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ALMA Overview
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What is ALMA (Advanced Language Model-Based TranslAtors) ?
The first open-source LLM-based translation models which can beat GPT4



Better Instruction Tuning?

Fine-tune LLM on the translation task?
Reconsider the SFT objective, which is mimicking the gold reference. The 
performance can be capped by the quality of gold reference.
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Beyond Gold References

Even human-written translations may not be perfect.
We compare the quality between the gold references and translation outputs 
from ALMA-13B and GPT-4.
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Beyond Gold References

Gold or Gilded? Scrutinizing Gold Reference Quality
A big proportion of system-generated translations are better than references.
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XCOMET: Unbabel/XCOMET-XXL
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Beyond Gold References

Motivation: Help The Model Learn Rejection
What is the best way to utilized these high-quality system-generated data? We 
believe the model need to learn how to reject “good but not perfect” translation.
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We use avg. score 
of KIWI-XXL and 
XCOMET-XXL



Contrastive Preference Optimization

Building Preference Learning for MT. A popular way is to use DPO[1] ,a direct 
optimization in RLHF:

7[1] Direct Preference Optimization: Your Language Model is Secretly a Reward Model
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Contrastive Preference Optimization

Building Preference Learning for MT. A popular way is to use DPO[1] ,a direct 
optimization in RLHF:
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Remove reference policy to 
approximate the optimization?

[1] Direct Preference Optimization: Your Language Model is Secretly a Reward Model
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Contrastive Preference Optimization

The answer is Yes! But why? 

We only need to prove that ℒ 𝜋𝜃; 𝜋𝑟𝑒𝑓 is upper bounded by ℒ(𝜋𝜃; 𝑈)
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When reference policy is 
uniformly distributed



Appendix: Contrastive Preference Optimization

Behavior Cloning Constraint: a straightforward and strong signal to prevent the 
model from deviating the preferred data distribution:
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Equivalent to 

ℒ𝑝𝑟𝑒𝑓𝑒𝑟 ℒ𝑛𝑙𝑙+



Experiments

Performance?
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Evaluation tools:
• wmt22-cometkiwi-da
• KIWI-XXL
• XCOMET-XXL

[1] Contrastive Preference Optimization: Pushing the Boundaries of LLM Performance in Machine Translation



Analyses

Analysis 1:  CPO vs. DPO
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Analyses

Analysis 2:  Does The Quality of Dis-preferred Data Matter?

We consider a baseline where dis-preferred data is manually created by noising preferred data:

We applied random deletions of words with a probability of 0.15 and word swaps within a range of 1 with 
a probability of 0.3.

I like eating apples → like apples eating

13



Analyses

Analysis 2:  Does The Quality of Dis-preferred Data Matter?

The quality of dis-preferred data does matter!
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Conclusion

• Data Quality (even small!)is important.
• Maybe do not blindly trust the gold reference.
• Find a better alignment method:

• SFT
• DPO
• CPO (CPO now is merged into huggingface now!)
• ….
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Questions?



Analyses

Analysis: Are Translations Really Better or Just Metric-Preferred?
Preferred data is selected by reference-free models and the same models are used for evaluation. Any 
“cheating” here?

In the method-level: Training on preferred data does not lead better performance on these metrics.
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KIWI-XXL

ALMA-13B 82.66

SFT on preferred data 82.42

DPO on preferred data 82.42

CPO on preferred data 85.74



Analyses

Analysis: Are Translations Really Better or Just Metric-Preferred?
Human Eval! 400 examples sampled from zh->en
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Avg. Score Avg. Rank Avg. Win Ratio (%)

ALMA-13B-LoRA 4.86 1.60 62.5

ALMA-13B-R 5.16 1.40 77.8



Appendix: Results on BLEURT
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Analyses

Analysis: Are Translations Really Better or Just Metric-Preferred?
In the metric-level: No significant bias towards the metric used for selecting preferred data:
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Appendix: ALMA-R Results for xx→en
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Appendix: ALMA-R Results on WMT’23
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Appendix: Contrastive Preference Optimization

The answer is Yes! But why? 

We only need to prove that ℒ 𝜋𝜃; 𝜋𝑟𝑒𝑓 is upper bounded by ℒ(𝜋𝜃; 𝑈)
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Remove reference policy to 
approximate the optimization?



Appendix: Contrastive Preference Optimization

Theorem 1. ℒ 𝜋𝜃; 𝜋𝑟𝑒𝑓 is upper bounded by ℒ(𝜋𝜃; 𝑈) if 𝜋𝑟𝑒𝑓is an ideal policy 
that perfectly aligns the true data distribution of the preferred data.

𝜋𝑟𝑒𝑓 𝑦𝑤 𝑥 = 1

0 ≤ 𝜋𝑟𝑒𝑓 𝑦𝑙 𝑥 ≤ 1
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Appendix: Contrastive Preference Optimization

Theorem 1. ℒ 𝜋𝜃; 𝜋𝑟𝑒𝑓 is upper bounded by ℒ(𝜋𝜃; 𝑈) if 𝜋𝑟𝑒𝑓is an ideal policy 
that perfectly aligns the true data distribution of the preferred data.
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Appendix: Contrastive Preference Optimization

Additional Constraint: a straightforward and strong signal to prevent the model 
from deviating the preferred data distribution:
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Equivalent to 

ℒ𝑝𝑟𝑒𝑓𝑒𝑟 ℒ𝑛𝑙𝑙+



Appendix: Contrastive Preference Optimization
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