

Doubly Robust Causal Effect Estimation under Networked Interference via Targeted Learning

Weilin Chen, Ruichu Cai*, Zeqin Yang, Jie Qiao, Yuguang Yan, Zijian Li, Zhifeng Hao

Corresponding author: cairuichu@gmail.com First author: chenweilin.chn@gmail.com

What is causal effect

Causal effects: the impact of a treatment *T* on the outcome *Y*

 $\psi(t) = \mathbb{E} \big[\mathbb{E} [Y(t)|X = x] \big]$ $\tau = \mathbb{E} \big[\mathbb{E} [Y(1) - Y(0)|X = x] \big]$

A powerful tool to measure effectiveness of strategies.

E.g., how vaccination affect infection risk?

T: Vaccination

Y: Infection risk

Networked Interference

Networked Interference: units affect each other

Networked Causal Effects: the impact of a treatment *T* and neighbors' s treatment *Z* on the outcome *Y*

 $\psi(t,z) = \mathbb{E}\big[\mathbb{E}[Y(t,z)|x,x_{\mathcal{N}}]\big]$

E.g., how much infection risk changes if a unit would receive vaccination and its neighbors would also receive vaccination?

Problem of existing method

To estimate networked effects $\psi(t, z) = \mathbb{E}[Y(t, z)]$, Forastiere et al. (2021) propose Generalized Propensity Score (GPS)^[1]:

 $g(t,z|x,x_{\mathcal{N}})=p(t,z|x,x_{\mathcal{N}})$

Depending on different assumptions, GPS can be decomposed in different ways:

- $g(t, z | x, x_{\mathcal{N}}) = g_1(t | x, x_{\mathcal{N}}) g_2(z | t, x, x_{\mathcal{N}}) \qquad \text{with } t \perp z | x, x_{\mathcal{N}}$
- $g(t, z | x, x_{\mathcal{N}}) = g_1(t | x, x_{\mathcal{N}}) g_2(z | x, x_{\mathcal{N}}) \qquad \text{with } t \perp z | x, x_{\mathcal{N}}$
- $g(t, z | x, x_{\mathcal{N}}) = g_1(t | x, z) g_2(z | x, x_{\mathcal{N}}) \qquad \text{with } t \perp x_{\mathcal{N}} | x, z$

Model misspecification occur with wrong assumption.

[1] Forastiere L, Airoldi E M, Mealli F. Identification and estimation of treatment and interference effects in observational studies on networks[J]. Journal of the American Statistical Association, 2021, 116(534): 901-918.

Problem of existing method

To estimate networked effects $\psi(t, z) = \mathbb{E}[Y(t, z)]$, Forastiere et al. (2021) propose Generalized Propensity Score (GPS)^[1]:

 $g(t, z | x, x_{\mathcal{N}}) = p(t, z | x, x_{\mathcal{N}})$

Dependin

Need: Networked effect estimator that is robust to model misspecification

 $g(\iota, z_{|\lambda}, \lambda_{\mathcal{N}}) - g_1(\iota_{|\lambda}, \lambda_{\mathcal{N}})g_2(z_{|\lambda}, \lambda_{\mathcal{N}}) \qquad \text{with } \iota \perp z_{|\lambda}, \lambda_{\mathcal{N}}$

 $g(t, z | x, x_{\mathcal{N}}) = g_1(t | x, z) g_2(z | x, x_{\mathcal{N}}) \qquad \text{with } t \perp x_{\mathcal{N}} | x, z$

Model misspecification occur with wrong assumption.

[1] Forastiere L, Airoldi E M, Mealli F. Identification and estimation of treatment and interference effects in observational studies on networks[J]. Journal of the American Statistical Association, 2021, 116(534): 901-918.

Efficient Influence Curve (EIC)

What kind of estimator is robust to model misspecification?

Theorem 4.2 For $t \in \{0,1\}$ and $z \in [0,1]$, the efficient influence curve of $\psi(t,z)$ is: $\varphi(t, z, X, X_{\mathcal{N}}; \mu, g, \psi) = \left(\frac{\mathbb{I}_{T,Z}(t,z)}{g(t, z | X, X_{\mathcal{N}})}\right)(y - \mu(t, z, X, X_{\mathcal{N}})) + \mu(t, z, X, X_{\mathcal{N}}) - \psi(t, z),$ where $\mu(t, z, X, X_{\mathcal{N}}) \coloneqq \mathbb{E}[Y|t, z, X, X_{\mathcal{N}}]$ and $g(t, z | X, X_{\mathcal{N}}) \coloneqq \mathbb{E}[t, z | X, X_{\mathcal{N}}].$

Lemma 4.3 (Double Robustness Property) For $t \in \{0,1\}$ and $z \in [0,1]$, if models $\hat{g}, \hat{\mu}$ solve EIC, $\mathbb{P}\varphi = 0$, then the estimator $\hat{\psi}$ for ψ is doubly robust. Further, if $\|\hat{g} - g\|_{\infty} = O_p(r_1(n))$ and $\|\hat{\mu} - \mu\|_{\infty} = O_p(r_2(n))$, we have: $\sup_{t,z \in \mathcal{T}, \mathcal{Z}} |\mathbb{P}\varphi(t, z, X, X_{\mathcal{N}}; \hat{\mu}, \hat{g}, \psi)| = O_p(r_1(n))r_2(n)))$

Goal: Designing an estimator for ψ solving EIC to achieve DR property.

DMIR

Overview of Estimator TNet

We design a one-step estimator using NNs.

Overview of Estimator TNet

How to achieve DR property

which means our estimator solve EIC $\mathbb{P}\varphi = 0$, achieving DR property according to Lemma 4.3.

Theoretical Analysis of Estimator TNet

How fast convergence rate TNet can achieve?

Theorem 6.1 Under mild assumptions, we have

$$\left\|\hat{\psi} - \psi\right\|_{L^2} = O_p\left(n_0^{-1/3}\sqrt{n_0} + n_1^{-1/3}\sqrt{n_1} + r_1(n)r_2(n)\right),$$

where $\|\hat{g} - g\|_{\infty} = O_p(r_1(n)), \|\hat{\mu} - \mu\|_{\infty} = O_p(r_2(n)).$

- First term $n_0^{-1/3}\sqrt{n_0} + n_1^{-1/3}\sqrt{n_1}$ is the rate achieved in term of ϵ .
- Second term $r_1(n)r_2(n)$ is the product of convergences rates of nuisances function.

Second term again shows DR property:

$$r_1(n)r_2(n) = o(1)$$
 when $r_1(n) = o(1)$ or $r_2(n) = o(1)$.

DMIR

Experimental Results

Verifying the effectiveness of TNet: achieving the lowest prediction errors

Table 1. Experimental results on BC(homo) Dataset. The top result is highlighted in bold, and the runner-up is underlined.										
Metric	setting	effect	CFR+z	GEst	ND+z	NetEst	RRNet	NDR	TNet(w/o. \mathcal{L}_3)	TNet
$\varepsilon_{average}$	Within Sample	AME	$0.1010_{\pm 0.0678}$	$0.1512_{\pm 0.1073}$	$0.0868_{\pm 0.0757}$	$0.1257_{\pm 0.1343}$	$\underline{0.0877}_{\pm 0.0565}$	$0.5033_{\pm 0.0080}$	$0.1056_{\pm 0.0690}$	$0.0481_{\pm 0.0365}$
		ASE	$0.1956_{\pm 0.0582}$	$0.1860_{\pm 0.0225}$	$0.2140_{\pm 0.0287}$	$0.0347_{\pm 0.0169}$	$\underline{0.0227}_{\pm 0.0165}$	$0.2464_{\pm 0.0042}$	$0.1337_{\pm 0.0139}$	$0.0180_{\pm 0.0183}$
		ATE	$0.2802_{\pm 0.1814}$	$0.1342_{\pm 0.0785}$	$0.3742_{\pm 0.1041}$	$0.1229_{\pm 0.0583}$	$0.0907_{\pm 0.0662}$	$0.0284_{\pm 0.0149}$	$0.2467_{\pm 0.0520}$	$\underline{0.0533}_{\pm 0.0405}$
	Out-of Sample	AME	$0.1011_{\pm 0.0681}$	$0.1534_{\pm 0.1025}$	$0.0901_{\pm 0.0750}$	$0.1258_{\pm 0.1350}$	$0.0879_{\pm 0.0561}$	/	$0.1081_{\pm 0.0671}$	$0.0481_{\pm 0.0364}$
		ASE	$0.1969_{\pm 0.0581}$	$0.1859_{\pm 0.0228}$	$0.2127_{\pm 0.0279}$	$0.0322_{\pm 0.0173}$	$\underline{0.0225}_{\pm 0.0167}$	/	$0.1238_{\pm 0.0094}$	$0.0179_{\pm 0.0183}$
		ATE	$0.2792_{\pm 0.1826}$	$0.1298_{\pm 0.0782}$	$0.3688_{\pm 0.1040}$	$0.1238_{\pm 0.0568}$	$\underline{0.0911}_{\pm 0.0667}$	/	$0.2358_{\pm 0.0503}$	$0.0532_{\pm 0.0405}$
$\varepsilon_{individual}$	Within Sample	IME	$0.1234_{\pm 0.0580}$	$0.2021_{\pm 0.0780}$	$0.1150_{\pm 0.0642}$	$0.1411_{\pm 0.1240}$	$\underline{0.0951}_{\pm 0.0527}$	/	$0.1497_{\pm 0.0596}$	$0.0506_{\pm 0.0352}$
		ISE	$0.1974_{\pm 0.0579}$	$0.1890_{\pm 0.0217}$	$0.2155_{\pm 0.0289}$	$0.0493_{\pm 0.0163}$	$0.0304_{\pm 0.0139}$	/	$0.1532_{\pm 0.0155}$	$0.0196_{\pm 0.0179}$
		ITE	$0.3033_{\pm 0.1562}$	$0.1848_{\pm 0.0635}$	$0.3780_{\pm 0.1031}$	$0.1278_{\pm 0.0583}$	$\underline{0.1010}_{\pm 0.0587}$	/	$0.2783_{\pm 0.0493}$	$0.0560_{\pm 0.0383}$
	Out-of Sample	IME	$0.1254_{\pm 0.0572}$	$0.2031_{\pm 0.0749}$	$0.1195_{\pm 0.0658}$	$0.1412_{\pm 0.1246}$	$\underline{0.0953}_{\pm 0.0524}$	/	$0.1487_{\pm 0.0574}$	$0.0506_{\pm 0.0351}$
		ISE	$0.1987_{\pm 0.0578}$	$0.1890_{\pm 0.0217}$	$0.2142_{\pm 0.0277}$	$0.0465_{\pm 0.0159}$	$\underline{0.0306}_{\pm 0.0144}$	/	$0.1411_{\pm 0.0105}$	$0.0195_{\pm 0.0178}$
		ITE	$0.3061_{\pm 0.1524}$	$0.1822_{\pm 0.0626}$	$0.3730_{\pm 0.1026}$	$0.1283_{\pm 0.0569}$	$\underline{0.1019}_{\pm 0.0589}$	/	$0.2612_{\pm 0.0472}$	$0.0560_{\pm 0.0380}$

Experimental Results

Verifying the effectiveness of perturbation module \mathcal{L}_3 , which makes TNet doubly robust.

Metric	setting	effect	CFR+z	GEst	ND+z	NetEst	RRNet	NDR	TNet(w/o. \mathcal{L}_3)	TNet
$\varepsilon_{average}$	Within Sample	AME	$0.1010_{\pm 0.0678}$	$0.1512_{\pm 0.1073}$	$0.0868_{\pm 0.0757}$	$0.1257_{\pm 0.1343}$	$\underline{0.0877}_{\pm 0.0565}$	$0.5033_{\pm 0.008}$	$0.1056_{\pm 0.0690}$	$0.0481_{\pm 0.0365}$
		ASE	$0.1956_{\pm 0.0582}$	$0.1860_{\pm 0.0225}$	$0.2140_{\pm 0.0287}$	$0.0347_{\pm 0.0169}$	$\underline{0.0227}_{\pm 0.0165}$	$0.2464_{\pm 0.004}$	$0.1337_{\pm 0.0139}$	$0.0180_{\pm 0.0183}$
		ATE	$0.2802_{\pm 0.1814}$	$0.1342_{\pm 0.0785}$	$0.3742_{\pm 0.1041}$	$0.1229_{\pm 0.0583}$	$0.0907_{\pm 0.0662}$	$0.0284_{\pm 0.014}$	9 0.2467 _{±0.0520}	$\underline{0.0533}_{\pm 0.0405}$
	Out-of Sample	AME	$0.1011_{\pm 0.0681}$	$0.1534_{\pm 0.1025}$	$0.0901_{\pm 0.0750}$	$0.1258_{\pm 0.1350}$	$0.0879_{\pm 0.0561}$	/	$0.1081_{\pm 0.0671}$	$0.0481_{\pm 0.0364}$
		ASE	$0.1969_{\pm 0.0581}$	$0.1859_{\pm 0.0228}$	$0.2127_{\pm 0.0279}$	$0.0322_{\pm 0.0173}$	$0.0225_{\pm 0.0167}$	/	$0.1238_{\pm 0.0094}$	$0.0179_{\pm 0.0183}$
		ATE	$0.2792_{\pm 0.1826}$	$0.1298_{\pm 0.0782}$	$0.3688_{\pm 0.1040}$	$0.1238_{\pm 0.0568}$	$\underline{0.0911}_{\pm 0.0667}$	/	$0.2358_{\pm 0.0503}$	$0.0532_{\pm 0.0405}$
$\varepsilon_{individual}$	Within Sample	IME	$0.1234_{\pm 0.0580}$	$0.2021_{\pm 0.0780}$	$0.1150_{\pm 0.0642}$	$0.1411_{\pm 0.1240}$	$\underline{0.0951}_{\pm 0.0527}$	/	$0.1497_{\pm 0.0596}$	$0.0506_{\pm 0.0352}$
		ISE	$0.1974_{\pm 0.0579}$	$0.1890_{\pm 0.0217}$	$0.2155_{\pm 0.0289}$	$0.0493_{\pm 0.0163}$	$\underline{0.0304}_{\pm 0.0139}$	/	$0.1532_{\pm 0.0155}$	0.0196±0.0179
		ITE	$0.3033_{\pm 0.1562}$	$0.1848_{\pm 0.0635}$	$0.3780_{\pm 0.1031}$	$0.1278_{\pm 0.0583}$	$\underline{0.1010}_{\pm 0.0587}$	/	$0.2783_{\pm 0.0493}$	$0.0560_{\pm 0.0383}$
	Out-of Sample	IME	$0.1254_{\pm 0.0572}$	$0.2031_{\pm 0.0749}$	$0.1195_{\pm 0.0658}$	$0.1412_{\pm 0.1246}$	$\underline{0.0953}_{\pm 0.0524}$	/	$0.1487_{\pm 0.0574}$	$0.0506_{\pm 0.0351}$
		ISE	$0.1987_{\pm 0.0578}$	$0.1890_{\pm 0.0217}$	$0.2142_{\pm 0.0277}$	$0.0465_{\pm 0.0159}$	$0.0306_{\pm 0.0144}$	/	$0.1411_{\pm 0.0105}$	$0.0195_{\pm 0.0178}$
		ITE	$0.3061_{\pm 0.1524}$	$0.1822_{\pm 0.0626}$	$0.3730_{\pm 0.1026}$	$0.1283_{\pm 0.0569}$	$\underline{0.1019}_{\pm 0.0589}$	/	$0.2612_{\pm 0.0472}$	$0.0560_{\pm 0.0380}$

Table 1. Experimental results on BC(homo) Dataset. The top result is highlighted in bold, and the runner-up is underlined.

Thank you!

Please feel free to contact cairuichu@gmail.com or chenweilin.chn@gmail.com