

Deep Stochastic Mechanics

Elena Orlova, Aleksei Ustimenko, Ruoxi Jiang, Peter Y. Lu, and
Rebecca Willett

Problem Statement

The time-**dependent** Schrödinger equation (SE) for $0 < t \leq T$ and $\forall x \in \mathbb{R}^d$:

$$i\hbar\partial_t\psi(x, t) = \left[-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2} + V(x, t) \right]\psi(x, t),$$

$\psi(x, 0) = \psi_0(x).$

known constants

known potential function
(describes physics)

$\psi : \mathbb{R}^d \times [0, T] \rightarrow \mathbb{C}$
wave function (unknown)

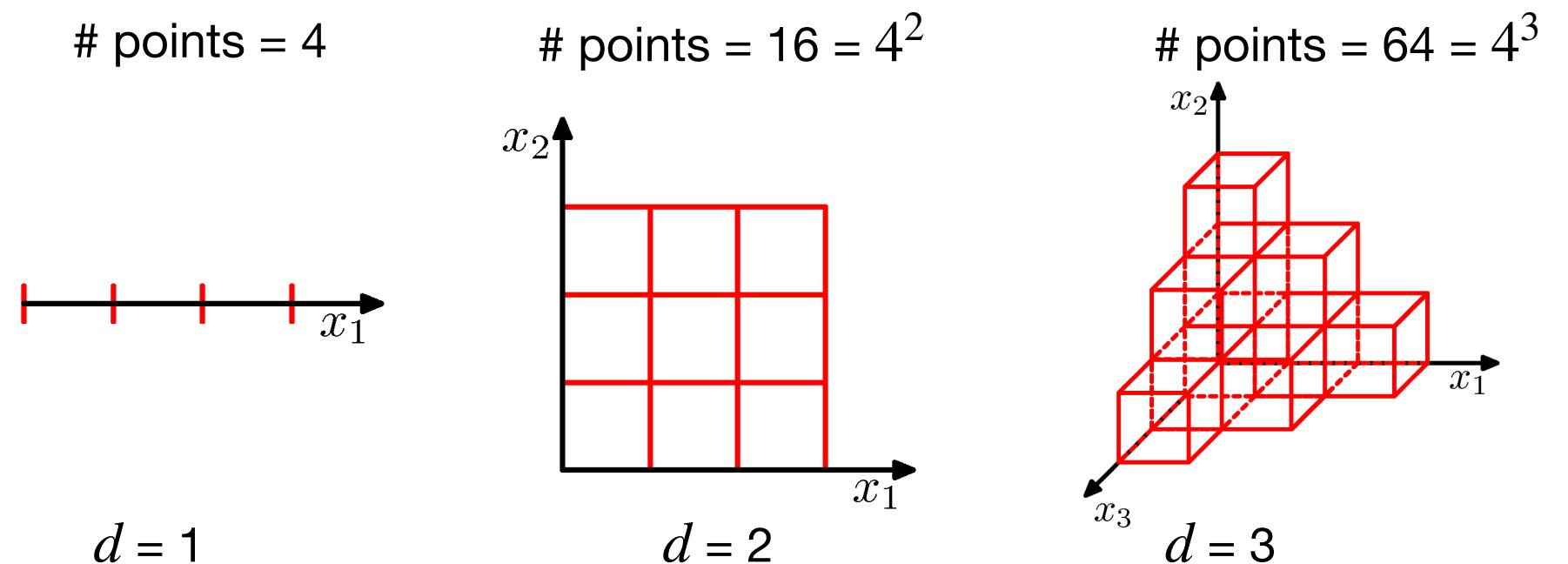
The **probability density** of finding a particle at position x at time t is

$$\rho(x, t) = |\psi(x, t)|^2.$$

GOAL: given $\psi_0(x)$, draw samples from $|\psi(x, t)|^2$ for $t \in (0, T]$

Solving Schrödinger Equation

- **Classical numerical solvers** and **Physics-informed neural networks (PINN)**: solve SE on a grid of points → **grid size grows exponentially** with the number of particles d



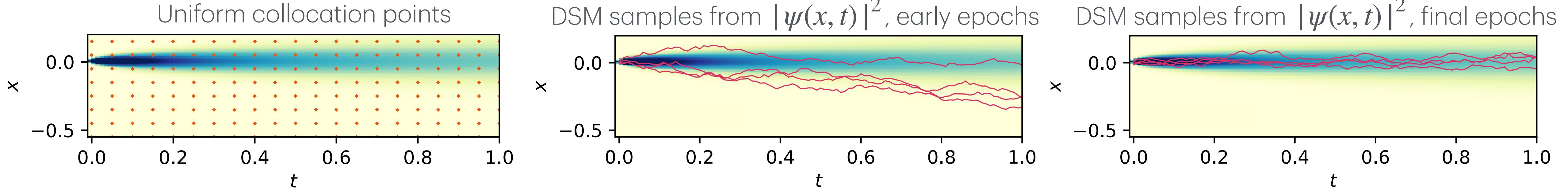
- **Variational Monte Carlo (VMC) methods**: reformulate solving SE as minimization of an energy functional
 - Great NNs for time-**in**dependent SE (FermiNet, PauliNet)
 - **t-VMC**: parametrizes ψ with parameters θ (ansatz), and solves the corresponding optimization problem to find θ
 - **Requires carefully designed ansatzes** to work well, but struggles with complex parametric forms (e.g. NNs)
 - Does expensive **MCMC sampling for every time step**

$$\begin{aligned}
 E(\theta) &= \int \Psi_\theta(x)^* H \Psi_\theta(x) dx \\
 &= \int |\Psi_\theta(x)|^2 \frac{H \Psi_\theta(x)}{\Psi_\theta(x)} dx \\
 &= \mathbb{E}_{x \sim |\Psi_\theta(x)|^2} \left[\frac{H \Psi_\theta(x)}{\Psi_\theta(x)} \right]
 \end{aligned}$$

Our Approach

Based on stochastic formulation of quantum mechanics, our approach:

- **Parameterizes the gradients of the wave functions** rather than the density, analogous to score-based diffusion model.
- **Efficiently samples** from the density $\rho(x, t) = |\psi(x, t)|^2$ using an SDE, **side-stepping the curse of dimensionality** and **avoiding expensive MCMC sampling**.



Nelson's Stochastic Mechanics

Wave function:

$$\psi(x, t) = \sqrt{\rho(x, t)} e^{iS(x, t)}$$

Schrödinger equation:

$$i\hbar \partial_t \psi(x, t) = \left[-\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} + V(x, t) \right] \psi(x, t),$$

$$\psi(x, 0) = \psi_0(x).$$

Sampling (MCMC) from $|\psi(\cdot, t)|^2$.

Equivalence
(if ψ satisfies SE)

Velocities:

current velocity: $v(x, t) = \frac{\hbar}{m} \nabla S(x, t),$

osmotic velocity: $u(x, t) = \frac{\hbar}{2m} \nabla \log \rho(x, t).$

Madelung equations:

$$\partial_t u = -\nabla \langle u, \nabla u \rangle - \frac{\hbar}{2m} \nabla (\operatorname{div} v),$$

$$\partial_t v = -\frac{1}{m} \nabla V + \langle u, \nabla u \rangle - \langle v, \nabla v \rangle + \frac{\hbar}{2m} \nabla (\operatorname{div} u)$$

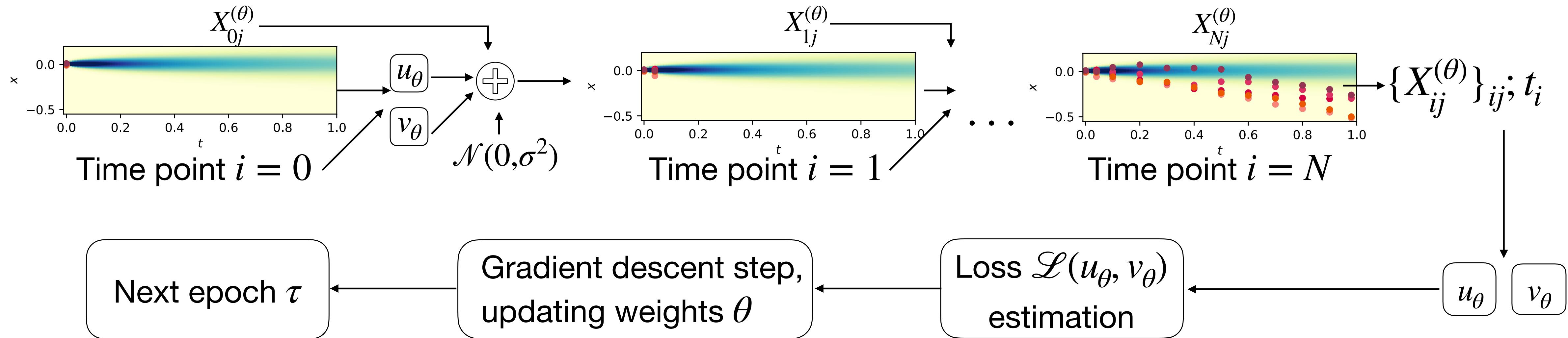
Diffusion process $X(t) \in \mathbb{R}^d$:

$$dX(t) = \left(v(X(t), t) + u(X(t), t) \right) dt + \sqrt{\frac{\hbar}{m}} dW,$$

$$X(0) \sim |\psi_0|^2$$

Efficient sampling: $X(t) \sim |\psi(\cdot, t)|^2$ for all t .

Deep Stochastic Mechanics (DSM)



Parametrize u and v via NNs, yielding a new process $X^\theta(t) \in \mathbb{R}^d$ that approximates $X(t)$.

How to train it?

- Define **loss \mathcal{L} from Madelung equations** and **initial conditions** on u_θ and v_θ at $t = 0$
- **Generate trajectories** $X_{i+1}^\theta = X_i^\theta + (v_\theta(X_i^\theta, t_i) + u_\theta(X_i^\theta, t_i))\epsilon + \xi$, $\xi \sim \mathcal{N}(0, \sigma^2)$, **evaluate \mathcal{L}** and **update the models' weights**, repeat for every epoch

Experiments: Two Interacting Bosons

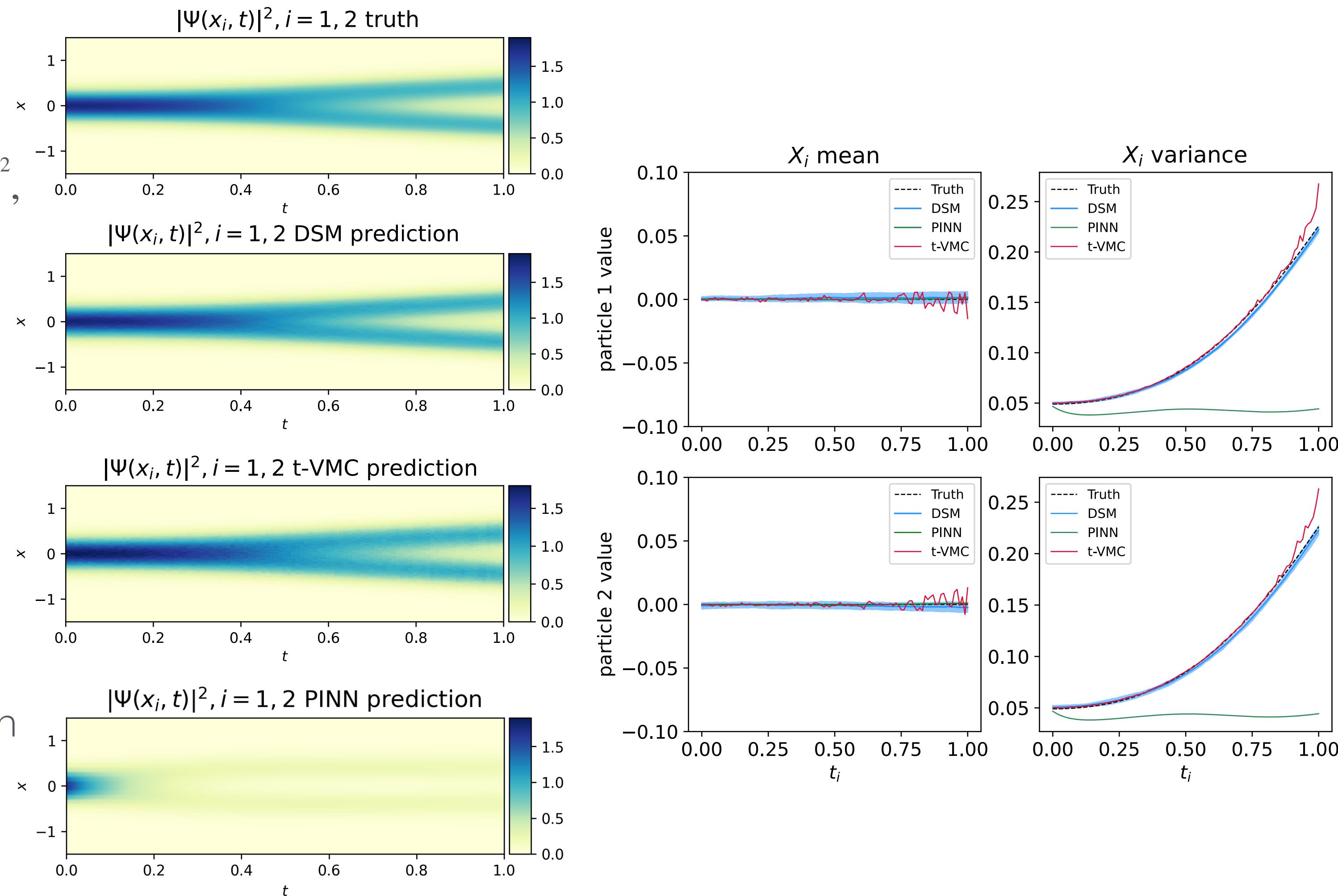
Interacting bosons in a harmonic potential:

$$V(x, t) = \sum_i \frac{1}{2} m \omega^2 x_i^2 + \frac{1}{2} g \sum_{i,j} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(x_i - x_j)^2/2\sigma^2},$$

$$\psi(x, 0) = e^{-\omega^2 x^2/(2\hbar)}.$$

DSM and t-VMC perform reasonably well. What about higher dimensions?

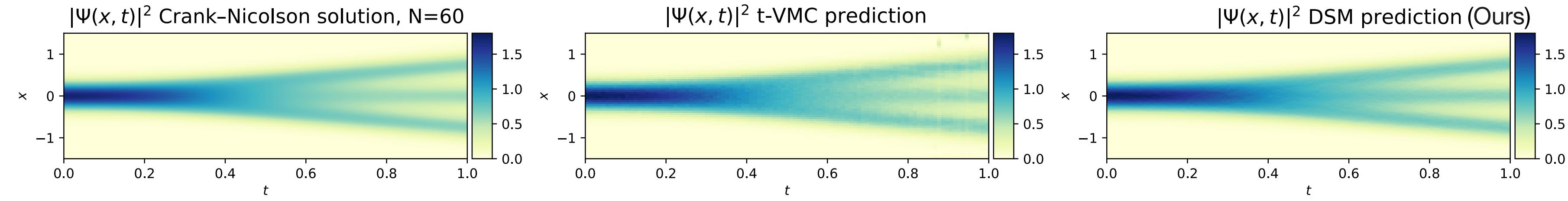
- DSM/PINN: a feed-forward linear model with skip connections and tanh activations.
- t-VMC ansatz: Hermite polynomials with two-body interaction terms.



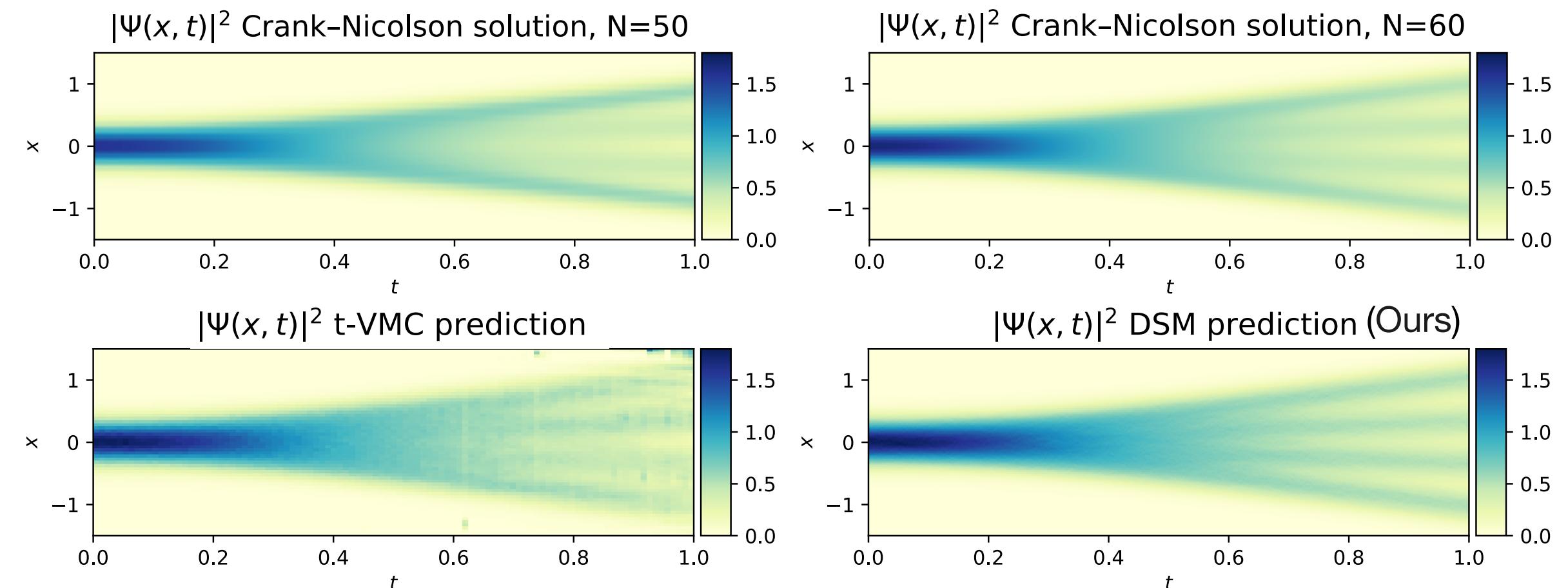
Results: More Interacting Bosons

$d = 3, 4, 5$ interacting bosons

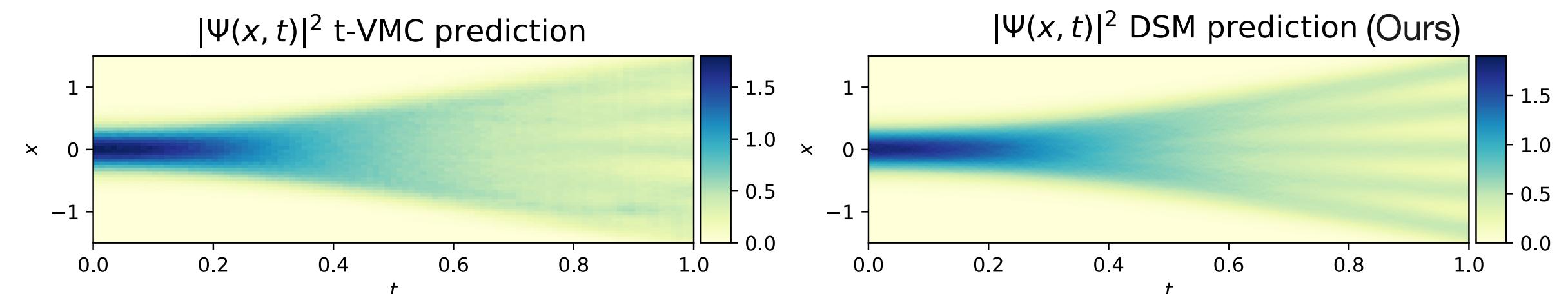
- **t-VMC performance deteriorates for larger d** (likely due the lack of higher-order interactions in the ansatz) while our method follows the ground truth
- NN-based parameterization of t-VMC did not yield satisfactory results



a) Three particles



b) Four particles



c) Five particles

* N is the number of discretization points in every spatial dimension.

Results: Scaling to Many Particles

Computational complexity

Time and memory usage of the Crank-Nicolson method

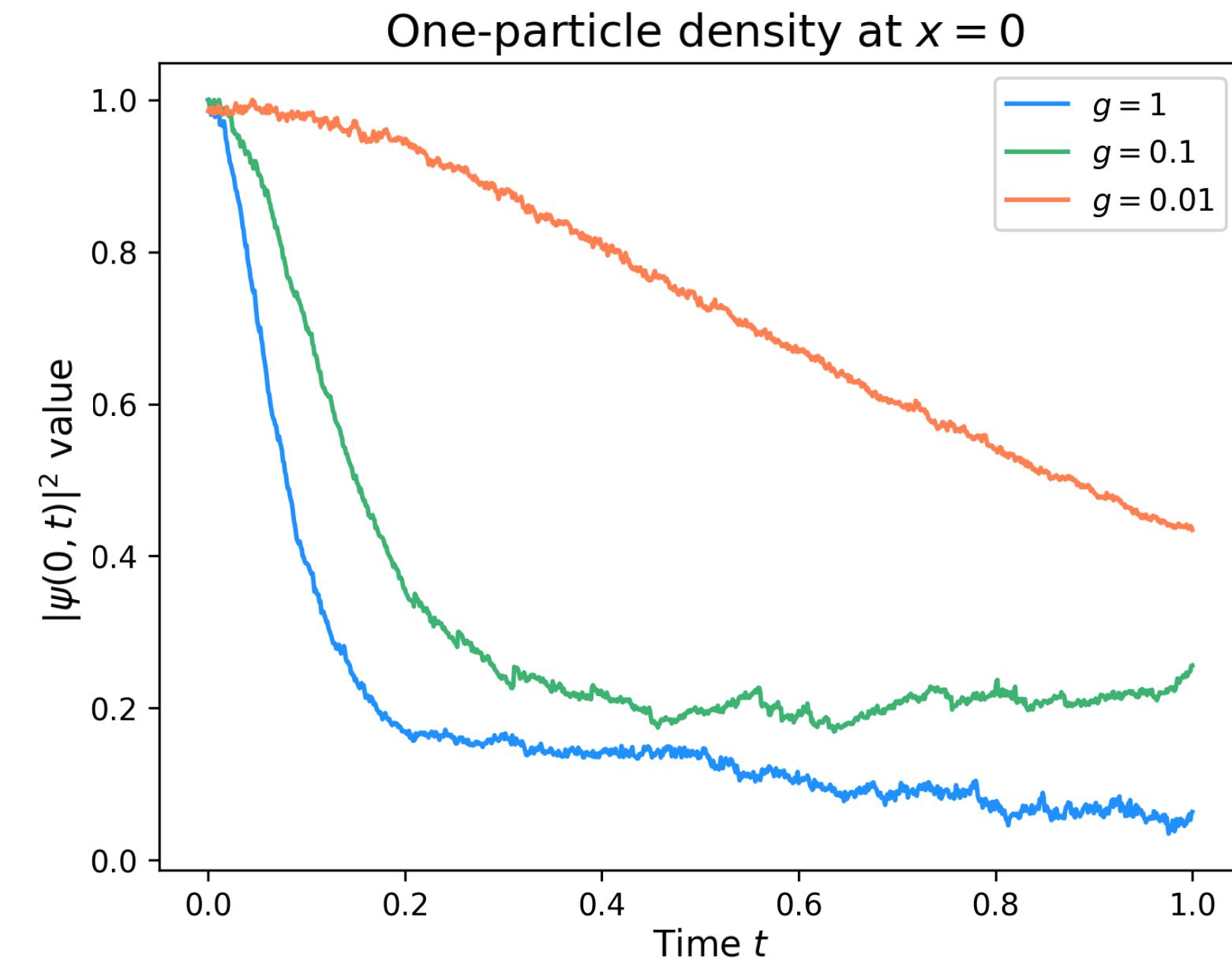
	$d = 2$	$d = 3$	$d = 4$
Time (s)	0.75	35.61	2363
Memory (Gb)	7.4	10.6	214

Time and memory usage of our method

	$d = 2$	$d = 3$	$d = 4$	$d = 5$
Training time (s)	1770	3618	5850	9240
Time per epoch (s/ep)	0.52	1.09	1.16	1.24
Memory (Gb)	17.0	22.5	28.0	33.5

DSM memory usage and time per epoch grow ~linearly in d , in contrast to the classical numerical solver

100 interacting particles



No ground truth. DSM results are qualitatively reasonable for different interacting strength g .
(higher for a stable system with small g ;
lower for moving apart particles with higher g)

Conclusions

- Developed the **new efficient computational method** for simulating quantum dynamics based on **Nelson's stochastic mechanics**
 - Adaptive to latent low-dimensional support of density: efficient sampling and avoiding the curse of dimensionality
- **Theoretical guarantees** (a bound between processes X and X^θ) for our DSM method are given in our paper
- The experiments show **better performance** of our method compared to the numerical solvers/PINNs/t-VMC both in terms of prediction quality and computation time

Thank you for your attention!

<https://elena-orlova.github.io/dsm/>

