derive that QIREN is a quantum gener-
alization of FNNs. Subsequently, we perform a theoretical

analysis of the data re-uploading quantum circuits, Linear
layers, and BatchNorm layers, demonstrating the ability
of QIREN to represent the Fourier series is exponentially
stronger over classical FNNs. Lastly, we conduct experi-
ments on signal representation, image superresolution, and
image generation. The results demonstrate that QIREN
significantly outperforms SOTA models.

It is worth emphasizing that INRs have many other potential
applications such as representing scenes or 3D objects, time
series forecasting, and solving the differential equation. For
a large class of tasks that model continuous signals, we can
consider introducing INRs as the basic component. Based
on the theoretical and experimental foundations in this pa-
per, we can extend QIREN to these applications in future
work and QIREN is anticipated to yield superior results
with fewer parameters in these domains. Simultaneously,
we have found a suitable application scenario for quantum
machine learning. This will stimulate further practical and
innovative research within the quantum machine learning
community.
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A. Preliminaries of Quantum Circuit
In quantum computing, information is often carried by qubits over Hilbert space. A pure quantum state consists of one
or more qubits and is usually represented by Dirac’s notation, which denotes a unit vector v as a ket |v〉 and its conjugate
transpose v† as a bra 〈v|. The inner product between |v〉 and |u〉 is denoted as 〈u|v〉, and the outer product is |u〉〈v|. The
evolution of a quantum state |v〉 is accomplished by sequentially applying quantum gates on it, i.e. |v′〉 = UK ...U2U1|v〉,
where Uk is the unitary matrix representing the quantum gate and |v′〉 is the quantum state after evolution. Common
single-qubit gates are as follows:

H :=
1√
2

[
1 1
1 −1

]
, I :=

[
1 0
0 1

]
,

X :=

[
0 1
1 0

]
, RX(θ) :=

[
cos θ2 −i sin θ

2

−i sin θ
2 cos θ2

]
,

Y :=

[
0 −i
i 0

]
, RY (θ) :=

[
cos θ2 − sin θ

2

sin θ
2 cos θ2

]
,

Z :=

[
1 0
0 −1

]
, RZ(θ) :=

[
1 0
0 eiθ

]
,

(A1)

where H denotes the Hadamard gate, X,Y, Z denote the Pauli gates, RX(θ), RY (θ), RZ(θ) denote the rotation gates. A
common multi-qubit gate is CNOT gate:

CNOT :=


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 . (A2)

In a quantum circuit, the initial quantum state is generally |0〉⊗N , and after applying a sequence of quantum gates, the
measurement will be used to convert quantum information into classical information. For instance, we can design quantum
measurements to obtain the expectation 〈v|O|v〉 of the quantum state |v〉 about an observable O.

B. Additional Explanation on Claim 2
Firstly, we introduce an exponential encoding scheme (Shin et al., 2023), where the specific form of H is as follows:

H =

d∑
q=1

βqZ
(q)/2. (A3)

In the absence of degeneracy, there can be 2d distinct eigenvalues. Thus, the spectrum can contain at most 4d − 2d + 1
distinct frequencies (including zero). But if we naively encode all βq = 1, then there will be only d+ 1 distinct eigenvalues
and the size of the spectrum Ω = {λk − λj} will be limited to 2d+ 1 . Therefore, we will now derive how to choose the
appropriate β values to maximize the size of the spectrum.

With H = β1Z/2 and upon setting β1 = 1, we have Ω(1) = {−1, 0, 1} as the frequency spectrum. If we append one more
encoding gate to H ,we have Ω(2) = {−β2 − 1,−β2,−β2 + 1,−1, 0, 1, β2 − 1, β2, β2 + 1}. More generally, let Ω(k) as
the k-th frequency spectrum as a result of using k encoding gates. Then Ω(k) has all elements from Ω(k−1), along with the
new ones generated by adding ±βk to all elements of Ω(k−1):

Ω(k) =
{

Ω(k−1) − βk,Ω(k−1),Ω(k−1) + βk

}
. (A4)

As Ω(k) is always symmetric about zero, to generate a maximally non-degenerate integer-valued frequency spectrum, the
inequality

max
{
α ∈ Ω(k−1)

}
< βk −max

{
α ∈ Ω(k−1)

}
(A5)
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is to be satisfied, where we can easily deduce that max
{
α ∈ Ω(k−1)} =

∑k−1
j=1 βj . To construct a dense integer-valued

spectrum starting from zero, the following recursive equation

2

k−1∑
j=1

βj + 1 = βk (A6)

must be satisfied. When β1 = 1, we have βk = 3k−1, which is the exponential encoding scheme. We can also construct a
non-dense spectrum by choosing large spacings. By applying this scheme, the size of the spectrum is extended from 2d+ 1
to 3d.

Next, we analyze the Linear layer before data re-uploading circuit. If we ignore the bias term, the Linear layer essentially
maps the input x to (w1x, . . . , wdx). Considering the form of the encoding gate as S(x) = ⊗dq=1e−i(wqx)Z/2 = e−ix(wqZ/2),
it can be concluded that the Linear layer can be equivalent to an encoding scheme. This encoding scheme is learned through
training, and the upper bound is to extend the size of the spectrum to 3d just as the exponential encoding scheme does. In
addition, the Linear layer encoding scheme has the advantage of not being restricted to integer spectrum and the sparsity of
the spectrum is adaptive, which makes QIREN more flexible in fitting frequencies. The analyses we have discussed so far
have been based on a single variable, but they can be naturally extended to multiple variables, which will not be further
elaborated here.

C. Additional Implementation Details
C.1. Signal Representation

We use MSE as the loss function and use Adam optimizers with the parameters β1 = 0.9, β2 = 0.999 and ε = 1e− 8. The
models are trained for 600 epochs for Astronaut, 300 epochs for Camera, Coffee or sound.

ReLU-based MLP includes one input linear layer, one output linear layer, and six hidden linear layers with a hidden
dimension of 10. Except for the output layer, the output of each linear layer will pass through a BatchNorm layer and then
the activation function.

Tanh-based MLP is set up the same way as the ReLU-based MLP.

ReLU-based MLP with Random Fourier Features is set up the same way as the ReLU-based MLP, except that the input
layer is replaced with an RFF layer which consists of a non-trainable random parameter matrix followed by sine and cosine
activation functions.

SIREN is set up the same way as the ReLU-based MLP, but instead of using BatchNorm layers, it employs a special
initialization method and hyperparameter tuning to regulate the data distribution.

QIREN includes three Hybrid layers and one output linear layer. Each Hybrid Layer consists of a linear layer with a hidden
dimension of 8, a BatchNorm layer and a quantum circuit with 8 qubits.

C.2. Image Generation

We build upon the StyleGAN2 framework (Karras et al., 2020), replacing a convolutional generator with our INR-based
one as illustrated in Figure A1. For several classical INR-based generators, we directly generated all their parameters
using a hypernetwork. However, for QIREN, based on our experiments, we found that the hypernetwork is unable to
comprehend the quantum components, leading to poor performance when directly generating parameters. Therefore, we
added a ReLU-based MLP after QIREN, and the hypernetwork only generates parameters for this ReLU-based MLP. In this
setup, QIREN plays a role similar to that of RFF. All generators include a hypernetwork with eight hidden layers with a
hidden dimension of 256. We use non-saturating logistic loss for training:

LossG = 1
m

∑m
i=1− log

(
D
(
G
(
z(i)
)))

,
LossD = 1

m

∑m
i=1 [logD (xi) + log (1−D (G (zi)))] ,

(A7)

and use Adam optimizers with the parameters β1 = 0.0, β2 = 0.98 and ε = 1e− 8. All models are trained for 6048 kimg.
Additionally, we utilize a trick named factorized multiplicative modulation layer, which was proposed in previous works
(Skorokhodov et al., 2021), to alleviate the parameter burden of the hypernetworks. For more specific details about the
architecture of the INR-based generators, please refer to the code.
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Figure A1. QIREN-based generator.

Figure A2. Results of image generation.

D. Results on Image Generation
In Figure A2, we present the 32× 32 pixel images generated by the QIREN-based generator. Next, we will demonstrate
two exciting properties that set the QIREN-based generator apart from traditional convolutional generators: out-of-the-box
superresolution and meaningful image-space interpolation.

Our QIREN-based generator is able to produce images of higher resolution than it was trained on. For this, we evaluate our
model on a denser coordinates grid. Specifically, we input coordinate grids of size 64× 64 and 128× 128 separately into
the QIREN-based generator, and the results are shown in Figure A3.

As is well known, image-space interpolation often exhibits poor performance. However, in Figure A4, we demonstrate that
the images generated by the QIREN-based Generator can be interpolated reasonably.
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Figure A3. Superresolution of generated images.

Figure A4. The intermediate image is the result of interpolating between two images on the left and right. To interpolate between G(θ1)
and G(θ2) , we compute interpolation parameters θ = αθ1 + (1 − α)θ2 and evaluate G(θ) for the provided coordinates grid. The
interpolated images can also achieve superresolution.

E. Ablation Analysis
E.1. Signal Representation

We conducted four ablation experiments on the sound representation task and presented the results in Figure A5. First, we
ablate the importance of the BatchNorm layer. The loss function value of QIREN with BatchNorm consistently remained
lower than the one without BatchNorm. This finding demonstrates that the role of the activation function has been taken
over by the quantum circuit. As a result, the BatchNorm layer, which is typically placed before the activation function in
classical models to deal with vanishing gradient problems, can also be applied to our quantum model to effectively promote
fast convergence.

Next, we investigated the influence of the number of data re-uploading L, also known as circuit depth, on the representation

Figure A5. Loss functions of ablation experiments on the sound representation task.
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Figure A6. Circuit diagrams for the two ansatz.

capacity. In the original version of QIREN, L was set to 3. It can be observed that within our experimental range, as L
increased, the representation capability of QIREN was strengthened.

Considering the real-world scenario of running on a quantum computer, we investigated the impact of noise on QIREN.
We introduced noise by applying an RX(θ) on each qubit before the measurement, where θ ∼ U(0, noise) and noise =
0.05, 0.10, 0.15. It can be observed that noise does impact the performance of QIREN, but even with the presence of noise,
QIREN demonstrates remarkable signal representation capability comparable to SIREN and ReLU-based MLP with RFF.

Finally, we investigated the impact of the quantum circuit ansatz on performance. In the vanilla QIREN, we used CNOT
gates to provide quantum entanglement. We attempted to replace them with CZ gates, and both ansatz showed similar
performance. The circuit diagrams for both ansatz are shown in Figure A6.

We performed an ablation analysis of the Linear layer on the image representation task, and as can be seen in Table A1, the
model fits the image poorly after removing the Linear layer. This is because the Linear layer serves to extend and adjust the
spectrum, allowing QIREN to capture most of the important frequency bands of the signal with a small amount of quantum
resources, as analyzed in Claim 2 and Appendix B. However, a limitation of this ablation analysis is that after removing the
Linear layer, QIREN converts to a pure quantum circuit. The current limitations of hardware devices restrict us to training
only a lightweight quantum circuit, with the number of parameters involved not being on the same order of magnitude as
in QIREN. This is also the reason why we adopted a hybrid quantum neural network: to obtain quantum advantages in
real-world tasks with limited quantum resources. Pure quantum circuits are often limited to simple synthetic tasks.

Method Astronaut Camera Coffee #params

Prue quantum circuit 71.1 51.9 73.2 72
QIREN 4.0 1.1 1.5 657

Table A1. MSE (×10−3) of different models on the image representation task.

E.2. Image Generation

We conducted ablation experiments on the FFHQ dataset, and the results are presented in Table A2. First, we employed
the factorized multiplicative modulation technique (Skorokhodov et al., 2021), which significantly reduced the number of
model parameters while ensuring high-quality generated images. Next, we expanded the encoding dimension from 8 to 32
by increasing the number of quantum circuits. This expansion resulted in a substantial improvement in generation quality.
We also experimented with increasing the number of data re-uploading and found that it enhanced the performance of the
model. Finally, we tested the performance of the mainstream generator model, StyleGAN2 (Karras et al., 2020). In order to
make a fair comparison, we adjusted the hyperparameters of StyleGAN2 to ensure that the total number of parameters in
both models was approximately the same. While StyleGAN2 outperforms our QIREN-based generator in terms of image
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generation quality, it is important to note that superior image generation performance is not the primary advantage of the
INR-based generator model. As shown in several studies (Skorokhodov et al., 2021; Dupont et al., 2021b) and Appendix D,
their strength lies in unique properties that mainstream generator models do not possess.

Method FID #params

QIREN 11.77 1.45M
+ Factorized Multiplicative Modulation 11.53 1.13M
+ Encoding Dimension 7.67 1.19M
+ Number of Data Re-uploading 6.88 1.19M

StyleGAN2 5.14 1.38M

Table A2. Results of ablation experiments on the FFHQ dataset.
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