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Gold Method: Granger causality, which builds an autoregressive to model causal relations. 

Advantages: Granger causality does not require specific assumptions about functional forms or distributions, making it 
applicable to various types of time series data.

Disadvantages: Granger causality requires
Ø Correct Time Lags: Granger causality relies on lagged terms to model causal relationships.
Ø Numerous Time Slices: Sufficient time slices are needed for accurate inference, and inadequate data length or large time 

intervals may lead to unreliable results.
Ø Without Instantaneous Effects: Granger causality assumes causal relationships based on lagged terms and cannot 

capture instantaneous causality, such as simultaneous changes between variables at the same time point.
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Stational Methods. Temporal Methods.
• Constraint-based methods:

- PC, FCI, SGS and ICPs.
• Score-based methods:

- GES and GIES.
• Continuous-optimization methods:

- GraNDAG, GOLEM, NOTEARS, and ReScore. 
• Hybrid methods:

- GSP and IGSP.

• Granger causality and Autoregressive:
- PWGC, MVGC, TCDF.

• Variants of Stational Methods:
- PCMCI, oCSE, ANLTSM, tsFCI, SVAE-FCI,
VarLiNGAM, DYNOTEARS.

• Others:
- CD-NOD, VarLiNGAM, TiMINo. 
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• All works rely on Causal Sufficiency Assumption;
• All works rely on Numerous Time Slices Data;
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Subsampled Time Series.
Measurements are sparse and sampled
at a coarser timescale than the causal
timescale of the underlying system
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Challenges in Subsampled Time Series. 
• Some works rely on Linear Assumption;
• Some works rely on No Instantaneous Effects;
• All works rely on Modeling Causal Structures at the 

System Timescale.
• All works rely on Causal Sufficiency Assumption;
• All works rely on Numerous Time Slices Data;
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DHT-CIT Algorithm
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Data-nodes-edges with different complex functions: Sin-10-10, Sin-20-20, Sigmoid-10-10, Poly-10-10
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Data-nodes-edges for denser graphs: Sigmoid-10-20 , Sigmoid-10-30, Sigmoid-10-40 , Sigmoid-20-60, Sigmoid-20-100
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Data-nodes-edges for large graphs: Sin-50-100, Sin-100-100
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Real Data
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