ICML

Forty-first International
Conference on Machine Learning

Learning Causal Relations from Subsampled Time Series
with Two Time-Slices

Anpeng Wu!®, Haoxuan Li2, Kun Kuang!*, Keli Zhang3, Fei Wul4%*

1 Department of Computer Science and Technology, Zhejiang University, Hangzhou, China
2 Center for Data Science, Peking University, Peking, China

3 Huawei Noah’s Ark Lab, Huanwei, Shenzhen, China

4 Shanghai Institute for Advanced Study, Zhejiang University, Shanghai, China

5 Shanghai AI Laboratory, Shanghai, China

“anpwu@zju.edu.cn

*Corresponding authors




Climate

Archaea

Skin microbiome

Bacteria

Ur|genmal mlcroblume

ja/ 0%0 ........ Par e Parasites

Human Microbiome

X1

Background Methods Results

Time-Series Data is ubiquitous in real-applications.
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Gold Method: Granger causality, which builds an autoregressive to model causal relations.

Advantages: Granger causality does not require specific assumptions about functional forms or distributions, making it
applicable to various types of time series data.

Disadvantages: Granger causality requires

» Correct Time Lags: Granger causality relies on lagged terms to model causal relationships.

» Numerous Time Slices: Sufficient time slices are needed for accurate inference, and inadequate data length or large time
intervals may lead to unreliable results.

» Without Instantaneous Effects: Granger causality assumes causal relationships based on lagged terms and cannot
capture instantaneous causality, such as simultaneous changes between variables at the same time point.
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Time-Series Data is ubiquitous in real-applications.
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Stational Methods. Temporal Methods.

e Constraint-based methods:
- PC, FCI, SGS and ICPs.

* Score-based methods:
- GES and GIES. * Variants of Stational Methods:

- PCMCI, oCSE, ANLTSM, tsFCI, SVAE-FCI,
VarLiNGAM, DYNOTEARS.

* Granger causality and Autoregressive:
- PWGC, MVGC, TCDF.

* Continuous-optimization methods:
- GraNDAG, GOLEM, NOTEARS, and ReScore.
Others:

* Hybrid methods: - CD-NOD, VarLiNGAM, TiMINo.
_GSP and IGSP. H




Background Methods Results

Time-Series Data is ubiquitous in real-applications.

Available Available Available Available
Xlt o Qﬂ_\- " Q) - Unmeasured
XT - O— \\ \\ \\\ N Time-Slices
2

X; "'% }\ } \x }\\\ . Available

Time-Slices
X3 O\»cij \*»o‘ﬁ \*vdﬁ Ry —

O N N [Optional]

-- Intervention

Limitations. T=1 Take Intervention on X} 3
* Some works rely on Linear Assumption;

Stational Methods. |°* Some works rely on No Instantaneous Effects;

e Constraint-based { ¢ All works rely on Modeling Causal Structures at the

_PC. FCL SGS an{  System Timescale.
’ ’ * All works rely on Causal Sufficiency Assumption; [CDF.

and Autoregressive:

* Score-based methg¢

_GES and GIES. * All works rely on Numerous Time Slices Data; al Methods:
- GraNDAG’ GOLEM, NOTEARS, and ReScore. VaI'LlNGAM, DYNOTEARS.
 Others:

* Hybrid methods:

- CD-NOD, VarLINGAM, TiMINo.
- GSP and IGSP.




Background Methods Results

Subsampled Time-Series Data is ubiquitous in real-
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* All works rely on Causal Sufficiency Assumption;

* All works rely on Numerous Time Slices Data;

ey Measurements are sparse and sampled
Q at a coarser timescale than the causal
timescale of the underlying system
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Unmeasured Second Visi]

Challenges in Subsampled Time Series.
Some works rely on Linear Assumption;
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(b) Graphical Models for Subsampled Time-Series (Interventions or Two Time-Slices)
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Definition 4.1 (Complete Topological Ordering). The com-
plete topological ordering (7(X) = (Xnr,, Xrys+* » Xry)s
; 18 the reordered index of node) is a sorting of all nodes
in a DAG such that for any pair of nodes X, and X, if
there exists a directed edge from X, to X ;> thenz > 7.
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: Node: ---»

(I) Sequentially Identifying and Removing the Leaves (II) Complete Topological Ordering

(c) Identifying Leave Nodes for Complete Topological Ordering

Background Results

Descendant Hierarchical Topology

Definition 4.2 (Hierarchical Topological Ordering). In
the hierarchical topological ordering e.g., II(X) =
({Xx, }r, {Xns, Xns}Lo, -+ ), €ach layer is denoted by
L; and the located layer of X ; are represented as [;. If there
is a directed edge from X, to X, then l;, > I ..
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Descendant Hierarchical Topology

Definition 4'.1 (Complete Topological Ordering). The com- Definition 4.2 (Hierarchical Topological Ordering). In
plete topological ordering (7(X) = (Xr,, Xr,, -+, Xx,), the hierarchical topological ordering e.g., II[(X) =
m; 1s the reordered index of node) is a sorting of all nodes ({Xr1}1s {Xrss Xns} Lo, -+ ), €ach layer is denoted by

in a DAG such that for any pair of nodes X, and X, if L; and the located layer of X; are represented as [;. If there
there exists a directed edge from X, to X 5o then¢ > 3. is a directed edge from X, to X, then I, > Ir.

Definition 4.3 (Descendant Hierarchical Topology). In the
descendant hierarchical topology, each node X! identifies
other nodes as either non-descendant nodes or descendant
nodes, and each node X! establishes direct edges pointing

to its descendants de!, i.e., X! — de,i € {1,2,--- ,d}.
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Using Conditional Instrumental Variables to Replace Interventions.
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(a) Summary Causal Graph (b) Graphical Models for Subsampled Time-Series (Interventions or Two Time-Slices)

Assumption 3.1 (Markov Property). The Markov property
of time series assumes the future slice X ‘"' depends on T __ T r—1 —1 T
current state X * but does not depend on history X'~ Xi = fi (pai , X, Pa; ) + € (D

Assumption 3.2 (Acyclic Summary Causal Graph, Section : : ; g . :
521 in.Assand et 8l.(2022))), Thesnmmasry cansal:sraph where f;(-) is a twice continuously differentiable function,

of a time series is considered acyclic if the lagged effect of which embeds the instantaneous effects from its parents pa;-'
each variable solely affects its own value and its descendants, at time 7 and non-zero time-lagged effects from previous

without any influence on its non-descendants. ‘ r—1 i v .
Assumption 3.3 (Consistency Throughout Time, Definition variable X ; and % denotes the Additive Noise term at

7 in Assaad et al. (2022))). A causal graph G for a multivari- time 7. In the generation function f;(-), we require that the

ate time series X is said to be consistent throughout time if time-lagged effect of XZ'_ 1 on Xz‘" 1S non-zero.

all the causal relationships remain constant throughout time, .
also referred to as stationary full-time graph.
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Using Conditional Instrumental Variables to Replace Interventions.
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Assumption 3.1 (Markov Property). The Markov property
of time series assumes the future slice X ‘"' depends on
current state X * but does not depend on history X'~

Assumption 3.2 (Acyclic Summary Causal Graph, Section
5.2.1 in Assaad et al. (2022))). The summary causal graph
of a time series is considered acyclic if the lagged effect of
each variable solely affects its own value and its descendants,
without any influence on its non-descendants.

Assumption 3.3 (Consistency Throughout Time, Definition
7 in Assaad et al. (2022))). A causal graph G for a multivari-
ate time series X is said to be consistent throughout time if
all the causal relationships remain constant throughout time,
also referred to as stationary full-time graph.

Conditional Set

Treatment

X7 = fi(pal,X] ', pal!) + ¢,

where f;(-) is a twice continuously differentiable function,
which embeds the instantaneous effects from its parents pa;
at time 7 and non-zero time-lagged effects from previous
variable X7~ '; and €7 denotes the Additive Noise term at
time 7. In the generation function f;(-), we require that the
time-lagged effect of X7 ' on X7 is non-zero.

QOutcome
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Descendant-Oriented Conditional Independence Criteria
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Theorem 4.4 (Descendant-Oriented Conditional Indepen-
dence Criteria). Given observations D = {X ‘e X o<ty
satisfying Assumptions 3.1, 3.2, and 3.3, for variables X f -
and X'*, where i € {1,2,--- ,d}, we can conclude that
X;-" is a descendant node of X" iff X}* U X]t-" | an'e.
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Descendant-Oriented Conditional Independence Criteria

Proof. From the the non-zero time-lagged effect and As-
sumptions 3.1, 3.2, and 3.3, we can infer that:

(a) The effect of X/ on X* is non-zero, i.e., X;* --+ X.°;
(b) Under Markov property, X 4 X/* for 7 < t, < ty;
Theorem 4.4 (Descendant-Oriented Conditional Indepen- (c) Under acyclic assumption, X ’f ) 7? anﬁb fortta < 1 .
dence Criteria). Given observations D = { X', X"}, 4, (d) Under stationary time series, X ;% --» X * --» X

satisfying Assumptions 3.1, 3.2, and 3.3, for variables X Under conditions (a), (b), (¢) and (d), if X;b - anfb , then
and X!, where i € {1,2,--- ,d}, we can conclude that
X;-” is a descendant node of X" iff X;* I X;-" | an’e.

there are only two causal paths between X!* and X;b:
ta ta t B t t

X’L €& —— anz e ij and X’L S {Xzb7dezb} .

X;b. Hence, once we cut off all backdoor paths by con-

Corollary 4.5. Given observations D = { X', X"},. 1., trolling the conditional set anf“, then the confounding ef-
for variables X; and X; where i,j € {1,2,--- ,d}, X; is  fect between X f“ and X;b would be eliminated, leading to

a descendant node of X; iff X;* Y X3* | Xg,. X!* 1L X' | anl*. Similarity, if X' € sib’, then the
summary backdoor path is X;* «-- anj* --» an’* --»
X’*. In summary, if X" is a non-descendant node of X",
then X;* 1L X'* | an;*. In turn, given the condition
X« X3 | anj®, X" is a descendant node of X;*. [




bl "’2 Background Results
DHT-CIT Algorithm

Algorithm 1 DHT-CIT: Descendant Hierarchical Topology with Conditional Independence Test

Input: Two time-slices D = { X', X"}, -, with d nodes; two significance threshold & = 0.01 and 3 = 0.001 for
conditional independence test and pruning process; the layer index k£ = 0.
Output: One adjacency matrix of descendant hierarchical topology A"" one DAGG.
Components: Conditional independence test HSIC(. .. ); and pruning process CAM(- - - ).
Stage 1 - Identifying Descendant Hierarchical Topology:
fori = 1toddo
Construct the conditional set X {;; via an independence test X 3, = {X]* | Xj* 1L X[}
for j = 1toddo
Py = HSIC(Xf°,X;° | X;’;i)
a;; =I(pij < a)
end for
end for
We obtain P = {p; ; }axa and A" = {a;.’:)’-’}dxd
Stage 2 - Adjusting the Topological Ordering:
while The causal relationship between the unprocessed nodes is a directed cyclic graph do
k:=k+1
Xt = {Xt /Xt L1}
X{" € Ly, ifa] Y = 0forall j € M
while L; = () do
pi+j+ = 2a and a;’."‘;. =0, (i*,7")=argmax;;(pi; < a)
X{* € Ly, ifa]] = 0forall j € M;x
end while 4
We obtain P = {p; ; }ixa and ATP = {a?f}dxd
end while
Stage 3 - Pruning Spurious Edges:
We obtain G = CAM(D, A", 8)
Return: A" and G .
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Background Methods

Data-nodes-edges with different complex functions: Sin-10-10, Sin-20-20, Sigmoid-10-10, Poly-10-10

Table 1. The results (mean 54 ) on Sin-d-e using observational data (D = {X L X4 5 8
| Sin-10-10 Graph with Observational Data (D = {X ', X} ) | Sin-20-20 Graph with Observational Data (D = {X', X*})

Method ] SHD| SID| F1-Scoret Dis.| #Prune| SHD| SID| F1-Scoret Dis.| #Prune|

PC 12.8i5_03 43.6:{:9.94 0.56:t0,12 3-5110,72 & 215:}:6.75 98.2:{:31.8 0.61:*:0_11 459:}:0‘69 -
FCI 1534377 71.04115 0541000 3.8910.46 - 30.5+4.09 237.4591 0.5410.05 S5.51t037 -
GOLEM | 0501050 1.801270 0971003 0.38.059 . 1.3041.10 5604440 0971003 0931066 -
NOTEARS | 1.204960 2.3011.20 0941002 1.024030 5 2601149 6.00:340 0941003 1.55+0.46 8
ReScore 1.0040.63 1401136 0951003 0.88+0.47 - 2.0040.77 5.101290 0951001 1.3840.28 -
Granger 3131116 6681308 0214004 5481110 - 1041207 368ig82  0.104003 10.111.01 -
VarLINGAM | 35.040.00 6941320 0.3610.00 5.91+0.00 - 170+0.00 3391320 0.1910.00 13.0+0.00 -
CD-NOD 5'40i0.92 15'5i4.70 0.74:t0,04 2-3210,19 - - - - - -

CAM 37041295 13.21106 0.841013 1.79+074  80.0010.00 | 1031650 41.64347 0.791012 3.071098  360.0+0.00

SCORE 5.60+3.92 21.21161 0.78+0.14 2.251078  35.80t0.98 | 7401241 3131217 0.8510.04 2.681047 172.110.22

DHT-CIT | 1.004120 3.204370 0954005 0681072 13204430 | 1.004,3 310454 098,003 05106  30.60.77

" CD-NOD on Sin-20-20 takes over 5 hours and #Prune on one-stage methods is not meaningful. We don’t discuss these results and represent them with *-’.

Table 2. The results (mean s+ ) on Sigmoid-10-10 & Poly-10-10 data.

| Sigmoid-10-10 data with Gaussian Noise (D = {X', X?}) |

Poly-10-10 data with Gaussian Noise (D = {X 1, X 2} )

Method | SHD| SID| F1-Score? Dis.| #Prune| | SHD| SID| F1-Score? Dis.| #Prune
GOLEM | 4304219 1844792 0781011 2.004051 - 19.004400 35941136 0204012 4.3340.45 -
NOTEARS | 12.54540 4534179 0464021 3.4440.78 - 1784536 5641169 0234018 4.1640.64 -
ReScore | 1224430 45.64144 0454017 3431063 - 1774473 5734141 0224015 4164056 -
CAM 3704343 1044786 0.824017 1554120 80.00+0.00 | 8.00+469 19.84788 0.631021 2.68+0.95 80.00+0.00
SCORE | 9904381 32.8+116 0.56+0.16 3.09+061 38901160 | 18904433 40441100 02341013 4324052 42.204148
DHT-CIT | 0.67:,1> 1801599 0.96:005s 0.46.072 8.67.1590 | 3.22:3:5 10856 0841015 151503 1133.54;
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Data-nodes-edges for denser graphs: Sigmoid-10-20 , Sigmoid-10-30, Sigmoid-10-40 , Sigmoid-20-60, Sigmoid-20-100

Table 4. The experiments (mean. s;4 ) on Sigmoid-d-e using observations D = {X**, X*} with Subsampling Rate u = ¢, — t,.

Sigmoid-10-20 on D = { X', X*} Sigmoid-10-30 on D = { X', X*} Sigmoid-10-40 on D = { X', X*}
Method SHD| SID| #Prune| SHD| SID| #Prune| | SHD| SID| #Prune|
GOLEM | 10.701593 63.70411 85 - 26901483 71.404g59 - 35204305 67.00411.90 -
SCORE | 15104365 53.10112095 31.201160 | 14804571 46401504 20.801160 | 23.604024 384011346 10.3042.00

DHT-CIT 6.30:}:2,90 25-30:t13.66 13.5012_91 14-1014.46 38.80:1:11_02 11-10i1.58 | 23.60:;:2_24 41-20:t6.90 6.8012‘43

Sigmoid-20-20 on D = { X', X*} Sigmoid-20-60 on D = {X', X"} | Sigmoeid-20-100 on D = {X ', X"}
Method | SHD| SID| #Prune SHD| SID| #Prune) | SHD| SID| #Prune
GOLEM | 26.04560 138.0147.15 . 60.101540 322.3123384 . 100.01532 336.4416.19 -

SCORE | 84041620 39.1013882 173.24199 | 37.101814 257943438 14471407 | 57541100 266414818 112.44310
DHT-CIT | 0.70:0.90  3.201349 30101984 | 22101375 173513871 5881652 | 53.5:i843 2333i3178  75.446.05

Sigmoid-10-20 on D = { X*, X*} Sigmoid-10-20 on D = {X*, X°} | Sigmoid-10-20on D = {X*, X'’}
Method | SHD] SID| #Prune, | SHD| SID| #Prune, | SHD| SID| #Prune/
GOLEM 17-4014.96 58.40;{;13.81 - 21.60:1:4,50 67.20;1;11.41 - 21.80:1:4.87 69-70j:10.66 -

SCORE. | 1220w 47208531 29203040 | 1580557 410w 3000mi5s | 2230054 67:60Li55s 32304540
DHT—CIT| 8.30;{;3,82 26.00:1:12,77 0.46:1:0_72 | 8.30i1.55 38.10:1:5_19 11-20:t2.28 | 14.60:1:3.75 36-20:t12.86 13.60:1:0,92




Data-nodes-edges for large graphs: Sin-50-100, Sin-100-100

Table 7. The experiments on Sin-50-100 & Sin-100-100 datasets.

Background

Methods

Sin-50-100 data with Gauss noise (D = {X ', X°})

Method SID| SHD| #Prune] Running Time(s)|
SCORE 247.04102.5 23.04856 1127.4206 1027s
DHT-CIT 2039.484.14 234.4071 397.642554 3217s
DHT-CIT (50 Intervention) 203-0:i:61.1 14.8:}:3_90 149'0:i:27.00 357s
DHT-CIT+SCORE 97411016 7.604598 352.612369 1249s
DHT-CIT+SCORE (10 Intervention) 53.2150.99 48010985 284.049658 1109s

Sin-100-100 data with Gauss noise (D = {X ', X"})

Method SID| SHD| #Prune] Running Time(s),)
SCORE 381.+156.5 28.67+45 485040.2 4689s
DHT-CIT 2377:}:427 218.:t12,9 787.Oi49,1 19655s
DHT-CIT (100 Intervention) 5.33+750 1.00+1 41 347.049 10 1074s
DHT-CIT+SCORE 28.674+953 4.67+0.47 925.04833 6342s
DHT-CIT+SCORE (10 Intervention) | 14.67+119 3.334+195 797.3429.4 6108s
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Real Data

Variable Description
PM, 5(T) Annual county PM2.5 concentration, pg/m3
CMR(Y) Annual county cardiovascular mortality rate, deaths/100,000 person-years
Unemploy(X) Civilian labor force unemployment rate in 2010
Income(X5) Median household income in 2009
Female(X3) Family households - female householder, no spouse present in 2010 / Family households in 2010
Vacant(X4) Vacant housing units in 2010 / Total housing units in 2010
Owner(X5) Owner-occupied housing units - percent of total occupied housing units in 2010
Edu(Xe) Educational attainment - persons 25 years and over - high school graduate (includes equivalency) in 2010
Poverty(X7) Families below poverty level in 2009
Importance Importance Importance
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(a) Causal Discovery from GOLEM (b) Causal Discovery from SCORE (c) Causal Discovery from DHT-CIT (Ours)

Figure 2. Causal Discovery on the PM-CMR Dataset.
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