
Functional magnetic resonance imaging (fMRI) measures neural activation as changes in blood oxygenation. 

Decoding seen images from fMRI enables better understanding of brain function and potential for mind-reading 

applications in brain-computer interfaces. fMRI is expensive and time-consuming so generalization with sparse 

training data is essential for practical adoption. We used the Natural Scenes Dataset (NSD) [1], a public fMRI dataset 

containing brain responses of human participants looking at naturalistic photographs (MS-COCO).

MindEye2 achieves state-of-the-art across retrieval and reconstruction, both in 1-hour and 40-hour settings. 

Retrieval: identify the original (or most similar) image out of a pool of candidates (i.e., nearest neighbor)

Reconstruction: recreate the original seen image (i.e., output from latent diffusion model)

Qualitative comparison to past work
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MindEye2: Shared-Subject Models Enable fMRI-To-Image With 1 Hour of Data

Reconstructions of seen images from human brain activity using ONE hour of fMRI training data (previous work used FORTY hours)

Background

Each of 10,000 unique images was viewed 3x for 3 sec. Corresponding fMRI voxels (1.8mm cubes of cortex) were 

collected for each image presentation. We pretrain our model across 7 subjects and fine-tune on minimal data from a 

new subject. We linearly map all brain data to a shared-subject latent space, followed by a shared non-linear mapping to 

OpenCLIP [2] image space. We then map from CLIP space to pixel space by fine-tuning Stable Diffusion XL to accept 

CLIP latents as inputs instead of text. 

unCLIP comparison

Refinement with image caption prediction

Quantitative comparison to past work

The 1-hour setting offers a good balance 
between scan duration and reconstruction 
performance, with notable improvements from 
pretraining.

unCLIP models can convert 
CLIP image embeddings 

back to pixel space. 

We fine-tuned SDXL to 
support CLIP image 

embedding input instead of 
text, raising ceiling 

reconstruction performance. 

• Potential for new clinical diagnostic methods: reconstructions are 
expected to be systematically distorted due to mental state.

• Potential to generalize to mental imagery: similar patterns of brain 
activity are observed across perception and mental imagery [5].

• Real-time brain-computer interfaces [6] e.g., communication with 
patients in a pseudocoma.

Conclusions: Benefits & Risks/Limitations
• 1-hour generalization enables practical adoption.

• MindEye2 is limited to natural scene image distributions.

• Data easily becomes too noisy with slight movement or inattention to the task.

• Privacy: IRB approval and participant consent for data sharing was obtained. Medical 

data should be carefully protected and transparently used.
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Compared to past work, MindEye2 innovates by:

1. Training model across subjects

2. Mapping to stronger CLIP space (OpenCLIP bigG)

3. Fine-tuning a SOTA Stable Diffusion XL [3] unCLIP model 

4. Predict image captions from brain for added guidance
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Results are from full 40-hours training data, averaged across the same 4 participants. PixCorr=pixelwise correlation between 
ground truth and reconstructions; SSIM=structural similarity index metric; EfficientNet-B1 and SwAV-ResNet50 refer to 
average correlation distance; all other metrics refer to two-way identification (chance = 50%). Image retrieval refers to the 
percent of the time the correct image was retrieved out of 300 candidates, given the associated brain sample 
(chance=0.3%); vice-versa for brain retrieval. Bold=best performance, underline= 2nd best.
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“Unrefined” reconstructions = pixel images 
output directly from SDXL unCLIP

We observed unrefined reconstructions were 
SOTA but subjectively distorted. To improve 

image realism, we use image-to-image [4] with 
base SDXL, feeding unrefined recons 

alongside a MindEye2 predicted image 
caption. 
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Ablations show importance of both shared-subject modeling and 
leveraging improved CLIP image space.

ME1 = MindEye1 MLP instead of shared-subject linear mapping
CLIP L = Mapping to CLIP-L instead of OpenCLIP bigG
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Our MedARC Neuroimaging & AI Lab is now working on real-time reconstructions and foundation neuroimaging models. Join our lab as a volunteer contributor: https://medarc.ai/fmri


