Online bipartite matching with imperfect advice

Davin **C**hoo, Themis **G**ouleakis, Chun Kai **L**ing, Arnab **B**hattacharyya

- Offline set $U = \{u_1, ..., u_n\}$ fixed and known
- Online set $V = \{v_1, ..., v_n\}$ arrive one by one

- Offline set $U = \{u_1, ..., u_n\}$ fixed and known
- Online set $V = \{v_1, ..., v_n\}$ arrive one by one
- When an online vertex v_i arrives
	- Its neighbors $N(v_i)$ are revealed
	- We have a make an irrevocable decision whether, how, to match v_i to something in $N(v_i)$

- Offline set $U = \{u_1, ..., u_n\}$ fixed and known
- Online set $V = \{v_1, ..., v_n\}$ arrive one by one
- When an online vertex v_i arrives
	- Its neighbors $N(v_i)$ are revealed
	- We have a make an irrevocable decision whether, how, to match v_i to something in $N(v_i)$

- Offline set $U = \{u_1, ..., u_n\}$ fixed and known
- Online set $V = \{v_1, ..., v_n\}$ arrive one by one
- When an online vertex v_i arrives
	- Its neighbors $N(v_i)$ are revealed
	- We have a make an irrevocable decision whether, how, to match v_i to something in $N(v_i)$

- Offline set $U = \{u_1, ..., u_n\}$ fixed and known
- Online set $V = \{v_1, ..., v_n\}$ arrive one by one
- When an online vertex v_i arrives
	- Its neighbors $N(v_i)$ are revealed
	- We have a make an irrevocable decision whether, how, to match v_i to something in $N(v_i)$

- Offline set $U = \{u_1, ..., u_n\}$ fixed and known
- Online set $V = \{v_1, ..., v_n\}$ arrive one by one
- When an online vertex v_i arrives
	- Its neighbors $N(v_i)$ are revealed
	- We have a make an irrevocable decision whether, how, to match v_i to something in $N(v_i)$

- Offline set $U = \{u_1, ..., u_n\}$ fixed and known
- Online set $V = \{v_1, ..., v_n\}$ arrive one by one
- When an online vertex v_i arrives
	- Its neighbors $N(v_i)$ are revealed
	- We have a make an irrevocable decision whether, how, to match v_i to something in $N(v_i)$

- Offline set $U = \{u_1, ..., u_n\}$ fixed and known
- Online set $V = \{v_1, ..., v_n\}$ arrive one by one
- When an online vertex v_i arrives
	- Its neighbors $N(v_i)$ are revealed
	- We have a make an irrevocable decision whether, how, to match v_i to something in $N(v_i)$

- Offline set $U = \{u_1, ..., u_n\}$ fixed and known
- Online set $V = \{v_1, ..., v_n\}$ arrive one by one
- When an online vertex v_i arrives
	- Its neighbors $N(v_i)$ are revealed
	- We have a make an irrevocable decision whether, how, to match v_i to something in $N(v_i)$
- Final offline graph $G^* = (U \cup V, E)$
	- $E = N(v_1) \cup \cdots \cup N(v_n)$
	- Maximum matching $M^* \subseteq E$ of size $|M^*| = n^* \le n$

- Offline set $U = \{u_1, ..., u_n\}$ fixed and known
- Online set $V = \{v_1, ..., v_n\}$ arrive one by one
- Final offline graph $G^* = (U \cup V, E)$
	- $E = N(v_1) \cup \cdots \cup N(v_n)$
	- Maximum matching $M^* \subseteq E$ of size $|M^*| = n^* \le n$

Goal of online bipartite matching problem

Produce a matching M such that the resulting $\begin{bmatrix} u_4 \end{bmatrix}$ competitive ratio $\frac{|M|}{|M^*|}$ is **maximized**

For this talk, let's treat $n^* = n$

- Any reasonable greedy algorithm has competitive ratio $\geq 1/2$
	- Size of maximal matching is at least half of size of maximum matching

- Any reasonable greedy algorithm has competitive ratio $\geq 1/2$
	- Size of maximal matching is at least half of size of maximum matching
- Why is online bipartite matching hard?
	- Maximum bipartite matching is poly time computable…
	- But we don't know the future in the online setting!

- Any reasonable greedy algorithm has competitive ratio $\geq 1/2$
	- Size of maximal matching is at least half of size of maximum matching
- Why is online bipartite matching hard?
	- Maximum bipartite matching is poly time computable…
	- But we don't know the future in the online setting!

- The Ranking algorithm [KVV90]
	- Pick a random permutation π over the offline vertices U
	- When vertex v_i arrive with $N(v_i)$, match v_i to the smallest indexed (with respect to $π$) unmatched neighbor

- The Ranking algorithm [KVV90]
	- Pick a random permutation π over the offline vertices U
	- When vertex v_i arrive with $N(v_i)$, match v_i to the smallest indexed (with respect to $π$) unmatched neighbor

π

- The Ranking algorithm [KVV90]
	- Pick a random permutation π over the offline vertices U
	- When vertex v_i arrive with $N(v_i)$, match v_i to the smallest indexed (with respect to $π$) unmatched neighbor

- The Ranking algorithm [KVV90]
	- Pick a random permutation π over the offline vertices U
	- When vertex v_i arrive with $N(v_i)$, match v_i to the smallest indexed (with respect to $π$) unmatched neighbor

π

- The Ranking algorithm [KVV90]
	- Pick a random permutation π over the offline vertices U
	- When vertex v_i arrive with $N(v_i)$, match v_i to the smallest indexed (with respect to $π$) unmatched neighbor

π

- The Ranking algorithm [KVV90]
	- Pick a random permutation π over the offline vertices U
	- When vertex v_i arrive with $N(v_i)$, match v_i to the smallest indexed (with respect to $π$) unmatched neighbor

- Learning-augmented algorithms
	- Designing algorithms using advice, predictions, etc.
		- α -consistent: α -competitive with no advice error
		- β -robust: β -competitive with any advice error

• Classical binary search: O(log n) queries possible and worst case necessary $\frac{1}{2}$ is someone and a state page $\frac{1}{2}$ while $\frac{1}{2}$ heing the best nossible classically \mathbf{v} is directly going the sest possible \mathbf{v} A natural goal is to design an algorithm with $\alpha = 1$ while β being the best possible classically

• So, this algorithm is 1-consistent and O log n -robust since x[∗] − x7 ≤ n

• Want to find a word in an n page dictionary, say it is on page x[∗]

- Learning-augmented algorithms
	- Designing algorithms using advice, predictions, etc.
		- α -consistent: α -competitive with no advice error
		- β -robust: β -competitive with any advice error
- Example: Binary search with advice
	- Want to find a word in an n page dictionary, say it is on page x^*
	- Classical binary search: O(log n) queries possible and worst case necessary

- Learning-augmented algorithms
	- Designing algorithms using advice, predictions, etc.

 \uparrow Here, \uparrow is directly \uparrow is directly \uparrow

- α -consistent: α -competitive with no advice error
- β -robust: β -competitive with any advice error
- Example: Binary search with advice
	- Want to find a word in an n page dictionary, say it is on page x^*
	- Classical binary search: O(log n) queries possible and worst case necessary
	- If someone provides an advice page \hat{x} , O(log $|x^* \hat{x}|$) queries is possible

• So, this algorithm is 1-consistent and O log n -robust since x[∗] − x7 ≤ n

 \hat{x} obtained via letter frequency tables, someone who searched a "nearby" word, or asking ChatGPT, etc…

- Learning-augmented algorithms
	- Designing algorithms using advice, predictions, etc.
		- α -consistent: α -competitive with no advice error
		- β-robust: β-competitive with any advice error
- Example: Binary search with advice
	- Want to find a word in an n page dictionary, say it is on page x^*
	- Classical binary search: O(log n) queries possible and worst case necessary
	- If someone provides an advice page \hat{x} , O(log $|x^* \hat{x}|$) queries is possible
	- Here, "best possible" is directly querying to page x^*
	- So, this algorithm is 1-consistent and $O(\log n)$ -robust since $|x^* \hat{x}| \le n$

- [AGKK20] Prediction on edge weights adjacent to V under an optimal offline matching
	- Random vertex arrivals and weighted edges
	- Require hyper-parameter to quantify confidence in advice, so their consistency/robustness tradeoffs are not directly comparable.

• [AGKK20] Prediction on edge weights adjacent to V under an optimal offline matching

- Random vertex arrivals and weighted edges
- Require hyper-parameter to quantify confidence in advice, so their consistency/robustness tradeoffs are not directly comparable.

• [ACI22] Prediction of vertex degrees $\hat{d}(u_1)$, ..., $\hat{d}(u_n)$ of the offline vertices in U

- Adversarial arrival model
- Optimal under the Chung-Lu-Vu random graph model [CLV03]
- Unable to attain 1-consistency in general

- [AGKK20] Prediction on edge weights adjacent to V under an optimal offline matching
	- Random vertex arrivals and weighted edges
	- Require hyper-parameter to quantify confidence in advice, so their consistency/robustness tradeoffs are not directly comparable.
- [ACI22] Prediction of vertex degrees $\hat{d}(u_1)$, ..., $\hat{d}(u_n)$ of the offline vertices in U
	- Adversarial arrival model
	- Optimal under the Chung-Lu-Vu random graph model [CLV03]
	- Unable to attain 1-consistency in general
- [JM22] Advice is a proposed matching for the first batch of arrived vertices
	- Two-staged arrival model [FNS21], where best possible robustness is 3/4
	- For any R \in [0, 34], they can achieve consistency of $1 (1 \sqrt{1 R})^2$

[JM22] Billy Jin and Will Ma. *Online bipartite matching with advice: Tight robustness-consistency tradeoffs for the two-stage model*. Neural Information Processing Systems (NeurIPS), 2022 [FNS21] Yiding Feng, Rad Niazadeh, and Amin Saberi. *Two-stage stochastic matching with application to ride hailing*. Symposium on Discrete Algorithms (SODA), 2021.

- [AGKK20] Prediction on edge weights adjacent to V under an optimal offline matching
	- Random vertex arrivals and weighted edges
	- Require hyper-parameter to quantify confidence in advice, so their consistency/robustness tradeoffs are not directly comparable.
- [ACI22] Prediction of vertex degrees $\hat{d}(u_1)$, ..., $\hat{d}(u_n)$ of the offline vertices in U
	- Adversarial arrival model
	- Optimal under the Chung-Lu-Vu random graph model [CLV03]
	- Unable to attain 1-consistency in general
- [JM22] Advice is a proposed matching for the first batch of arrived vertices
	- Two-staged arrival model [FNS21], where best possible robustness is $\frac{3}{4}$
	- For any $R \in [0, \frac{3}{4}]$, they can achieve consistency of $1 (1 \sqrt{1 R})^2$
- [LYR23] Augment any "expert algorithm" with a pre-trained RL model
	- For any $\rho \in [0,1]$, their method is ρ -competitive to the given "expert algorithm"

Research question

- If we have "perfect information" about G^* , can get n^* matches?
- Also, we know that $\mathsf{Ranking}$ achieves competitive ratio of $1-\frac{1}{e}$

Can we get an algorithm that is both 1-consistent and $\left(1 - \frac{1}{2}\right)$ $\frac{1}{e}$)-robust?

Our first main result

Impossibility result (Informal)

With adversarial vertex arrivals, no algorithm can be both 1-consistent and $>$ $\frac{1}{3}$ $\frac{1}{2}$ -robust, regardless of advice.

- Extends to $(1 a)$ -consistent and $\left(\frac{1}{2}\right)$ \overline{c} $+$ a)-robust, for any a \in $[0, 1/2]$.
- Proof sketch (for $a = 0$ case):
	- Restrict G[∗] to be one of two possible graphs (next slide)
	- **Any** advice is equivalent to getting 1 bit of information
	- In first $\frac{n}{2}$ arrivals, no algorithm can distinguish between the two graphs
	- **Any** 1-consistent algorithm must behave as if the advice is perfect initially

Impossibility result (Informal)

With adversarial vertex arrivals, no algorithm can be both 1-consistent and $>$ $\frac{1}{2}$ $\frac{1}{2}$ -robust, regardless of advice.

Impossibility result (Informal)

With adversarial vertex arrivals, no algorithm can be both 1-consistent and $>$ $\frac{1}{2}$ $\frac{1}{2}$ -robust, regardless of advice.

Hierarchy of arrival models [M13]

Adversarial ≤ Random order ≤ Unknown IID ≤ Known IID

Easier models can achieve higher competitive ratios

[M13] Aranyak Mehta. *Online matching and ad allocation*. Foundations and Trends in Theoretical Computer Science, 2013

Hierarchy of arrival models [M13]

Adversarial ≤ Random order ≤ Unknown IID ≤ Known IID

[GM08] Gagan Goel and Aranyak Mehta. *Online budgeted matching in random input models with applications to Adwords*. Symposium on Discrete Algorithms (SODA), 2008 [MY11] Mohammad Mahdian and Qiqi Yan. *Online Bipartite Matching with Random Arrivals: An Approach Based on Strongly Factor-Revealing LPs*. Symposium on Theory of Computing (STOC), 2011 [MGS12] Vahideh H Manshadi, Shayan Oveis Gharan, and Amin Saberi. *Online stochastic matching: Online actions based on offline statistics*. Mathematics of Operations Research, 2012

- [KMT11] showed that Ranking cannot beat 0.727 in general
- So, new ideas are needed if you believe the "right bound" is 0.823

Our second main result

Can we get an algorithm that is both 1-consistent and $\left(\frac{1}{\epsilon} \right)$ -robust?

 $\overline{\beta}$

- Let β denote the "best possible competitive ratio"
- Our first result says: This is not possible for adversarial arrivals!
- What about random order arrivals?

Adversarial ≤ Random order ≤ Unknown IID ≤ Known IID

Our second main result

Can we get an algorithm that is both 1-consistent and $(1 - 1)$ $\left(\frac{2}{e}\right)$ -robust?

Goal achievable in random order (Informal)

With random order, there is an algorithm achieves competitive ratio interpolating between 1 and $\beta \cdot (1 - o(1))$, depending on advice quality.

- Our method is a meta-algorithm that uses any $\texttt{Baseline}$ that achieves β
- So, we are simultaneously 1-consistent and $\beta \cdot (1 o(1))$ -robust
- For random arrival model, we know that $0.696 \le \beta \le 0.823$

e.g. use Ranking

 $\overline{\beta}$

Realized type counts as advice

- Classify online vertex in $G^* = (U \cup V, E)$ based on their types
	- Type of v_i is the set of offline vertices in $N(v_i)$ are adjacent to [BKP20]
- Define integer vector $c^* \in \mathbb{N}^{2^n}$ indexed by all possible types 2^U • $c^*(t)$ = Number of times the type $t \in 2^U$ occurs in G^*
- Define $T^* \subseteq 2^U$ as the subset of non-zero counts in c^*
	- Note: $|T^*| \le n \ll 2^{|U|} = 2^n$

Realized type counts as advice

- Classify online vertex in $G^* = (U \cup V, E)$ based on their types
	- Type of v_i is the set of offline vertices in $N(v_i)$ are adjacent to [BKP20]
- Define integer vector $c^* \in \mathbb{N}^{2^n}$ indexed by all possible types 2^U • $c^*(t)$ = Number of times the type $t \in 2^U$ occurs in G^*
- Define $T^* \subseteq 2^U$ as the subset of non-zero counts in c^*
	- Note: $|T^*| \le n \ll 2^{|U|} = 2^n$
- Advice is simply an estimate vector \hat{c} which approximates c^*
	- Let \widehat{T} be non-zero counts in \widehat{c} . Similarly, we have $|\widehat{T}| \leq n$
	- Can represent \hat{c} using $O(n)$ labels and numbers

Realized type counts as advice

Here, $|T^*| = 3 \ll 2^4 = 16$

- Algorithm
	- Fix any arbitrary maximum matching \widehat{M} on the graph defined by advice \widehat{c}
	- Try to mimic edge matches in \widehat{M} while tracking the types of each arrival
	- If unable to mimic, leave arrival unmatched.

- Algorithm
	- Fix any arbitrary maximum matching \widehat{M} on the graph defined by advice \widehat{c}
	- Try to mimic edge matches in \widehat{M} while tracking the types of each arrival
	- If unable to mimic, leave arrival unmatched.

- Algorithm
	- Fix any arbitrary maximum matching \widehat{M} on the graph defined by advice \widehat{c}
	- Try to mimic edge matches in \widehat{M} while tracking the types of each arrival
	- If unable to mimic, leave arrival unmatched.

- Algorithm
	- Fix any arbitrary maximum matching \widehat{M} on the graph defined by advice \widehat{c}
	- Try to mimic edge matches in \widehat{M} while tracking the types of each arrival
	- If unable to mimic, leave arrival unmatched.

- Algorithm
	- Fix any arbitrary maximum matching \widehat{M} on the graph defined by advice \widehat{c}
	- Try to mimic edge matches in \widehat{M} while tracking the types of each arrival
	- If unable to mimic, leave arrival unmatched.

- Algorithm
	- Fix any arbitrary maximum matching \widehat{M} on the graph defined by advice \widehat{c}
	- Try to mimic edge matches in \widehat{M} while tracking the types of each arrival
	- If unable to mimic, leave arrival unmatched.

- Algorithm
	- Fix any arbitrary maximum matching \widehat{M} on the graph defined by advice \widehat{c}
	- Try to mimic edge matches in \widehat{M} while tracking the types of each arrival
	- If unable to mimic, leave arrival unmatched.

- Algorithm
	- Fix any arbitrary maximum matching \widehat{M} on the graph defined by advice \widehat{c}
	- Try to mimic edge matches in \widehat{M} while tracking the types of each arrival
	- If unable to mimic, leave arrival unmatched.

- Algorithm
	- Fix any arbitrary maximum matching \widehat{M} on the graph defined by advice \widehat{c}
	- Try to mimic edge matches in \widehat{M} while tracking the types of each arrival
	- If unable to mimic, leave arrival unmatched.

- Algorithm
	- Fix any arbitrary maximum matching \widehat{M} on the graph defined by advice \widehat{c}
	- Try to mimic edge matches in \widehat{M} while tracking the types of each arrival
	- If unable to mimic, leave arrival unmatched.

- Algorithm
	- Fix any arbitrary maximum matching \widehat{M} on the graph defined by advice \widehat{c}
	- Try to mimic edge matches in \widehat{M} while tracking the types of each arrival
	- If unable to mimic, leave arrival unmatched.

- Algorithm
	- Fix any arbitrary maximum matching \widehat{M} on the graph defined by advice \widehat{c}
	- Try to mimic edge matches in \widehat{M} while tracking the types of each arrival
	- If unable to mimic, leave arrival unmatched.

Produced matching size

$$
=2
$$

- Algorithm
	- Fix any arbitrary maximum matching \widehat{M} on the graph defined by advice \widehat{c}
	- Try to mimic edge matches in \widehat{M} while tracking the types of each arrival
	- If unable to mimic, leave arrival unmatched.

Produced matching size

$$
= 2
$$

$$
L_1(c^*, \hat{c})
$$

= |3 - 2| + |0 - 1|
+ |0 - 1| + |1 - 0| + 0 ...
= 4

- Algorithm
	- Fix any arbitrary maximum matching \widehat{M} on the graph defined by advice \widehat{c}
	- Try to mimic edge matches in \widehat{M} while tracking the types of each arrival
	- If unable to mimic, leave arrival unmatched.

Produced matching size

\n
$$
= 2 = |\widehat{M}| - \frac{L_1(c^*, \widehat{c})}{2}
$$
\nError is "double counted" in L₁

\n
$$
L_1(c^*, \widehat{c})
$$
\n
$$
= |3 - 2| + |0 - 1|
$$
\n
$$
+ |0 - 1| + |1 - 0| + 0 \dots
$$
\n
$$
= 4
$$

- Algorithm
	- Fix any arbitrary maximum matching \widehat{M} on the graph defined by advice \widehat{c}
	- Try to mimic edge matches in \widehat{M} while tracking the types of each arrival
	- If unable to mimic, leave arrival unmatched.
- Analysis
	- $0 \leq L_1(c^*, \hat{c}) \leq 2n$ measures how close \hat{c} is to c^*
	- By blindly following advice, $\overline{\text{Minic}}$ gets a matching of size $\big|\widehat{M}\big|-\frac{L_1(c^*,\widehat{c})}{2}$
	- Mimic beats an advice-free Baseline whenever $\left|\widehat{M}\right|-\frac{L_1(c^*,\widehat{c})}{2}>\widehat{\beta}\cdot n$

- Algorithm
	- Fix any arbitrary maximum matching \widehat{M} on the graph defined by advice \widehat{c}
	- Try to mimic edge matches in \widehat{M} while tracking the types of each arrival
	- If unable to mimic, leave arrival unmatched.
- Analysis
	- $0 \leq L_1(c^*, \hat{c}) \leq 2n$ measures how close \hat{c} is to c^*
	- By blindly following advice, $\overline{\text{Minic}}$ gets a matching of size $\big|\widehat{M}\big|-\frac{L_1(c^*,\widehat{c})}{2}$
	- Mimic beats an advice-free Baseline whenever $\left|\widehat{M}\right|-\frac{L_1(c^*,\widehat{c})}{2}>\widehat{\beta}\cdot n$
	- Mimic beats an advice-free Baseline whenever $\frac{\text{L}_1(\text{c}^*,\hat{\text{c}})}{\text{n}}$ $< 2(1 - \beta)$

For this talk, let's treat $|\widehat{M}| = n$

How to test advice quality?

Insight: Use sublinear property testing to estimate $L_1(c^*, \hat{c})$!

• Define
$$
p = \frac{c^*}{n}
$$
 and $q = \frac{\hat{c}}{n}$ as distributions over the 2^U types

How to test advice quality?

Insight: Use sublinear property testing to estimate $L_1(c^*, \hat{c})$!

• Define
$$
p = \frac{c^*}{n}
$$
 and $q = \frac{\hat{c}}{n}$ as distributions over the 2^U types

- [VV11, JHW18]: Can estimate $L_1(p,q)$ "well" using $o(n)$ IID samples
	- To be precise, if p and q have domain size $r \le n$, then $\Theta\left(\frac{r}{\epsilon^2 \log r}\right)$ IID samples sufficient and necessary to estimate \hat{L}_1 such that $|\hat{L}_1 - L_1(p, q)| \leq \varepsilon$
	- c^* and \hat{c} can be defined over $|\hat{T}| + 1$ elements with a "not in \hat{T} " bucket

[VV11] Gregory Valiant and Paul Valiant. *The power of linear estimators*. Foundations of Computer Science (FOCS), 2011. [JHW18] Jiantao Jiao, Yanjun Han, and Tsachy Weissman. *Minimax estimation of the L1 distance*. IEEE Transactions on Information Theory, 2018.

Some minor adjustments to our problem setting

- Adjustment 1
	- Random vertex arrivals are "sampling without replacement"
	- We can simulate IID samples by keeping track of what has arrived and then "reusing" arrivals with some probability proportional to number of arrivals
- Adjustment 2
	- L_1 estimator is in expectation, but can be made "with high probability"

The TestAndMatch algorithm

- Algorithm
	- Fix any arbitrary maximum matching \widehat{M} on the graph defined by advice \widehat{c}
	- If $|\widehat{M}| \leq \beta \cdot n$, run the best advice-free **Baseline** on all arrivals
	- Otherwise, run Mimic while testing quality of \hat{c} by estimating $L_1(c^*, \hat{c})$
	- If test declares $L_1(c^*, \hat{c})$ is "large", use Baseline for remaining arrivals
	- Otherwise, continue using Mimic for remaining arrivals

The **TestAndMatch** algorithm

- Algorithm
	- Fix any arbitrary maximum matching \widehat{M} on the graph defined by advice \widehat{c}
	- If $|\widehat{M}| \leq \beta \cdot n$, run the best advice-free **Baseline** on all arrivals
	- Otherwise, run Mimic while testing quality of \hat{c} by estimating $L_1(c^*, \hat{c})$
	- If test declares $L_1(c^*, \hat{c})$ is "large", use Baseline for remaining arrivals
	- Otherwise, continue using Mimic for remaining arrivals
- Analysis
	- If $\hat{L}_1 \lesssim 2 (1 \beta)$, then TestAndMatch attains ratio of at least $1 \frac{L_1(c^*, \hat{c})}{2n}$
	- Otherwise, TestAndMatch attains ratio of at least $\beta \cdot (1 o(1))$

Our second main result

Can we get an algorithm that is both 1-consistent and $\left(\frac{1}{\epsilon} \right)$ -robust?

Goal achievable in random order (Informal)

 $\overline{\beta}$

With random order, there is an algorithm achieves competitive ratio interpolating between 1 and $\beta \cdot (1 - o(1))$, depending on advice quality.

- Our method is a meta-algorithm that uses any Baseline that achieves β
- So, we are simultaneously 1-consistent and $\beta \cdot (1 o(1))$ -robust
- For random arrival model, we know that $0.696 \leq \beta \leq 0.823$

Our second main result

Can we get an algorithm that is both 1-consistent and $\left(\frac{1}{\epsilon} \right)$ -robust?

 $\overline{\beta}$

Goal achievable in random order (Informal)

Let $\hat{\mathbf{L}}_1$ be estimate of $\mathbf{L}_1(c^*, \hat{c})$ from $o(n)$ vertex arrivals. TestAndMatch achieves a competitive ratio of at least

• At least
$$
1 - \frac{L_1(c^*, \hat{c})}{2n} \ge \beta
$$
, when \hat{L}_1 "small"

• At least $\beta \cdot (1 - o(1))$, when \hat{L}_1 "large" i.e., TestAndMatch is 1-consistent and $\beta \cdot (1 - o(1))$ -robust

Conclusions and future directions

- Our paper also discussed some practical considerations while using the given advice \hat{c}
- Can our ideas such as using property testing extend to other versions of online bipartite matching and other online problems with random arrivals?
	- We suspect it extends with suitably chosen advice and quality metrics, e.g. Earthmover distance?
- Is there a smarter way using advice other than Mimic, leaving some arrivals unmatched?
	- [FMMM09] constructed two matchings to "load balance" in the known IID setting
	- In semi-online model, [KPSSV19] mimic matching on known arrivals and Ranking on adversarial arrivals
- Message to the learning-augmented community: Beyond consistency and robustness?
	- TestAndMatch's guarantees is based on L_1 over the type histograms
	- This is sensitive to certain types of noise, e.g. \hat{c} obtained after Erdős–Rényi edits to the offline graph G^*
	- We expect large L_1 in practice, but notions of advice practicality are not formally considered under the standard framework of consistency and robustness

Thank you for your kind attention!

[FMMM09] Jon Feldman, Aranyak Mehta, Vahab Mirrokni, and Shan Muthukrishnan. *Online stochastic matching: Beating 1-1/e*. Foundations of Computer Science (FOCS), 2009. [KPSSV19] Ravi Kumar, Manish Purohit, Aaron Schild, Zoya Svitkina, and Erik Vee. *Semi-Online Bipartite Matching*. Innovations in Theoretical Computer Science (ITCS), 2019.