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Problem Statement
The time-dependent Schrödinger equation (SE) for  and : 

 

0 < t ≤ T ∀x ∈ ℝd

iℏ∂tψ(x, t) = [−
ℏ2

2m
∂2

∂x2
+ V(x, t)]ψ(x, t),

ψ(x,0) = ψ0(x) .
known potential function 

(describes physics)

wave function (unknown)
 known constants

ψ : ℝd × [0,T] → ℂ

The probability density of finding a particle at position  at time  is  
. 

x t
ρ(x, t) = |ψ(x, t) |2

GOAL: given , draw samples from  for ψ0(x) |ψ(x, t) |2 t ∈ (0,T]
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Solving Schrödinger Equation
• Classical numerical solvers and Physics-informed 

neural networks (PINN): solve SE on a grid of points → 
grid size grows exponentially with the number of 
particles d

Raissi, Perdikaris, & Karniadakis, 2019
Pfau, Spencer, Matthews, & Foulkes, 2020

 = 2d = 1d  = 3d

# points = 4 # points = 64 = 43# points = 16 = 42
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• Variational Monte Carlo (VMC) methods: reformulate solving SE as 
minimization of an energy functional 
• Great NNs for time-independent SE (FermiNet, PauliNet) 

• t-VMC: parametrizes  with parameters   (ansatz), and solves the 
corresponding optimization problem to find   
• Requires carefully designed ansatzes to work well, but struggles 

with complex parametric forms (e.g. NNs)   
• Does expensive MCMC sampling for every time step

ψ θ
θ



Our Approach
Based on stochastic formulation of quantum mechanics, our approach: 

• Parameterizes the gradients of the wave functions rather than the density, analogous to 
score-based diffusion model. 

• Efficiently samples from the density  using an SDE, side-stepping the 
curse of dimensionality and avoiding expensive MCMC sampling.

ρ(x, t) = |ψ(x, t) |2

a) DSM samples, early epoch 

c) Uniform collocation points  
used by a grid-based solver

b) DSM samples, final epochs 

Uniform collocation points DSM samples from , early epochs|ψ(x, t) |2
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DSM samples from , final epochs|ψ(x, t) |2



Nelson’s Stochastic Mechanics
Velocities: 

 

Madelung equations: 

 

 

Diffusion process : 

, 

 

Efficient sampling:  for all .

  current velocity: v(x, t) =
ℏ
m

∇S(x, t),

  osmotic velocity: u(x, t) =
ℏ

2m
∇log ρ(x, t) .

∂tu = − ∇⟨u, ∇u⟩ −
ℏ

2m
∇(div v),

∂tv = −
1
m

∇V + ⟨u, ∇u⟩ − ⟨v, ∇v⟩ +
ℏ

2m
∇(div u)

X(t) ∈ ℝd

dX(t) = (v(X(t), t)+u(X(t), t))dt +
ℏ
m

dW

X(0) ∼ ψ0
2

X(t) ∼ |ψ( ⋅ , t) |2 t

Wave function:  

 

Schrödinger equation: 

, 

     
 

Sampling (MCMC) from .

ψ(x, t) = ρ(x, t)eiS(x,t)

iℏ∂tψ(x, t) = [−
ℏ2

2m
∂2

∂x2
+ V(x, t)]ψ(x, t)

ψ(x,0) = ψ0(x) .

|ψ( ⋅ , t) |2

Nelson, 1966

Equivalence

(if  satisfies SE)ψ
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Deep Stochastic Mechanics (DSM)

Parametrize  via NNs, yielding a new process  that approximates . 
How to train it? 

• Define loss  from Madelung equations and initial conditions on  and  at  

• Generate trajectories , evaluate  and 
update the models’ weights, repeat for every epoch

u and v Xθ(t) ∈ ℝd X(t)

ℒ uθ vθ t = 0
Xθ

i+1 = Xθ
i +(vθ(Xθ

i , ti)+uθ(Xθ
i , ti))ϵ + ξ, ξ ∼ 𝒩(0,σ2) ℒ
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uθ

vθ
𝒩(0,σ2)

. . . {X(θ)
ij }ij; ti

X(θ)
0j X(θ)

1j X(θ)
Nj

Time point  i = 0 Time point  i = 1 Time point  i = N

uθ vθ
Loss  


estimation
ℒ(uθ, vθ)Gradient descent step,  

updating weights θNext epoch τ



Experiments: Two Interacting Bosons
Interacting bosons in a harmonic 
potential:  

 

. 

DSM and t-VMC perform reasonably 
well. What about higher dimensions? 
 

• DSM/PINN: a feed-forward linear model with 
skip connections and tanh activations. 

• t-VMC ansatz: Hermite polynomials with 
two-body interaction terms.

V(x, t) = ∑
i

1
2

mω2x2
i +

1
2

g∑
i,j

1

2πσ2
e−(xi−xj)2/2σ2,

ψ(x,0) = e−ω2x2/(2ℏ)
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a) Three particles

b) Four particles

c) Five particles

(Ours)

(Ours)

(Ours)

Results: More Interacting Bosons

 interacting bosons 

• t-VMC performance deteriorates 
for larger  (likely due the lack of 
higher-order interactions in the 
ansatz) while our method follows 
the ground truth 

• NN-based parameterization of t-
VMC did not yield satisfactory 
results

d = 3,4,5

d

8 * N is the number of discretization points  
in every spatial dimension.



Results: Scaling to Many Particles
100 interacting particles

No ground truth. DSM results are qualitatively 
reasonable for different interacting strength .  

(higher for a stable system with small ; 
lower for moving apart particles with higher )

g
g

g
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Simulating QuantumMechanics

The Schrödinger equation (SE) describes a quantum system for 0 < t Æ T and x œ Rd:

i~ˆtÂ(x, t) =
h

≠
~2

2m

ˆ
2

ˆx2 + V (x, t)
i
Â(x, t), (1)

where m is a particle’s mass, V is a potential, and Â : Rd
◊ [0, T ] æ C is a wave function (unknown).

The probability density of finding a particle at position x at time t is fl(x, t) = |Â(x, t)|2.

Solving the time-dependent SE (TDSE) is crucial for predicting quantum dynamics. It is computa-
tionally challenging task, especially in high dimensions:
• Classical numerical solvers and Physics-informed neural

networks (PINNs) [3]: discretizing the problem domain æ curse of
dimensionality.

a) DSM samples, early epoch 

c) Uniform collocation points  
used by a grid-based solver

b) DSM samples, final epochs 

• Variational methods like time-dependent Variational Monte Carlo (t-VMC) [1] can bypass the
curse of dimensionality: a suitable trial functions (ansatzes) and expensive MCMC sampling for
every time step; may suffer from optimization instabilities.

Goal: given an initial Â0(x), draw samples from |Â(x, t)|2 for t œ (0, T ]

Our contributions:

An new and efficient computational framework for quantum mechanics simulation using
stochastic formulation of quantum mechanics
- Adapts to a latent low-dimensional support of the density by sampling from the Markovian

diffusion æ avoiding the curse of dimensionality and effective sampling.
Theoretical guarantees on the accuracy of our predictions, even with no baseline available.
Empirical evaluation of our method.

Deep Stochastic Mechanics (DSM)

Let Â(x, t) =
p

fl(x, t)eiS(x,t), and define

current velocity: v(x, t) = ~
m

ÒS(x, t), osmotic velocity: u(x, t) = ~
2m

Ò log fl(x, t). (2)

Nelson [2] showed that there is a diffusion process X(t) œ Rd that is equivalent to SE (1):

dX(t) =
⇣

v
�
X(t), t

�
+ u

�
X(t), t

�⌘
dt +

r
~
m

dW, X(0) ≥
��Â0

��2. (3)

So, X(t) ≥ |Â(·, t)|2 ’t. We parametrize velocities u, v via NNs, yielding a new process X
◊(t) œ Rd:

dX
◊(t) =

⇣
v◊

�
X

◊(t), t
�

+ u◊

�
X

◊(t), t
�⌘

dt +
r

~
m

dW (4)

After integration over time, we get trajectories X
◊
i+1 = X

◊
i

+
�
v◊(X◊

i
, ti) + u◊(X◊

i
, ti)

�
‘ + z, where

‘ is a step size, 0 Æ i <
T

‘
, and z ≥ N

�
0,

~
m

‘Id

�
.

Given trained velocities u◊, v◊, and X0 ≥ |Â0|2, we can produce samples from fl.

DSM Training and Computational Complexity

uθ

vθ
𝒩(0,σ2)

. . . {X(θ)
ij }ij; ti

X(θ)
0j X(θ)

1j X(θ)
Nj

Time point  i = 0 Time point  i = 1 Time point  i = N

uθ vθ
Loss  


estimation
ℒ(uθ, vθ)Gradient descent step, 


updating weights θNext epoch τ

Given: X0 ∼ |ψ0 |2

Fig. 1. Training epoch of DSM.

Based on conditions on u, v that come from SE and initial conditions, we define losses:

L1(v◊, u◊) =
���ˆtv◊ + 1

m
ÒV ≠ Èu◊, Òu◊Í + Èv◊, Òv◊Í ≠

~
2m

Ò
�
div u◊

����
2
, (5)

L2(v◊, u◊) =
���ˆtu◊ + ÒÈv◊, u◊Í + ~

2m
Ò
�
div v◊

����
2
, (6)

L3(v◊, u◊) = Îu◊(x, 0) ≠ u0(x)Î2 + Îv◊(x, 0) ≠ v0(x)Î2, (7)

where Ò – a gradient,È·, ·Í – a scalar product, div f(x) =
P

d

i=1
ˆ

ˆxi
f(x) – a divergence. Then our

loss function to minimize is L(v◊, u◊) =
P3

i=1 Li(v◊, u◊).

b) DSM samples, final epochs 

a) DSM samples, early epochs 

Fig. 2. DSM samples example.

Table 1. Computational complexity of different methods.

Method Domain Time
Evolving Adaptive Iteration

complexity
Overall

complexity
PINN Compact 3 7 O(Nd

f
) Ø O(Nd

f
poly(Á≠1))

t-VMC Rd 3 3 O(Hdd
3) Ø O(Hdd

3poly(Á≠1))
Num. solver Compact 3 7 N/A O(dÁ

≠d≠2)
DSM (Ours) Rd 3 3 O(Nd

2) Ø O(Nd
2poly(Á≠1))

Theory

Theorem. (Strong convergence bound) We have the following bound between the processes X and
X

◊:
sup
tÆT

EÎX(t) ≠ X
◊(t)Î2

Æ CT L(v◊, u◊),

where the constant CT depends on a time horizon T and Lipschitz constants of u, v, u◊, v◊.

Experiments

Interacting bosons in a harmonic potential:

V (x, t) =
X

i

1
2mÊ

2
x

2
i

+ 1
2g

X

i,j

1
Ô

2fi‡2e
≠(xi≠xj)2/2‡

2
, Â(x, 0) = e

≠Ê
2
x

2
/(2~)

.

Numerical solution (the Crank-Nickolson (CK) method ) as a baseline.
DSM/PINN architecture: a feed-forward NN with skip connections and tanh activations.
t-VMC ansatz representation: Hermite polynomials with two-body interaction terms that
inherently incorporate knowledge about the ground truth solution. NN-based ansatz
parameterization did not yield satisfactory results.

Results

Fig. 3. Two interacting bosons: density |Â(x, t)|2.

d = 2 interacting particles

Table 2. Xi mean and variance error
rates.

Model Em(Xi) ¿ Ev(Xi) ¿

PINN 0.258 ± 0.079 1.937 ± 0.654
DSM 0.092 ± 0.004 0.055 ± 0.015
t-VMC 0.103 ± 0.007 0.109 ± 0.023

d = 3, 4, 5 interacting particles
t-VMC’s performance
deteriorates, likely due to the
difficulty in representing
higher-order interactions with the
chosen ansatz.

a) Three particles

b) Four particles

c) Five particles

Fig. 4. Density for different number of interacting particles d.

Scaling Properties

Table 3. Time and memory usage of CK method.

d = 2 d = 3 d = 4
Time (s) 0.75 35.61 2363

Memory (Gb) 7.4 10.6 214

Table 4. Time and memory usage of our method.

d = 2 d = 3 d = 4 d = 5
Training time (s) 1770 3618 5850 9240

Time per epoch (s/ep) 0.52 1.09 1.16 1.24
Memory (Gb) 17.0 22.5 28.0 33.5

d = 100 interacting particles

Fig. 5. One-particle density, d = 100.

- No ground truth.
- DSM results are qualitatively reasonable for
different interacting strengths g.
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Simulating QuantumMechanics

The Schrödinger equation (SE) describes a quantum system for 0 < t Æ T and x œ Rd:

i~ˆtÂ(x, t) =
h

≠
~2

2m

ˆ
2

ˆx2 + V (x, t)
i
Â(x, t), (1)

where m is a particle’s mass, V is a potential, and Â : Rd
◊ [0, T ] æ C is a wave function (unknown).

The probability density of finding a particle at position x at time t is fl(x, t) = |Â(x, t)|2.

Solving the time-dependent SE (TDSE) is crucial for predicting quantum dynamics. It is computa-
tionally challenging task, especially in high dimensions:
• Classical numerical solvers and Physics-informed neural

networks (PINNs) [3]: discretizing the problem domain æ curse of
dimensionality.

a) DSM samples, early epoch 

c) Uniform collocation points  
used by a grid-based solver

b) DSM samples, final epochs 

• Variational methods like time-dependent Variational Monte Carlo (t-VMC) [1] can bypass the
curse of dimensionality: a suitable trial functions (ansatzes) and expensive MCMC sampling for
every time step; may suffer from optimization instabilities.

Goal: given an initial Â0(x), draw samples from |Â(x, t)|2 for t œ (0, T ]

Our contributions:

An new and efficient computational framework for quantum mechanics simulation using
stochastic formulation of quantum mechanics
- Adapts to a latent low-dimensional support of the density by sampling from the Markovian

diffusion æ avoiding the curse of dimensionality and effective sampling.
Theoretical guarantees on the accuracy of our predictions, even with no baseline available.
Empirical evaluation of our method.

Deep Stochastic Mechanics (DSM)

Let Â(x, t) =
p

fl(x, t)eiS(x,t), and define

current velocity: v(x, t) = ~
m

ÒS(x, t), osmotic velocity: u(x, t) = ~
2m

Ò log fl(x, t). (2)

Nelson [2] showed that there is a diffusion process X(t) œ Rd that is equivalent to SE (1):

dX(t) =
⇣

v
�
X(t), t

�
+ u

�
X(t), t

�⌘
dt +

r
~
m

dW, X(0) ≥
��Â0

��2. (3)

So, X(t) ≥ |Â(·, t)|2 ’t. We parametrize velocities u, v via NNs, yielding a new process X
◊(t) œ Rd:

dX
◊(t) =

⇣
v◊

�
X

◊(t), t
�

+ u◊

�
X

◊(t), t
�⌘

dt +
r

~
m

dW (4)

After integration over time, we get trajectories X
◊
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◊
i

+
�
v◊(X◊

i
, ti) + u◊(X◊
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, ti)
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Fig. 1. Training epoch of DSM.

Based on conditions on u, v that come from SE and initial conditions, we define losses:

L1(v◊, u◊) =
���ˆtv◊ + 1

m
ÒV ≠ Èu◊, Òu◊Í + Èv◊, Òv◊Í ≠

~
2m

Ò
�
div u◊

����
2
, (5)

L2(v◊, u◊) =
���ˆtu◊ + ÒÈv◊, u◊Í + ~

2m
Ò
�
div v◊

����
2
, (6)

L3(v◊, u◊) = Îu◊(x, 0) ≠ u0(x)Î2 + Îv◊(x, 0) ≠ v0(x)Î2, (7)

where Ò – a gradient,È·, ·Í – a scalar product, div f(x) =
P

d

i=1
ˆ

ˆxi
f(x) – a divergence. Then our

loss function to minimize is L(v◊, u◊) =
P3

i=1 Li(v◊, u◊).

b) DSM samples, final epochs 

a) DSM samples, early epochs 

Fig. 2. DSM samples example.

Table 1. Computational complexity of different methods.

Method Domain Time
Evolving Adaptive Iteration

complexity
Overall

complexity
PINN Compact 3 7 O(Nd

f
) Ø O(Nd

f
poly(Á≠1))

t-VMC Rd 3 3 O(Hdd
3) Ø O(Hdd

3poly(Á≠1))
Num. solver Compact 3 7 N/A O(dÁ

≠d≠2)
DSM (Ours) Rd 3 3 O(Nd

2) Ø O(Nd
2poly(Á≠1))

Theory

Theorem. (Strong convergence bound) We have the following bound between the processes X and
X

◊:
sup
tÆT

EÎX(t) ≠ X
◊(t)Î2

Æ CT L(v◊, u◊),

where the constant CT depends on a time horizon T and Lipschitz constants of u, v, u◊, v◊.

Experiments

Interacting bosons in a harmonic potential:

V (x, t) =
X

i

1
2mÊ

2
x

2
i

+ 1
2g

X

i,j

1
Ô

2fi‡2e
≠(xi≠xj)2/2‡

2
, Â(x, 0) = e

≠Ê
2
x

2
/(2~)
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Numerical solution (the Crank-Nickolson (CK) method ) as a baseline.
DSM/PINN architecture: a feed-forward NN with skip connections and tanh activations.
t-VMC ansatz representation: Hermite polynomials with two-body interaction terms that
inherently incorporate knowledge about the ground truth solution. NN-based ansatz
parameterization did not yield satisfactory results.

Results

Fig. 3. Two interacting bosons: density |Â(x, t)|2.

d = 2 interacting particles

Table 2. Xi mean and variance error
rates.

Model Em(Xi) ¿ Ev(Xi) ¿

PINN 0.258 ± 0.079 1.937 ± 0.654
DSM 0.092 ± 0.004 0.055 ± 0.015
t-VMC 0.103 ± 0.007 0.109 ± 0.023

d = 3, 4, 5 interacting particles
t-VMC’s performance
deteriorates, likely due to the
difficulty in representing
higher-order interactions with the
chosen ansatz.

a) Three particles

b) Four particles

c) Five particles

Fig. 4. Density for different number of interacting particles d.

Scaling Properties

Table 3. Time and memory usage of CK method.

d = 2 d = 3 d = 4
Time (s) 0.75 35.61 2363

Memory (Gb) 7.4 10.6 214

Table 4. Time and memory usage of our method.

d = 2 d = 3 d = 4 d = 5
Training time (s) 1770 3618 5850 9240

Time per epoch (s/ep) 0.52 1.09 1.16 1.24
Memory (Gb) 17.0 22.5 28.0 33.5

d = 100 interacting particles

Fig. 5. One-particle density, d = 100.

- No ground truth.
- DSM results are qualitatively reasonable for
different interacting strengths g.
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Time and memory usage of the Crank-Nicolson method 

Time and memory usage of our method 
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DSM memory usage and time per epoch grow 
~linearly in , in contrast to the classical 

numerical solver
d



Conclusions

• Developed the new efficient computational method for simulating quantum dynamics 
based on Nelson’s stochastic mechanics 

• Adaptive to latent low-dimensional support of density: efficient sampling and avoiding the 
curse of dimensionality 

• Theoretical guarantees (a bound between processes  and ) for our DSM method are 
given in our paper 

• The experiments show better performance of our method compared to the numerical 
solvers/PINNs/t-VMC both in terms of prediction quality and computation time

X Xθ
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Thank you for your attention!  

https://elena-orlova.github.io/dsm/ 


