

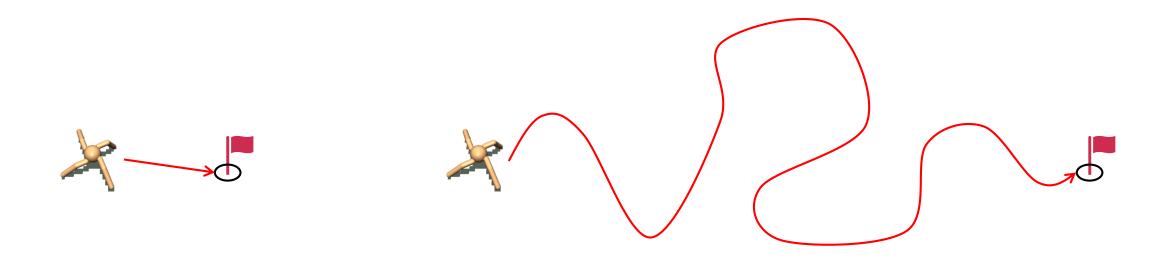
Breadth-Frist Exploration on Adaptive Grid for Reinforcement Learning

ICML 2024

Youngsik Yoon, Gangbok Lee, Sungsoo Ahn, Jungseul Ok Pohang University of Science and Technology (POSTECH) {ysyoon97, gangbok2, sungsoo.ahn, jungseul}@postech.ac.kr https://youngsikyoon.github.io/BEAG/

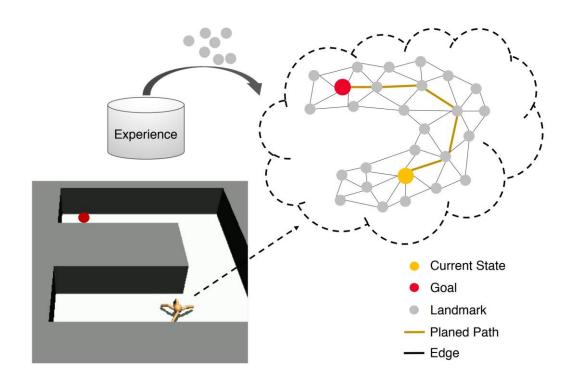
Goal-conditioned Reinforcement Learning

 Goal-conditioned Reinforcement Learning (GCRL) aims to solve the task of targeting a given goal.



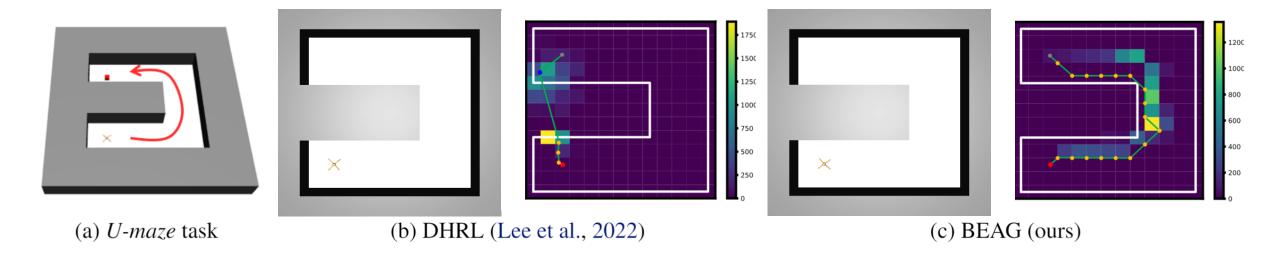
Graph-based Reinforcement Learning

 Graph-based Reinforcement Learning (GBRL) decomposes long-horizon goals into a series of manageable short-horizon subgoals using a graph structure.



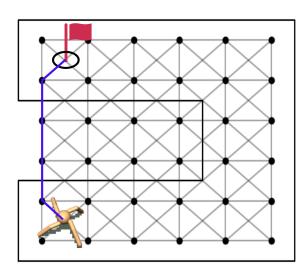
Motivation

• Existing GBRL methods only manage successful subgoals sampled from the replay buffer without containing failed subgoals and unexplored subgoals, which leads to the problem of repeating the same failure.



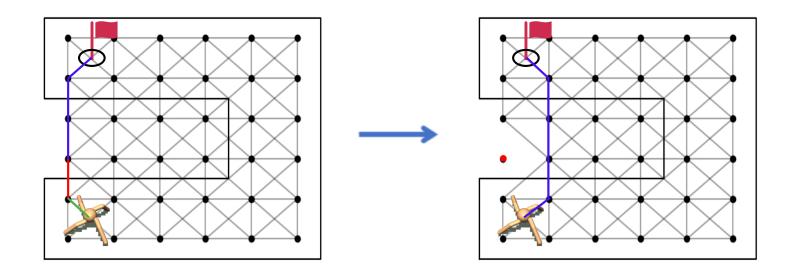
BEAG: Breadth-First Exploration on Adaptive Grid

 We propose BEAG, which employs a grid covering the entire map instead of relying on graphs generated from the replay buffer, which may include unexplored or even impossible subgoals.



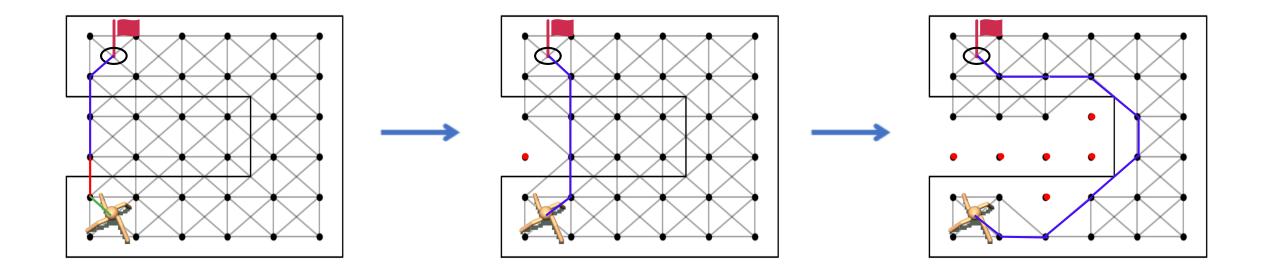
BEAG: Breadth-First Exploration on Adaptive Grid

 BEAG follows paths generated from the graph and explores promising subgoals by removing edges connected to subgoals that have been experienced repeated failures.



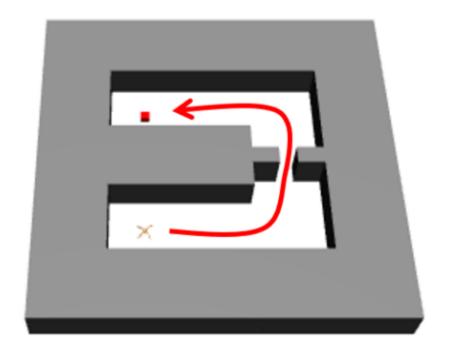
BEAG: Breadth-First Exploration on Adaptive Grid

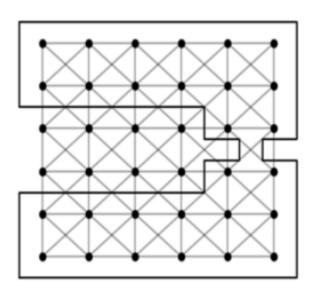
 After repeating this process a few times, BEAG will be able to find a successful path.



Bottleneck Environment

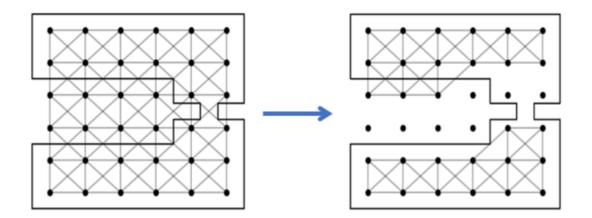
• While generating the grid, there may be issues in creating paths depending on the initial interval.





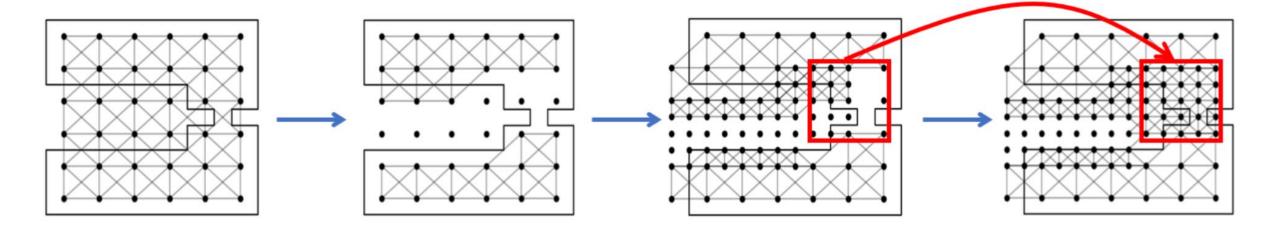
Adaptive Grid Refinement

BEAG identifies unattainable subgoals until failing to generate paths.



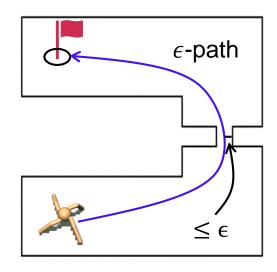
Adaptive Grid Refinement

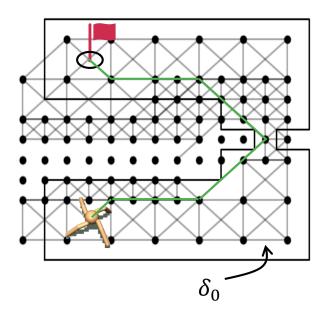
 After that, when a path to the goal cannot be generated, we select one of the failed nodes and perform more dense refinement around it.



Analysis

- According to our analysis,
 - 1. BEAG can always generate a possible path if there exists an ϵ -path.
 - 2. The length of the grid path is at most $\left(\left\lceil \frac{l}{\delta_0}\right\rceil + 1\right)\delta_0\sqrt{K}$, where l is the length of the ϵ -path.

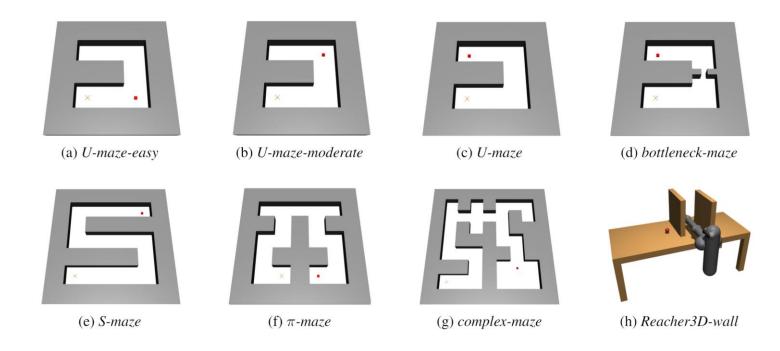




K: dimension of the goal space

Experimental Environments

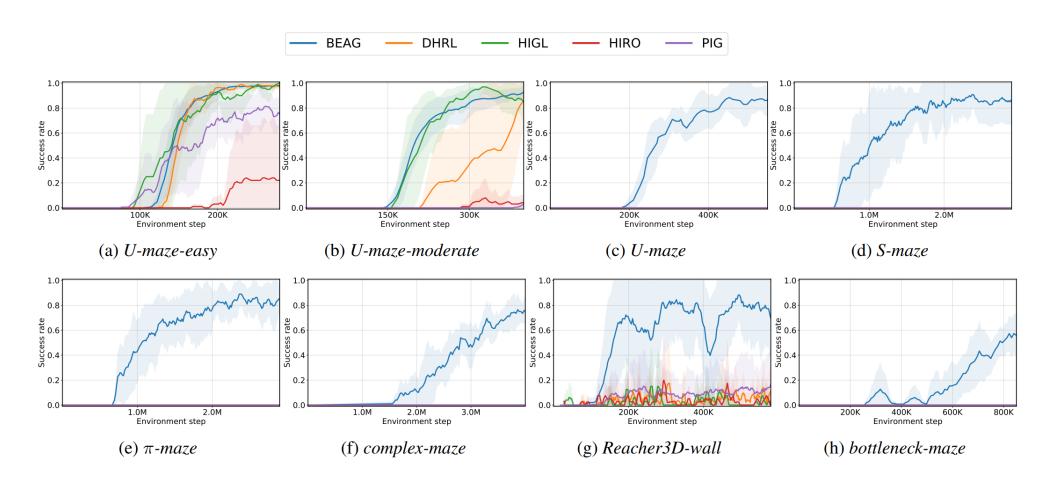
• We conduct experiments in the various maps of the AntMaze environment (a-g) and the Reacher3D environment (h).



We compare our method, BEAG, with the state-of-the-art hierarchical RL and graph-based RL algorithms: HIRO (Nachum et al., 2018), HIGL (Kim et al., 2021), DHRL (Lee et al., 2022), and PIG (Kim et al., 2023)

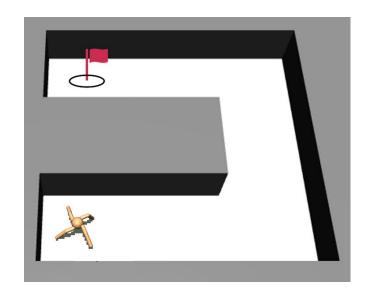
Experimental Results

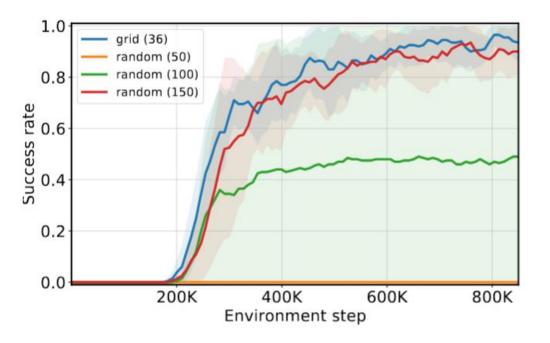
• BEAG remarkably outperforms other methods, especially in complex environments that require exploration, only BEAG achieves success.



Justification for Choosing Grid

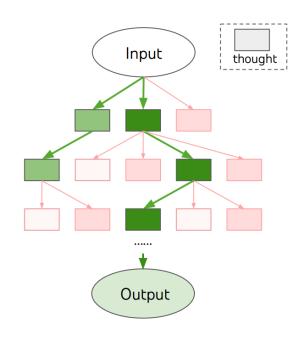
 We conduct experiments performing a breadth-first search using a uniformly randomly generated graph over the entire map.





Take Away

- BEAG has demonstrated the effectiveness of breadth-first search in exploration.
- This approach can be applied not only in the robotics but also in various applications, such as prompt engineering in large language models (LLM).



Tree of Thoughts: Deliberate Problem Solving with Large Language Models, Yao et al., 2023

