
Online bipartite matching
with imperfect advice

Davin Choo, Themis Gouleakis, Chun Kai Ling, Arnab Bhattacharyya

Online bipartite matching

• Offline set U = 	 {u!, … , u"} fixed and known
• Online set V = 	 {v!, … , v"} arrive one by one
• When an online vertex v# arrives
• Its neighbors N v! are revealed
• We have a make an irrevocable decision whether,

how, to match v! to something in N v!
• Final offline graph G∗ = (U ∪ V, E)
• E = N v" ∪⋯∪ N v#
• Maximum matching M∗ ⊆ E of size M∗ = n∗ ≤ n

u1

u2

u3

u4

Online bipartite matching

• Offline set U = 	 {u!, … , u"} fixed and known
• Online set V = 	 {v!, … , v"} arrive one by one
• When an online vertex v# arrives
• Its neighbors N v! are revealed
• We have a make an irrevocable decision whether,

how, to match v! to something in N v!
• Final offline graph G∗ = (U ∪ V, E)
• E = N v" ∪⋯∪ N v#
• Maximum matching M∗ ⊆ E of size M∗ = n∗ ≤ n

u1

u2

u3

u4

v1

Online bipartite matching

• Offline set U = 	 {u!, … , u"} fixed and known
• Online set V = 	 {v!, … , v"} arrive one by one
• When an online vertex v# arrives
• Its neighbors N v! are revealed
• We have a make an irrevocable decision whether,

how, to match v! to something in N v!
• Final offline graph G∗ = (U ∪ V, E)
• E = N v" ∪⋯∪ N v#
• Maximum matching M∗ ⊆ E of size M∗ = n∗ ≤ n

u1

u2

u3

u4

v1

Online bipartite matching

• Offline set U = 	 {u!, … , u"} fixed and known
• Online set V = 	 {v!, … , v"} arrive one by one
• When an online vertex v# arrives
• Its neighbors N v! are revealed
• We have a make an irrevocable decision whether,

how, to match v! to something in N v!
• Final offline graph G∗ = (U ∪ V, E)
• E = N v" ∪⋯∪ N v#
• Maximum matching M∗ ⊆ E of size M∗ = n∗ ≤ n

u1

u2

u3

u4

v1

v2

Online bipartite matching

• Offline set U = 	 {u!, … , u"} fixed and known
• Online set V = 	 {v!, … , v"} arrive one by one
• When an online vertex v# arrives
• Its neighbors N v! are revealed
• We have a make an irrevocable decision whether,

how, to match v! to something in N v!
• Final offline graph G∗ = (U ∪ V, E)
• E = N v" ∪⋯∪ N v#
• Maximum matching M∗ ⊆ E of size M∗ = n∗ ≤ n

u1

u2

u3

u4

v1

v2

Online bipartite matching

• Offline set U = 	 {u!, … , u"} fixed and known
• Online set V = 	 {v!, … , v"} arrive one by one
• When an online vertex v# arrives
• Its neighbors N v! are revealed
• We have a make an irrevocable decision whether,

how, to match v! to something in N v!
• Final offline graph G∗ = (U ∪ V, E)
• E = N v" ∪⋯∪ N v#
• Maximum matching M∗ ⊆ E of size M∗ = n∗ ≤ n

u1

u2

u3

u4

v1

v2

v3

Online bipartite matching

• Offline set U = 	 {u!, … , u"} fixed and known
• Online set V = 	 {v!, … , v"} arrive one by one
• When an online vertex v# arrives
• Its neighbors N v! are revealed
• We have a make an irrevocable decision whether,

how, to match v! to something in N v!
• Final offline graph G∗ = (U ∪ V, E)
• E = N v" ∪⋯∪ N v#
• Maximum matching M∗ ⊆ E of size M∗ = n∗ ≤ n

u1

u2

u3

u4

v1

v2

v3

Online bipartite matching

• Offline set U = 	 {u!, … , u"} fixed and known
• Online set V = 	 {v!, … , v"} arrive one by one
• When an online vertex v# arrives
• Its neighbors N v! are revealed
• We have a make an irrevocable decision whether,

how, to match v! to something in N v!
• Final offline graph G∗ = (U ∪ V, E)
• E = N v" ∪⋯∪ N v#
• Maximum matching M∗ ⊆ E of size M∗ = n∗ ≤ n

u1

u2

u3

u4

v1

v2

v3

v4

Online bipartite matching

• Offline set U = 	 {u!, … , u"} fixed and known
• Online set V = 	 {v!, … , v"} arrive one by one
• When an online vertex v# arrives
• Its neighbors N v! are revealed
• We have a make an irrevocable decision whether,

how, to match v! to something in N v!
• Final offline graph G∗ = (U ∪ V, E)
• E = N v" ∪⋯∪ N v#
• Maximum matching M∗ ⊆ E of size M∗ = n∗ ≤ n

u1

u2

u3

u4

v1

v2

v3

v4

Online bipartite matching

• Offline set U = 	 {u!, … , u"} fixed and known
• Online set V = 	 {v!, … , v"} arrive one by one
• Final offline graph G∗ = (U ∪ V, E)
• E = N v" ∪⋯∪ N v#
• Maximum matching M∗ ⊆ E of size M∗ = n∗ ≤ n

u1

u2

u3

u4

v1

v2

v3

v4Produce a matching M such that the resulting
competitive ratio %

%∗ is maximized

Goal of online bipartite matching problem

For this talk, let’s treat n∗ = n

Here, the ratio is 3/4

What is known?

• Any reasonable greedy algorithm has competitive ratio ≥ 1/2
• Size of maximal matching is at least half of size of maximum matching

• Why is online bipartite matching hard?
• Maximum bipartite matching is poly time computable…
• But we don’t know the future in the online setting!

What is known?

• Any reasonable greedy algorithm has competitive ratio ≥ 1/2
• Size of maximal matching is at least half of size of maximum matching

• Why is online bipartite matching hard?
• Maximum bipartite matching is poly time computable…
• But we don’t know the future in the online setting!

u1

u2

v1

versus

u1

u2

v1

What is known?

• Any reasonable greedy algorithm has competitive ratio ≥ 1/2
• Size of maximal matching is at least half of size of maximum matching

• Why is online bipartite matching hard?
• Maximum bipartite matching is poly time computable…
• But we don’t know the future in the online setting!

u1

u2

v1

v2

versus

u1

u2

v1

v2

What is known?

[KVV90] Richard M. Karp, Umesh V. Vazirani, Vijay V. Vazirani. An optimal algorithm for on-line bipartite matching. Symposium on Theory of Computing (STOC), 1990

(Expected) Competitive ratio

Deterministic algorithm
1
2

Deterministic hardness
1
2

Randomized algorithm 1 − !
"
 [KVV90]

Randomized hardness 1 − !
"
+o(1) [KVV90]

Greedy

Ranking

• The Ranking algorithm [KVV90]
• Pick a random permutation π over the offline vertices U
• When vertex v! arrive with N v! , match v! to the smallest indexed (with

respect to π) unmatched neighbor

min
!

min
"!#	%&&'(%)	
#*+,*-.*

Expected 	number	of	matches
n∗

What is known?

• The Ranking algorithm [KVV90]
• Pick a random permutation π over the offline vertices U
• When vertex v! arrive with N v! , match v! to the smallest indexed (with

respect to π) unmatched neighbor
[KVV90] Richard M. Karp, Umesh V. Vazirani, Vijay V. Vazirani. An optimal algorithm for on-line bipartite matching. Symposium on Theory of Computing (STOC), 1990

u1

u2

u3

u4

4

1

3

2

π

What is known?

• The Ranking algorithm [KVV90]
• Pick a random permutation π over the offline vertices U
• When vertex v! arrive with N v! , match v! to the smallest indexed (with

respect to π) unmatched neighbor
[KVV90] Richard M. Karp, Umesh V. Vazirani, Vijay V. Vazirani. An optimal algorithm for on-line bipartite matching. Symposium on Theory of Computing (STOC), 1990

u1

u2

u3

u4

v14

1

3

2

π

What is known?

• The Ranking algorithm [KVV90]
• Pick a random permutation π over the offline vertices U
• When vertex v! arrive with N v! , match v! to the smallest indexed (with

respect to π) unmatched neighbor
[KVV90] Richard M. Karp, Umesh V. Vazirani, Vijay V. Vazirani. An optimal algorithm for on-line bipartite matching. Symposium on Theory of Computing (STOC), 1990

u1

u2

u3

u4

v1

v2

4

1

3

2

π

What is known?

• The Ranking algorithm [KVV90]
• Pick a random permutation π over the offline vertices U
• When vertex v! arrive with N v! , match v! to the smallest indexed (with

respect to π) unmatched neighbor
[KVV90] Richard M. Karp, Umesh V. Vazirani, Vijay V. Vazirani. An optimal algorithm for on-line bipartite matching. Symposium on Theory of Computing (STOC), 1990

u1

u2

u3

u4

v1

v2

v3

4

1

3

2

π

What is known?

• The Ranking algorithm [KVV90]
• Pick a random permutation π over the offline vertices U
• When vertex v! arrive with N v! , match v! to the smallest indexed (with

respect to π) unmatched neighbor
[KVV90] Richard M. Karp, Umesh V. Vazirani, Vijay V. Vazirani. An optimal algorithm for on-line bipartite matching. Symposium on Theory of Computing (STOC), 1990

u1

u2

u3

u4

v1

v2

v3

v4

4

1

3

2

π

What if there is additional side information?

• Learning-augmented algorithms
• Designing algorithms using advice, predictions, etc.

• α-consistent: α-competitive with no advice error
• β-robust: β-competitive with any advice error

• Example: Binary search with advice
• Want to find a word in an n page dictionary, say it is on page x∗
• Classical binary search: O(log n) queries possible and worst case necessary
• If someone provides an advice page 7x, O log x∗ − 7x queries is possible
• Here, “best possible” is directly going to page x∗

• So, this algorithm is 1-consistent and O log n -robust since x∗ − 7x ≤ n

A natural goal is to design an algorithm with 𝛼 = 1
while 𝛽 being the best possible classically

What if there is additional side information?

• Learning-augmented algorithms
• Designing algorithms using advice, predictions, etc.

• α-consistent: α-competitive with no advice error
• β-robust: β-competitive with any advice error

• Example: Binary search with advice
• Want to find a word in an n page dictionary, say it is on page x∗
• Classical binary search: O(log n) queries possible and worst case necessary
• If someone provides an advice page 7x, O log x∗ − 7x queries is possible
• Here, “best possible” is directly querying to page x∗

• So, this algorithm is 1-consistent and O log n -robust since x∗ − 7x ≤ n

What if there is additional side information?

• Learning-augmented algorithms
• Designing algorithms using advice, predictions, etc.

• α-consistent: α-competitive with no advice error
• β-robust: β-competitive with any advice error

• Example: Binary search with advice
• Want to find a word in an n page dictionary, say it is on page x∗
• Classical binary search: O(log n) queries possible and worst case necessary
• If someone provides an advice page 7x, O log x∗ − 7x queries is possible
• Here, “best possible” is directly querying to page x∗

• So, this algorithm is 1-consistent and O log n -robust since x∗ − 7x ≤ n
7𝑥 obtained via letter frequency tables, someone who
searched a “nearby” word, or asking ChatGPT, etc…

What if there is additional side information?

• Learning-augmented algorithms
• Designing algorithms using advice, predictions, etc.

• α-consistent: α-competitive with no advice error
• β-robust: β-competitive with any advice error

• Example: Binary search with advice
• Want to find a word in an n page dictionary, say it is on page x∗
• Classical binary search: O(log n) queries possible and worst case necessary
• If someone provides an advice page 7x, O log x∗ − 7x queries is possible
• Here, “best possible” is directly querying to page x∗

• So, this algorithm is 1-consistent and O log n -robust since x∗ − 7x ≤ n

What if there is additional side information?

Offline vertices Online vertices Presence of edge Advice Error

Advertisers Ad slots
New ad slot fits the

advertisers’
requirements

Historical data Data may have
noise, bias, etc.

Food bento boxes Conference
attendee

Attendee’s dietary
options match the

food type
Food preferences May change mind if

see a tastier option

Job opening Hiring company
Applicant’s

suitability for the
job role

LinkedIn
qualifications

May lie about
credentials

Prior attempts

• [AGKK20] Prediction on edge weights adjacent to V under an optimal offline matching
• Random vertex arrivals and weighted edges
• Require hyper-parameter to quantify confidence in advice, so their consistency/robustness

tradeoffs are not directly comparable.
• [ACI22] Prediction of vertex degrees "d u4 , … , "d u5 of the offline vertices in U

• Adversarial arrival model
• Optimal under the Chung-Lu-Vu random graph model [CLV03]
• Unable to attain 1-consistency in general

• [JM22] Advice is a proposed matching for the first batch of arrived vertices
• Two-staged arrival model [FNS21], where best possible robustness is ¾
• For any R ∈ 0,¾ , they can achieve consistency of 1	 − 1	 − 1 − R

#

• [LYR23] Augment any “expert algorithm” with a pre-trained RL model
• For any ρ ∈ [0,1], their method is ρ-competitive to the given “expert algorithm”

[AGKK20] Antonios Antoniadis, Themis Gouleakis, Pieter Kleer, and Pavel Kolev. Secretary and online matching problems with machine learned advice. Neural Information Processing Systems (NeurIPS), 2020

Prior attempts

• [AGKK20] Prediction on edge weights adjacent to V under an optimal offline matching
• Random vertex arrivals and weighted edges
• Require hyper-parameter to quantify confidence in advice, so their consistency/robustness

tradeoffs are not directly comparable.
• [ACI22] Prediction of vertex degrees "d u4 , … , "d u5 of the offline vertices in U

• Adversarial arrival model
• Optimal under the Chung-Lu-Vu random graph model [CLV03]
• Unable to attain 1-consistency in general

• [JM22] Advice is a proposed matching for the first batch of arrived vertices
• Two-staged arrival model [FNS21], where best possible robustness is ¾
• For any R ∈ 0,¾ , they can achieve consistency of 1	 − 1	 − 1 − R

#

• [LYR23] Augment any “expert algorithm” with a pre-trained RL model
• For any ρ ∈ [0,1], their method is ρ-competitive to the given “expert algorithm”

[ACI22] Anders Aamand, Justin Chen, and Piotr Indyk. (Optimal) Online Bipartite Matching with Degree Information. Neural Information Processing Systems (NeurIPS), 2022
[CLV03] Fan Chung, Linyuan Lu, and Van Vu. Spectra of random graphs with given expected degrees. Proceedings of the National Academy of Sciences (PNAS), 2003

Prior attempts

• [AGKK20] Prediction on edge weights adjacent to V under an optimal offline matching
• Random vertex arrivals and weighted edges
• Require hyper-parameter to quantify confidence in advice, so their consistency/robustness

tradeoffs are not directly comparable.
• [ACI22] Prediction of vertex degrees "d u4 , … , "d u5 of the offline vertices in U

• Adversarial arrival model
• Optimal under the Chung-Lu-Vu random graph model [CLV03]
• Unable to attain 1-consistency in general

• [JM22] Advice is a proposed matching for the first batch of arrived vertices
• Two-staged arrival model [FNS21], where best possible robustness is ¾
• For any R ∈ 0,¾ , they can achieve consistency of 1	 − 1	 − 1 − R

#

• [LYR23] Augment any “expert algorithm” with a pre-trained RL model
• For any ρ ∈ [0,1], their method is ρ-competitive to the given “expert algorithm”

[JM22] Billy Jin and Will Ma. Online bipartite matching with advice: Tight robustness-consistency tradeoffs for the two-stage model. Neural Information Processing Systems (NeurIPS), 2022
[FNS21] Yiding Feng, Rad Niazadeh, and Amin Saberi. Two-stage stochastic matching with application to ride hailing. Symposium on Discrete Algorithms (SODA), 2021.

Prior attempts

• [AGKK20] Prediction on edge weights adjacent to V under an optimal offline matching
• Random vertex arrivals and weighted edges
• Require hyper-parameter to quantify confidence in advice, so their consistency/robustness

tradeoffs are not directly comparable.
• [ACI22] Prediction of vertex degrees "d u4 , … , "d u5 of the offline vertices in U

• Adversarial arrival model
• Optimal under the Chung-Lu-Vu random graph model [CLV03]
• Unable to attain 1-consistency in general

• [JM22] Advice is a proposed matching for the first batch of arrived vertices
• Two-staged arrival model [FNS21], where best possible robustness is ¾
• For any R ∈ 0,¾ , they can achieve consistency of 1	 − 1	 − 1 − R

#

• [LYR23] Augment any “expert algorithm” with a pre-trained RL model
• For any ρ ∈ [0,1], their method is ρ-competitive to the given “expert algorithm”

[LYR23] Pengfei Li, Jianyi Yang, and Shaolei Ren. Learning for edge-weighted online bipartite matching with robustness guarantees. International Conference on Machine Learning (ICML), 2023

Research question

• If we have “perfect information” about G∗, can get n∗ matches?

• Also, we know that Ranking achieves competitive ratio of 1 − !
'

Can we get an algorithm that is both
1-consistent and 1 − !

"
-robust?

Our first main result

• Extends to (1 − a)-consistent and !
(
+ a -robust, for any a ∈ 0,½ .

• Proof sketch (for a = 0 case):
• Restrict G∗ to be one of two possible graphs (next slide)
• Any advice is equivalent to getting 1 bit of information
• In first #

&
 arrivals, no algorithm can distinguish between the two graphs

• Any 1-consistent algorithm must behave as if the advice is perfect initially

With adversarial vertex arrivals, no algorithm can be both
1-consistent and > !

(
 -robust, regardless of advice.

Impossibility result (Informal)

With adversarial vertex arrivals, no algorithm can be both
1-consistent and > !

(-robust, regardless of advice.

Impossibility result (Informal)

u1

u2

u3

u4

v1

v2

v3

u5

u6

u1

u2

u3

u4

v1

v2

v3

u5

u6

With adversarial vertex arrivals, no algorithm can be both
1-consistent and > !

(-robust, regardless of advice.

Impossibility result (Informal)

u1

u2

u3

u4

v1

v2

v3

v4

v5

v6

u5

u6

u1

u2

u3

u4

v1

v2

v3

v4

v5

v6

u5

u6

Hierarchy of arrival models [M13]

Adversarial ≤ Random order ≤ Unknown IID ≤ Known IID

EasierHarder

Easier models can achieve
higher competitive ratios

[M13] Aranyak Mehta. Online matching and ad allocation. Foundations and Trends in Theoretical Computer Science, 2013

Hierarchy of arrival models [M13]

Adversarial ≤ Random order ≤ Unknown IID ≤ Known IID

Worst case G∗

Worst case
arrival sequence

Arrival
sequence is a

random
permutation

Each online vertex is drawn
from some type distribution
𝒟: 2' → ℝ in an IID fashion

𝒟: 2' → ℝ
unknown

𝒟: 2' → ℝ
known

What is known?
Adversarial ≤ Random order ≤ Unknown IID ≤ Known IID

(Expected) Competitive ratio

Adversarial arrival Random order arrival

Deterministic
algorithm

1
2

1 − !
"
 [GM08]

Deterministic
hardness

1
2

3
4

Randomized
algorithm 1 − !

"
 [KVV90] 0.696 [MY11]

Randomized
hardness 1 − !

"
+o(1) [KVV90] 0.823 [MGS12]

Greedy

Ranking

[GM08] Gagan Goel and Aranyak Mehta. Online budgeted matching in random input models with applications to Adwords. Symposium on Discrete Algorithms (SODA), 2008
[MY11] Mohammad Mahdian and Qiqi Yan. Online Bipartite Matching with Random Arrivals: An Approach Based on Strongly Factor-Revealing LPs. Symposium on Theory of Computing (STOC), 2011
[MGS12] Vahideh H Manshadi, Shayan Oveis Gharan, and Amin Saberi. Online stochastic matching: Online actions based on offline statistics. Mathematics of Operations Research, 2012

What is known?

• Hardness of)
*
 for random order

• [KMT11] showed that Ranking cannot beat 0.727 in general
• So, new ideas are needed if you believe the “right bound” is 0.823

u1

u2

v1

v2

versus

u1

u2

v1

v2

[KMT11] Mohammad Mahdian and Qiqi Yan. Online Bipartite Matching with Random Arrivals: An Approach Based on Strongly Factor-Revealing LPs. Symposium on Theory of Computing (STOC), 2011

Our second main result

• Let 𝛽 denote the “best possible competitive ratio”
• Our first result says: This is not possible for adversarial arrivals!
• What about random order arrivals?

Can we get an algorithm that is both 1-consistent and 1 − "
(

-robust?
𝛽

Adversarial ≤ Random order ≤ Unknown IID ≤ Known IID

Our second main result

• Our method is a meta-algorithm that uses any Baseline that achieves 𝛽
• So, we are simultaneously 1-consistent and 𝛽 ⋅ 1 − 𝑜 1 -robust
• For random arrival model, we know that 0.696 ≤ 𝛽 ≤ 0.823

With random order, there is an algorithm achieves competitive ratio
interpolating between 1 and 𝛽 ⋅ 1 − 𝑜 1 , depending on advice quality.

Goal achievable in random order (Informal)

Can we get an algorithm that is both 1-consistent and 1 − "
(

-robust?
𝛽

e.g. use
Ranking

Realized type counts as advice

• Classify online vertex in G∗ = (U ∪ V, E) based on their types
• Type of v! is the set of offline vertices in N v! are adjacent to [BKP20]

• Define integer vector c∗ ∈ ℕ() indexed by all possible types 2+
• c∗ t = Number of times the type t ∈ 2* occurs in G∗

• Define T∗ ⊆ 2+ as the subset of non-zero counts in c∗
• Note: T∗ ≤ n ≪ 2 * = 2#

• Advice is simply an estimate vector Ac which approximates c∗
• Let HT be non-zero counts in 7c. Similarly, we have HT ≤ n
• Can represent 7c using O n labels and numbers

[BKP20] Allan Borodin, Christodoulos Karavasilis, and Denis Pankratov. An experimental study of algorithms for online bipartite matching. Journal of Experimental Algorithmics (JEA), 2020

Realized type counts as advice

• Classify online vertex in G∗ = (U ∪ V, E) based on their types
• Type of v! is the set of offline vertices in N v! are adjacent to [BKP20]

• Define integer vector c∗ ∈ ℕ() indexed by all possible types 2+
• c∗ t = Number of times the type t ∈ 2* occurs in G∗

• Define T∗ ⊆ 2+ as the subset of non-zero counts in c∗
• Note: T∗ ≤ n ≪ 2 * = 2#

• Advice is simply an estimate vector Ac which approximates c∗
• Let HT be non-zero counts in 7c. Similarly, we have HT ≤ n
• Can represent 7c using O n labels and numbers

Realized type counts as advice

u1

u2

u3

u4

Type c∗

{u", u&, u+} 2

{u", u,} 1

{u&, u,} 1

2* ∖ T∗ 0

T∗

Here, T∗ = 3 ≪ 2+ = 16

The Mimic algorithm

• Algorithm
• Fix any arbitrary maximum matching HM on the graph defined by advice 7c
• Try to mimic edge matches in HM while tracking the types of each arrival
• If unable to mimic, leave arrival unmatched.

• Analysis
• 0 ≤ L" c∗, 7c ≤ 2n measures how close 7c is to c∗

• By blindly following advice, Mimic gets a matching of size HM − -" .∗,0.
&#

• Mimic beats an advice-free Baseline whenever HM − -" .∗,0.
&#

> β ⋅ n

u1

u2

u3

u4

Type c∗

{u0, u1, u2} 2

{u0, u3} 1

{u1, u3} 1

The Mimic algorithm

• Algorithm
• Fix any arbitrary maximum matching HM on the graph defined by advice 7c
• Try to mimic edge matches in HM while tracking the types of each arrival
• If unable to mimic, leave arrival unmatched.

• Analysis
• 0 ≤ L" c∗, 7c ≤ 2n measures how close 7c is to c∗

• By blindly following advice, Mimic gets a matching of size HM − -" .∗,0.
&#

• Mimic beats an advice-free Baseline whenever HM − -" .∗,0.
&#

> β ⋅ n

u1

u2

u3

u4

Type c∗ ;c

{u0, u1, u2} 2 3

{u0, u3} 1 0

{u1, u3} 1 0

{u0, u1, u3} 0 1

The Mimic algorithm

• Algorithm
• Fix any arbitrary maximum matching HM on the graph defined by advice 7c
• Try to mimic edge matches in HM while tracking the types of each arrival
• If unable to mimic, leave arrival unmatched.

• Analysis
• 0 ≤ L" c∗, 7c ≤ 2n measures how close 7c is to c∗

• By blindly following advice, Mimic gets a matching of size HM − -" .∗,0.
&#

• Mimic beats an advice-free Baseline whenever HM − -" .∗,0.
&#

> β ⋅ n

u1

u2

u3

u4

u1

u2

u3

u4

Type c∗ ;c

{u0, u1, u2} 2 3

{u0, u3} 1 0

{u1, u3} 1 0

{u0, u1, u3} 0 1

The Mimic algorithm

• Algorithm
• Fix any arbitrary maximum matching HM on the graph defined by advice 7c
• Try to mimic edge matches in HM while tracking the types of each arrival
• If unable to mimic, leave arrival unmatched.

• Analysis
• 0 ≤ L" c∗, 7c ≤ 2n measures how close 7c is to c∗

• By blindly following advice, Mimic gets a matching of size HM − -" .∗,0.
&#

• Mimic beats an advice-free Baseline whenever HM − -" .∗,0.
&#

> β ⋅ n

u1

u2

u3

u4

Type c∗ ;c

{u0, u1, u2} 2 3

{u0, u3} 1 0

{u1, u3} 1 0

{u0, u1, u3} 0 1

HM

u1

u2

u3

u4

The Mimic algorithm

• Algorithm
• Fix any arbitrary maximum matching HM on the graph defined by advice 7c
• Try to mimic edge matches in HM while tracking the types of each arrival
• If unable to mimic, leave arrival unmatched.

• Analysis
• 0 ≤ L" c∗, 7c ≤ 2n measures how close 7c is to c∗

• By blindly following advice, Mimic gets a matching of size HM − -" .∗,0.
&#

• Mimic beats an advice-free Baseline whenever HM − -" .∗,0.
&#

> β ⋅ n

u1

u2

u3

u4

Type c∗ ;c

{u0, u1, u2} 2 3

{u0, u3} 1 0

{u1, u3} 1 0

{u0, u1, u3} 0 1

HM

u1

u2

u3

u4

The Mimic algorithm

• Algorithm
• Fix any arbitrary maximum matching HM on the graph defined by advice 7c
• Try to mimic edge matches in HM while tracking the types of each arrival
• If unable to mimic, leave arrival unmatched.

• Analysis
• 0 ≤ L" c∗, 7c ≤ 2n measures how close 7c is to c∗

• By blindly following advice, Mimic gets a matching of size HM − -" .∗,0.
&#

• Mimic beats an advice-free Baseline whenever HM − -" .∗,0.
&#

> β ⋅ n

u1

u2

u3

u4

Type c∗ ;c

{u0, u1, u2} 2 3

{u0, u3} 1 0

{u1, u3} 1 0

{u0, u1, u3} 0 1

HM

u1

u2

u3

u4

The Mimic algorithm

• Algorithm
• Fix any arbitrary maximum matching HM on the graph defined by advice 7c
• Try to mimic edge matches in HM while tracking the types of each arrival
• If unable to mimic, leave arrival unmatched.

• Analysis
• 0 ≤ L" c∗, 7c ≤ 2n measures how close 7c is to c∗

• By blindly following advice, Mimic gets a matching of size HM − -" .∗,0.
&#

• Mimic beats an advice-free Baseline whenever HM − -" .∗,0.
&#

> β ⋅ n

u1

u2

u3

u4

Type c∗ ;c

{u0, u1, u2} 2 3

{u0, u3} 1 0

{u1, u3} 1 0

{u0, u1, u3} 0 1

HM

u1

u2

u3

u4

The Mimic algorithm

• Algorithm
• Fix any arbitrary maximum matching HM on the graph defined by advice 7c
• Try to mimic edge matches in HM while tracking the types of each arrival
• If unable to mimic, leave arrival unmatched.

• Analysis
• 0 ≤ L" c∗, 7c ≤ 2n measures how close 7c is to c∗

• By blindly following advice, Mimic gets a matching of size HM − -" .∗,0.
&#

• Mimic beats an advice-free Baseline whenever HM − -" .∗,0.
&#

> β ⋅ n

u1

u2

u3

u4

Type c∗ ;c

{u0, u1, u2} 2 3

{u0, u3} 1 0

{u1, u3} 1 0

{u0, u1, u3} 0 1

HM

u1

u2

u3

u4

2

The Mimic algorithm

• Algorithm
• Fix any arbitrary maximum matching HM on the graph defined by advice 7c
• Try to mimic edge matches in HM while tracking the types of each arrival
• If unable to mimic, leave arrival unmatched.

• Analysis
• 0 ≤ L" c∗, 7c ≤ 2n measures how close 7c is to c∗

• By blindly following advice, Mimic gets a matching of size HM − -" .∗,0.
&#

• Mimic beats an advice-free Baseline whenever HM − -" .∗,0.
&#

> β ⋅ n

u1

u2

u3

u4

Type c∗ ;c

{u0, u1, u2} 2 3

{u0, u3} 1 0

{u1, u3} 1 0

{u0, u1, u3} 0 1

HM

u1

u2

u3

u4

2

The Mimic algorithm

• Algorithm
• Fix any arbitrary maximum matching HM on the graph defined by advice 7c
• Try to mimic edge matches in HM while tracking the types of each arrival
• If unable to mimic, leave arrival unmatched.

• Analysis
• 0 ≤ L" c∗, 7c ≤ 2n measures how close 7c is to c∗

• By blindly following advice, Mimic gets a matching of size HM − -" .∗,0.
&#

• Mimic beats an advice-free Baseline whenever HM − -" .∗,0.
&#

> β ⋅ n

u1

u2

u3

u4

Type c∗ ;c

{u0, u1, u2} 2 3

{u0, u3} 1 0

{u1, u3} 1 0

{u0, u1, u3} 0 1

HM

u1

u2

u3

u4

2

The Mimic algorithm

• Algorithm
• Fix any arbitrary maximum matching HM on the graph defined by advice 7c
• Try to mimic edge matches in HM while tracking the types of each arrival
• If unable to mimic, leave arrival unmatched.

• Analysis
• 0 ≤ L" c∗, 7c ≤ 2n measures how close 7c is to c∗

• By blindly following advice, Mimic gets a matching of size HM − -" .∗,0.
&#

• Mimic beats an advice-free Baseline whenever HM − -" .∗,0.
&#

> β ⋅ n

u1

u2

u3

u4

Type c∗ ;c

{u0, u1, u2} 2 3

{u0, u3} 1 0

{u1, u3} 1 0

{u0, u1, u3} 0 1

HM

u1

u2

u3

u4

2 1

The Mimic algorithm

• Algorithm
• Fix any arbitrary maximum matching HM on the graph defined by advice 7c
• Try to mimic edge matches in HM while tracking the types of each arrival
• If unable to mimic, leave arrival unmatched.

• Analysis
• 0 ≤ L" c∗, 7c ≤ 2n measures how close 7c is to c∗

• By blindly following advice, Mimic gets a matching of size HM − -" .∗,0.
&#

• Mimic beats an advice-free Baseline whenever HM − -" .∗,0.
&#

> β ⋅ n

u1

u2

u3

u4

Type c∗ ;c

{u0, u1, u2} 2 3

{u0, u3} 1 0

{u1, u3} 1 0

{u0, u1, u3} 0 1

Produced matching size
= 2 = -" .

∗,0.
&

L" c∗, 7c
= 3 − 2 + 0 − 1 	
	+ 0 − 1 + 1 − 0
= 4

The Mimic algorithm

• Algorithm
• Fix any arbitrary maximum matching HM on the graph defined by advice 7c
• Try to mimic edge matches in HM while tracking the types of each arrival
• If unable to mimic, leave arrival unmatched.

• Analysis
• 0 ≤ L" c∗, 7c ≤ 2n measures how close 7c is to c∗

• By blindly following advice, Mimic gets a matching of size HM − -" .∗,0.
&#

• Mimic beats an advice-free Baseline whenever HM − -" .∗,0.
&#

> β ⋅ n

u1

u2

u3

u4

Type c∗ ;c

{u0, u1, u2} 2 3

{u0, u3} 1 0

{u1, u3} 1 0

{u0, u1, u3} 0 1

Produced matching size
= 2 = -" .

∗,0.
&

L" c∗, 7c
= 3 − 2 + 0 − 1 	
	+ 0 − 1 + 1 − 0 + 0…
= 4

The Mimic algorithm

• Algorithm
• Fix any arbitrary maximum matching HM on the graph defined by advice 7c
• Try to mimic edge matches in HM while tracking the types of each arrival
• If unable to mimic, leave arrival unmatched.

• Analysis
• 0 ≤ L" c∗, 7c ≤ 2n measures how close 7c is to c∗

• By blindly following advice, Mimic gets a matching of size HM − -" .∗,0.
&#

• Mimic beats an advice-free Baseline whenever HM − -" .∗,0.
&#

> β ⋅ n

u1

u2

u3

u4

Type c∗ ;c

{u0, u1, u2} 2 3

{u0, u3} 1 0

{u1, u3} 1 0

{u0, u1, u3} 0 1

Produced matching size
= 2 = HM − -" .∗,0.

&

L" c∗, 7c
= 3 − 2 + 0 − 1 	
	+ 0 − 1 + 1 − 0 + 0…
= 4

Error is “double
counted” in L0

The Mimic algorithm

• Algorithm
• Fix any arbitrary maximum matching HM on the graph defined by advice 7c
• Try to mimic edge matches in HM while tracking the types of each arrival
• If unable to mimic, leave arrival unmatched.

• Analysis
• 0 ≤ L" c∗, 7c ≤ 2n measures how close 7c is to c∗

• By blindly following advice, Mimic gets a matching of size HM − -" .∗,0.
&

• Mimic beats an advice-free Baseline whenever HM − -" .∗,0.
&

> β ⋅ n

The Mimic algorithm

• Algorithm
• Fix any arbitrary maximum matching HM on the graph defined by advice 7c
• Try to mimic edge matches in HM while tracking the types of each arrival
• If unable to mimic, leave arrival unmatched.

• Analysis
• 0 ≤ L" c∗, 7c ≤ 2n measures how close 7c is to c∗

• By blindly following advice, Mimic gets a matching of size HM − -" .∗,0.
&

• Mimic beats an advice-free Baseline whenever HM − -" .∗,0.
&

> β ⋅ n

• Mimic beats an advice-free Baseline whenever -" .
∗,0.
#

< 2(1 − β)

For this talk, let’s treat HM = n

How to test advice quality?

• Define p = ,∗

"
 and q = -,

"
	 as distributions over the 2+ types

• [VV11, JHW18]: Can estimate L! p, q 	"well" using o n IID samples
• To be precise, if p and q have domain size r ≤ n, then Θ 1

2# 345 1
 IID samples

sufficient and necessary to estimate \L" such that \L" − L" p, q ≤ ε
• c∗ and 7c can be defined over HT + 1 elements with a “not in HT” bucket

Insight: Use sublinear property testing to estimate L! c∗, ,c !

How to test advice quality?

• Define p = ,∗

"
 and q = -,

"
	 as distributions over the 2+ types

• [VV11, JHW18]: Can estimate L! p, q 	“well” using o n IID samples
• To be precise, if p and q have domain size r ≤ n, then Θ 1

2# 345 1
 IID samples

sufficient and necessary to estimate \L" such that \L" − L" p, q ≤ ε
• c∗ and 7c can be defined over HT + 1 elements with a “not in HT” bucket

[VV11] Gregory Valiant and Paul Valiant. The power of linear estimators. Foundations of Computer Science (FOCS), 2011.
[JHW18] Jiantao Jiao, Yanjun Han, and Tsachy Weissman. Minimax estimation of the L1 distance. IEEE Transactions on Information Theory, 2018.

Insight: Use sublinear property testing to estimate L! c∗, ,c !

Some minor adjustments to our problem setting

• Adjustment 1
• Random vertex arrivals are “sampling without replacement”
• We can simulate IID samples by keeping track of what has arrived and then

“reusing” arrivals with some probability proportional to number of arrivals

• Adjustment 2
• L" estimator is in expectation, but can be made “with high probability”

The TestAndMatch algorithm

• Algorithm
• Fix any arbitrary maximum matching HM on the graph defined by advice 7c
• If HM ≤ β ⋅ n, run the best advice-free Baseline on all arrivals
• Otherwise, run Mimic while testing quality of 7c by estimating L" c∗, 7c
• If test declares L" c∗, 7c is “large”, use Baseline for remaining arrivals
• Otherwise, continue using Mimic for remaining arrivals

• Analysis
• If \L" ≲ 2 1 − β , then TestAndMatch attains ratio of at least 1	 − -" .∗,0.

&#
• Otherwise, TestAndMatch attains ratio of at least β ⋅ 1 − o 1

The TestAndMatch algorithm

• Algorithm
• Fix any arbitrary maximum matching HM on the graph defined by advice 7c
• If HM ≤ β ⋅ n, run the best advice-free Baseline on all arrivals
• Otherwise, run Mimic while testing quality of 7c by estimating L" c∗, 7c
• If test declares L" c∗, 7c is “large”, use Baseline for remaining arrivals
• Otherwise, continue using Mimic for remaining arrivals

• Analysis
• If \L" ≲ 2 1 − β , then TestAndMatch attains ratio of at least 1	 − -" .∗,0.

&#
• Otherwise, TestAndMatch attains ratio of at least β ⋅ 1 − o 1

Our second main result

• Our method is a meta-algorithm that uses any Baseline that achieves 𝛽
• So, we are simultaneously 1-consistent and 𝛽 ⋅ 1 − 𝑜 1 -robust
• For random arrival model, we know that 0.696 ≤ 𝛽 ≤ 0.823

With random order, there is an algorithm achieves competitive ratio
interpolating between 1 and 𝛽 ⋅ 1 − 𝑜 1 , depending on advice quality.

Goal achievable in random order (Informal)

Can we get an algorithm that is both 1-consistent and 1 − "
(

-robust?
𝛽

Our second main result

Let -L! be estimate of L! c∗, ,c from o n vertex arrivals.
TestAndMatch achieves a competitive ratio of at least

• At least 1 − .> ,∗,-,
("

≥ β , when -L! “small”
• At least β ⋅ 1 − o 1 , when -L! “large”
i.e., TestAndMatch is 1-consistent and β ⋅ 1 − o 1 -robust

Goal achievable in random order (Informal)

Can we get an algorithm that is both 1-consistent and 1 − "
(

-robust?
𝛽

Conclusions and future directions

• Our paper also discussed some practical considerations while using the given advice (c
• Can our ideas such as using property testing extend to other versions of online bipartite

matching and other online problems with random arrivals?
• We suspect it extends with suitably chosen advice and quality metrics, e.g. Earthmover distance?

• Is there a smarter way using advice other than Mimic, leaving some arrivals unmatched?
• [FMMM09] constructed two matchings to “load balance” in the known IID setting
• In semi-online model, [KPSSV19] mimic matching on known arrivals and Ranking on adversarial arrivals

• Message to the learning-augmented community: Beyond consistency and robustness?
• TestAndMatch's guarantees is based on L0 over the type histograms
• This is sensitive to certain types of noise, e.g. 7c obtained after Erdős–Rényi edits to the offline graph G∗

• We expect large L0 in practice, but notions of advice practicality are not formally considered under the
standard framework of consistency and robustness

[FMMM09] Jon Feldman, Aranyak Mehta, Vahab Mirrokni, and Shan Muthukrishnan. Online stochastic matching: Beating 1-1/e. Foundations of Computer Science (FOCS), 2009.
[KPSSV19] Ravi Kumar, Manish Purohit, Aaron Schild, Zoya Svitkina, and Erik Vee. Semi-Online Bipartite Matching. Innovations in Theoretical Computer Science (ITCS), 2019.

Thank you for your kind attention!

