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Our MedARC Neuroimaging & Al Lab is now working on real-time reconstructions and foundation neuroimaging models. Join our lab as a volunteer contributor: https./medarc.ai/fmri

Reconstructions of seen images from human brain activity using ONE hour of fMRI training data (previous work used FORTY hours)
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Background

Seen image Reconstructions using 1 hour of training data unCLIP models can convert  Reconstructions from ground truth CLIP image embeddings
l =" Lasm i RN e — N i/ CLIP image embeddings
w ol = 4 P < SN wiE B back to pixel space.

We fine-tuned SDXL to
support CLIP image
embedding input instead of
text, raising ceiling
reconstruction performance.

Functional magnetic resonance imaging (fMRI) measures neural activation as changes in blood oxygenation.

Decoding seen images from fMRI enables better understanding of brain function and potential for mind-reading
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applications in brain-computer interfaces. ftMRI is expensive and time-consuming so generalization with sparse

training data is essential for practical adoption. We used the Natural Scenes Dataset (NSD) [1], a public fMRI dataset

containing brain responses of human participants looking at naturalistic photographs (MS-COCO). Versatile Diffusion

(CLIP ViT-L/14) (OpenCLIP ViT-bigG/14)

MindEye2 achieves state-of-the-art across retrieval and reconstruction, both in 1-hour and 40-hour settings.

Retrieval: identify the original (or most similar) image out of a pool of candidates (i.e., nearest neighbor)

Reconstruction: recreate the original seen image (i.e., output from latent diffusion model)

“Unrefined” reconstructions = pixel images
output directly from SDXL unCLIP

Methods
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SOTA but subjectively distorted. To improve
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Each of 10,000 unigue images was viewed 3x for 3 sec. Corresponding fMRI voxels (1.8mm cubes of cortex) were

collected for each image presentation. We pretrain our model across 7 subjects and fine-tune on minimal data from a

Conclusions: Benefits &

new subject. We linearly map all brain data to a shared-subject latent space, followed by a shared non-linear mapping to

expected to be systematically distorted due to mental state. * MindEye2 is limited to natural scene image distributions.
® Potential to generalize to mental imagery: similar patterns of brain

activity are observed across perception and mental imagery [5].

CLIP latents as inputs instead of text.
® Data easily becomes too noisy with slight movement or inattention to the task.
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