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Problem Statement

The time-dependent Schrodinger equation (SE) for) <t < T and Vx € RY.

2 62
ihoyw(x,t) = |— + V(x, t) w(x, 1)

2m 0x?
\ \l//:ldx[O,T]—HC
w(x,0) = yp(x). wave function (unknown)

known constants known potential function
(describes physics)

The probability density of finding a particle at position x at time 7 is
- 2
px, 1) = |wx, 1),

GOAL: given y;(x), draw samples from | y(x, 7) |2 fort € (0,7

2



Solving Sschrodinger Equation

# points = 4 # points = 16 = 42 # points = 64 = 42
- Classical numerical solvers and Physics-informed o

neural networks (PINN): solve SE on a grid of points —
grid size grows exponentially with the number of

particles d o o,

- Variational Monte Carlo (VMC) methods: reformulate solving SE as

Mminimization of an energy functiona

. Great NNs for time-independent SE (FermiNet, PauliNet) E(0) = / o(z)"HWy(z)dr
t-VMC.: parametrizes y with parameters @ (ansatz), and solves the /\\Ifg 2 H\Ifg(a?) 4
corresponding optimization problem to find @ o ()

- Requires carefully designed ansatzes to work well, but struggles _ oo 'H\Ife(iv)_
with complex parametric forms (e.g. NNs) ’  Py(z)

» Does expensive MCMC sampling for every time step

3 Raissi, Perdikaris, & Karniadakis, 2019
Pfau, Spencer, Matthews, & Foulkes, 2020



Our Approa

ch

Based on stochastic formulation of guantum mechanics, our approach:

- Parameterizes the gradients of the wave functions rather than the density, analogous to
score-pased diffusion model.

- Efficiently samples from t
curse of dimensionality o

Uniform collocation points

DSM samples from |y (x, ) |2, early epochs
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ne density p(x, t) = |y(x, 1) \2 using an SDE, side-stepping the
nd avoiding expensive MCMC sampling.

DSM samples from |y (x, ) \2, final epochs
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Nelson's Stochastic Mechanics

Wave function:

w(x, 1) =/p(x, 1)

Schrodinger equation:

hZ 62 i}
F Vi(x,t X, 1),
> T VDD

w(,0) = Y (n)

1hoy(x, 1) = |

Sampling (MCMC) from |y/( - , 1) \2.

Equivalence

.

(if ysatisfies SE)

Velocities:

h
v(ix, 1) = —VS(x, 1),
m

current velocity:

h
u(x,r) = —Vlogp(x,1).

osmotic velocity:

2m
Madelung equations:
ou =— V{(u, Vu) f V(divv),
2m
1 h
0v=——VV+(u,Vu) — (v, Vv) 4 V(divu)
m 2m

Diffusion process X(7) € R%
dX(r) = (v(X(t), £)+u(X(0),1) )dt

2
XO0) ~ [ug

Efficient sampling: X(7) ~

h
—dW,
m

w( - ,1) \2 forallz.

Nelson, 1966




Deep Stochastic Mechanics (DSM)
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Parametrize 1 and v via NNs, yielding a new process X%(¢) € R? that approximates X (7).
How to train it?

. Define loss Z from Madelung equations and initial conditions on u,and vyat t = 0

. Generate trajectories X' = X'+ (v (X7, i) +uy(X’, 1)) e + £ & ~ N (0,6%), evaluate &£ anc
update the models’ weights, repeat for every epoch
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ExXperiments

INnteracting bosons in a harmonic | |
ootential:

W(x;, t)|%,i=1, 2 truth
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DSM and t-VMC perform reasonably
well. What about higher di

mensions?
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- DSM/PINN: a feed-forward linear model with

skip connections and tanh activations. < ol o
+ 1-VMC ansatz: Hermite polynomials with - -
two-body interaction terms. ooy
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|W(x, t)|? Crank-Nicolson solution, N=60
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d = 3.4.5 interacting bosons
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- t-VMC performance deteriorates

for larger d (likely due the lack of

higher-order interactions in the
ansatz) while our method fol
the ground truth

- NN-based parameterization of t-

VMC did not yield satistactory
results
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Results: More Interacting .
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|W(x, t)|? Crank-Nicolson solution, N=50
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b) Four particles
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c) Five particles
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* N is the number of discretization points

in every spatial dimension.



Computational complexity

Time and memory usage of the Crank-Nicolson method
d=2 d=3 d=14

Times  0./75 35.61 2363
Memory ch /.4 10.6 214

Time and memory usage of our method
d=2d=3d=4d=>5
Training time sy 1770 3618 5850 9240

Time per epoch s7ep) 0.52 1.09 1.16 1.24
Memory (Gb) 170 225 28.0 33.5

DSM memony. usage and time per epoch grow

~limearly in d, in contrast to the classical
numerical solver

Results: Scaling to Many Particles

100 interacting particles

One-particle density at x=0

1.0 - — g=1
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No'ground truth. DSIM results are qualitatively

reasonable for different interacting strength' g.

(higher for a stable system with small g;
lower for moving apart particles with higher g)




Conclusions

- Developed the new efficient computational method for simulating quantum dynamics
nased on Nelson’s stochastic mechanics

- Adaptive to latent low-dimensional support of density: efficient sampling and avoiding the
curse of dimensionality

. Theoretical guarantees (0 bound between processes X anad XQ) for our DSM method are
given in our paper

- The experiments show better performance of our method compared to the numerical
solvers/PINNs/t-VMC both in terms of prediction quality and computation time
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Thank you tor your attention!

nttps://elena-orlova.githup.io/dsm/




