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• Goal-conditioned Reinforcement Learning (GCRL) aims to solve the task of 
targeting a given goal.

Goal-conditioned Reinforcement Learning
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• Graph-based Reinforcement Learning (GBRL) decomposes long-horizon goals 
into a series of manageable short-horizon subgoals using a graph structure.

Graph-based Reinforcement Learning

Mapping State Space using Landmarks for Universal Goal Reaching, Huang et al., 2019
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• Existing GBRL methods only manage successful subgoals sampled from the 
replay buffer without containing failed subgoals and unexplored subgoals, which 
leads to the problem of repeating the same failure.

Motivation
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• We propose BEAG, which employs a grid covering the entire map instead of 
relying on graphs generated from the replay buffer, which may include unexplored
or even impossible subgoals.

BEAG: Breadth-First Exploration on Adaptive Grid
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• BEAG follows paths generated from the graph and explores promising subgoals
by removing edges connected to subgoals that have been experienced repeated 
failures.

BEAG: Breadth-First Exploration on Adaptive Grid
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• After repeating this process a few times, BEAG will be able to find a successful 
path.

BEAG: Breadth-First Exploration on Adaptive Grid
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• While generating the grid, there may be issues in creating paths depending on the 
initial interval. 

Bottleneck Environment
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• BEAG identifies unattainable subgoals until failing to generate paths.

Adaptive Grid Refinement
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• After that, when a path to the goal cannot be generated, we select one of the 
failed nodes and perform more dense refinement around it.

Adaptive Grid Refinement
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• According to our analysis, 
1. BEAG can always generate a possible path if there exists an 𝜖-path.

2. The length of the grid path is at most 
𝑙

𝛿0
+ 1 𝛿0 𝐾, where 𝑙 is the length of the 𝜖-path.

Analysis

≤ ϵ

𝛿0

𝐾: dimension of the goal space

𝜖-path
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• We conduct experiments in the various maps of the AntMaze environment (a-g) and the 
Reacher3D environment (h).

• We compare our method, BEAG, with the state-of-the-art hierarchical RL and graph-based RL 
algorithms: HIRO (Nachum et al., 2018), HIGL (Kim et al., 2021), DHRL (Lee et al., 2022), and PIG
(Kim et al., 2023)

Experimental Environments
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• BEAG remarkably outperforms other methods, especially in complex 
environments that require exploration, only BEAG achieves success.

Experimental Results



14

• We conduct experiments performing a breadth-first search using a uniformly 
randomly generated graph over the entire map.

Justification for Choosing Grid
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Take Away

• BEAG has demonstrated the effectiveness of breadth-first search in exploration.

• This approach can be applied not only in the robotics but also in various 
applications, such as prompt engineering in large language models (LLM).

ADAPT: As-Needed Decomposition and Planning 

with Language Models, Prasad et al., 2024

Tree of Thoughts: Deliberate Problem Solving with 

Large Language Models, Yao et al., 2023


