## **Position: Data-driven Discovery with Large Generative Models**

## 12 SopenLocus University of Massachusetts Amherst UNIVERSITY OF UTAH



### Why Data-driven Discovery:

1. Abundance of large-scale datasets that would benefit highly from automated discovery 2. Practicality of automated, inexpensive verification enabled by data without the need for additional data collection

### LGMs present an incredible potential for automating discovery but LGMs are not all we need.



### **Desiderata for Data-driven Discovery**

#### Comprehensive **Data Understanding**

Most frameworks (AutoML, WolframAlpha) have limited ability. LGMs can explore & understand context, if prompted explicitly.

## **Hypothesis Generation**

Prev. work use heuristics, visualization, lit. retrieval for initial hypothesis search, though most fail to do iteratively where LGMs can do that in loop.

### + anecdotal comparisons with existing frameworks and DataVoyager)

No frameworks including LGMs can consistently plan scientific workflows. LGMs may have scientific knowledge but cannot robustly apply it.







**problem** that aims to describe a given set of observations by uncovering the laws that govern its

### Why Large Generative Models (LGMs):

1. Previous works lacked the requisite computational power (Langley, 1984) 2. To harness pretrained domain and scientific knowledge for hypothesis search 3. Code generation and execution ability

#### Planning **Research Pathways**

#### **Hypothesis Verification**

This is well-achieved by heuristics or free-form code generation. But explicit tool-calling w LGMS is required for long-tail domain analysis.

#### Accommodating Human Feedback

Systems must accommodate human feedback for better reasoning, update beliefs. Feedback sig. improves LGMs' exploration.

## **Bodhisattwa Prasad Majumder\***, Harshit Surana\*, Dhruv Agarwal\*, Sanchaita Hazra, Ashish Sabharwal, Peter Clark



- Time preference could be 'DISSAVED' and 'SAMESAVE' variables. 1. Initial Hypotheses: a. Hypothesis 1: DISSAVED and BMI are related.. 2. Perform OLS & Correlation analysis.
- **Multi-step Planning**

. SES: Compare association between subject variables based on SES 2. SAMPLE SEX 3. College Scores, Class Percentile 4. SAMPLE\_RACE

**Data Understanding** 





# and superposition issues 4. Raises legal challenges for intellectual property rights &

#### **Reproducible & Robust Results**

DV shows a POC for automated, reproducible experiments but opens up a novel case for explosion of false discoveries via *p*-hacking.

#### **Limitations of Automatic Discovery**

1. Hallucinations, memorization 2. **Costly** for high-throughput fields 3. Propaganda-led dubious claims created by bad actors, policy impacts authorship, liability in decision making

