On Positivity Condition for Causal Inference

Inwoo Hwang* Yesong Choe* Yeahoon Kwon Sanghack Lee

Seoul National University

ICML 2024

Hwang et al. (SNU) [On Positivity Condition for Causal Inference](#page-22-0) ICML 2024 1/23

Table of Contents

[Background](#page-2-0)

- 2 [Causal Identification with Strict Positivity](#page-6-0)
- 3 [Post-hoc Analysis](#page-10-0)
- 4 [Causal Identification with Relaxed Positivity: Do-Calculus](#page-12-0)
- 5 [Causal Identification with Relaxed Positivity: Q-Decomposition](#page-14-0)
- [Discussion & Conclusion](#page-19-0)

[References](#page-21-0)

 Ω

Table of Contents

[Background](#page-2-0)

- 2 [Causal Identification with Strict Positivity](#page-6-0)
- [Post-hoc Analysis](#page-10-0)
- 4 [Causal Identification with Relaxed Positivity: Do-Calculus](#page-12-0)
- 5 [Causal Identification with Relaxed Positivity: Q-Decomposition](#page-14-0)
- **[Discussion & Conclusion](#page-19-0)**

- Identifying and estimating a causal effect is a fundamental task when inferring a causal effect using observational study without experiments.
- Just assuming the **strict positivity** $(P(V) > 0)$ of the given distribution under the unconfounded assumption has been a long convention.
- We examine the graphical counterpart of the conventional positivity condition to license the use of identification formula without strict positivity.

Motivating Example 1

Backdoor formula:

$$
P_x(y) = \sum_{z} P(y | x, z) P(z)
$$

\n
$$
\Rightarrow \forall z (P(z) = 0 \lor P(x | z) > 0) \equiv adj(x; Z)
$$

- Under the strict positivity, we can identify the causal effect—i.e., we can get the intervened distribution of $y(P_x(y))$ from the observed distribution $P(V)$.
- To estimate average treatment effect for each value of the covariate in the population, there are some subjects that received the treatment—i.e., $P(X | z) > 0$ for all z with $P(z) \neq 0$ (Hernán & Robins, 2006).

つへへ

Multiplicity of identification formulae and conditions:

• One may estimate the causal effect with a formula but not with the other, which was not the case under strict positivity.

$$
\begin{array}{ccc}\n\text{(z)} & \rightarrow & \text{(z)} \\
\hline\n\text{(x)} & \rightarrow & \text{(y)} \\
\hline\n\text{(y)} & \rightarrow & \text{(z)} \\
\end{array}
$$

 W $P_x(y) = \sum_w P(y \mid x, w)P(w)$ Backdoor $P_x(y) = \sum_z P(z) \sum_{x'} P(y | x', z) P(x')$) Front-door $P_x(y) = \sum_z P(z | x)P(y | z, w)$ IDENTIFY

2 [Causal Identification with Strict Positivity](#page-6-0)

[Post-hoc Analysis](#page-10-0)

4 [Causal Identification with Relaxed Positivity: Do-Calculus](#page-12-0)

5 [Causal Identification with Relaxed Positivity: Q-Decomposition](#page-14-0)

[Discussion & Conclusion](#page-19-0)

Causal Identification with Strict Positivity

- The causal effect $P_x(y)$ is identifiable if it can be uniquely computed from $P(V)$ in any causal model which induces G .
- How to identify $P_x(y)$?
	- **1 Do-calculus (Pearl, 1995)**
	- 2 Q-decomposition (Tian, 2003)
	- \Rightarrow These well-known methods of identification heavily rely on $P(V) > 0.$

 \Rightarrow Their validity and mathematical correctness are unclear under relaxed positivity.

e.g., Napkin

$$
P_x(y) = \frac{\sum_{w} P(y, x \mid r, w) P(w)}{\sum_{w} P(x \mid r, w) P(w)}
$$

Do-calculus with Strict Positivity

- This calculus (Pearl, 1995) facilitates the identification of causal effects in non-parametric models.
- The following transformation are valid for any positive do-distribution induced by a model:

Definition (do-calculus)

- Rule 1 (addition/deletion of observation): $P_{\mathbf{x}}(\mathbf{y} \mid \mathbf{z}, \mathbf{w}) = P_{\mathbf{x}}(\mathbf{y} \mid \mathbf{w})$ if $(\mathbf{Y} \perp \mathbf{Z} \mid \mathbf{X}, \mathbf{W})_{G_{\nabla}}$
- Rule 2 (exchange of action and observation): $P_{\mathbf{x},\mathbf{z}}(\mathbf{y} \mid \mathbf{w}) = P_{\mathbf{x}}(\mathbf{y} \mid \mathbf{z}, \mathbf{w})$ if $(\mathbf{Y} \perp \mathbf{Z} \mid \mathbf{X}, \mathbf{W})_{\mathcal{G}_{\nabla}$
- Rule 3 (addition/deletion of action): $P_{\mathbf{x},\mathsf{z}}(\mathbf{y} \mid \mathbf{w}) = P_{\mathbf{x}}(\mathbf{y} \mid \mathbf{w})$ if $(\mathbf{Y} \perp \!\!\! \perp \mathbf{Z} \mid \mathbf{X}, \mathbf{W})_{\mathcal{G}_{\overline{\mathbf{X}}, \overline{\mathbf{Z}(\mathbf{W)}}}},$ where $\mathsf{Z}(\mathsf{W}) = \mathsf{Z} \setminus \mathit{An}(\mathsf{W})_{\mathcal{G}_{\overline{\mathsf{X}}}}$.

Q-decomposition with Strict Positivity

• c-factors derived from the given observational distribution $P(V)$ are used to answer the c-factors derived from the query $P_x(y)$ (Tian, 2003).

Theorem (Q-decomposition)

Given $H \subseteq V$, let H_1, \ldots, H_k be the c-components of G[H]. Let \prec be a topological order over the variables in H according to $G[H]$ such that $V^{(1)} \prec V^{(2)} \cdots \prec V^{(|H|)}$. Let $H^{\preceq i}$ be the variables in H that come before $V^{(i)}$ including $V^{(i)}$. Let $H^{\succ i}$ be the variables in H that come after $V^{(i)}$. Given $Q[H] > 0$,

$$
Q[\mathbf{H}_j] = \prod_{V^{(i)} \in \mathbf{H}_j} \frac{Q[\mathbf{H}^{\preceq i}]}{Q[\mathbf{H}^{\preceq i-1}]},
$$

where $Q[\mathbf{H}^{\preceq i}] = \sum_{\mathbf{h}^{\succ i}} Q[\mathbf{H}]$.

$$
e.g., Q[W,X,Y] = \frac{Q[W,R,X,Y]}{Q[W,R,X]} \cdot \frac{Q[W,R,X]}{Q[W,R]} \cdot \frac{Q[W]}{Q[\emptyset]}
$$

2 [Causal Identification with Strict Positivity](#page-6-0)

3 [Post-hoc Analysis](#page-10-0)

- 4 [Causal Identification with Relaxed Positivity: Do-Calculus](#page-12-0)
- 5 [Causal Identification with Relaxed Positivity: Q-Decomposition](#page-14-0)
- **[Discussion & Conclusion](#page-19-0)**

Post-hoc Analysis (Appendix)

- We can examine a positivity condition under which the identification formula is well-defined.
- e.g., Napkin

$$
\exists r \frac{\sum_{w} P(y, x \mid r, w) P(w)}{\sum_{w} P(x \mid r, w) P(w)} \ge 0 \iff \exists r (\text{0} \ge 0 \land \text{0} > 0)
$$

$$
\text{0} \ge 0 \Leftarrow \text{adj}(r; W)
$$

$$
\text{2} > 0 \Leftarrow \text{adj}(r; W) \land P(x, r) > 0
$$

∴ \exists r(adj(r; W) \land $P(x, r) > 0$)

- While it is true that the positivity condition derived directly from a formula ensures that the formula is well-defined, yet its validity is unclear for now since the formula is derived under strict positivity.
- Post-hoc analysis yields a sufficient positivity condition for the iden[tif](#page-10-0)ication formula derived through Identify $+$ [.](#page-10-0)

- 2 [Causal Identification with Strict Positivity](#page-6-0)
- [Post-hoc Analysis](#page-10-0)

4 [Causal Identification with Relaxed Positivity: Do-Calculus](#page-12-0)

- 5 [Causal Identification with Relaxed Positivity: Q-Decomposition](#page-14-0)
- [Discussion & Conclusion](#page-19-0)

Causal Identification with Relaxed Positivity: Do-Calculus

We develop a general and principled approach for deriving a positivity condition by examining the conditions for do-calculus (Pearl, 1995).

Definition (Positivity Relaxed do-calculus)

Let G be the directed acyclic graph (DAG) associated with a causal model, and let $P(\cdot)$ be the probability distribution induced by the model. Then,

(R1)
$$
P_x(\mathbf{y} \mid \mathbf{z}, \mathbf{w}) = P_x(\mathbf{y} \mid \mathbf{w})
$$
 if $(\mathbf{Y} \perp \mathbf{Z} \mid \mathbf{W})_{(\mathcal{G} \setminus \mathbf{X})}$ and $P_x(\mathbf{z}, \mathbf{w}) > 0$
(R2) $P_{x,z}(\mathbf{y} \mid \mathbf{w}) = P_x(\mathbf{y} \mid \mathbf{z}, \mathbf{w})$ if $(\mathbf{Y} \perp \mathbf{Z} \mid \mathbf{W})_{(\mathcal{G} \setminus \mathbf{X})_{\mathbf{Z}}}$ and $P_x(\mathbf{z}, \mathbf{w}) > 0$
(R3) $P_{x,z}(\mathbf{y} \mid \mathbf{w}) = P_x(\mathbf{y} \mid \mathbf{w})$ if $(\mathbf{Y} \perp \mathbf{Z} \mid \mathbf{W})_{(\mathcal{G} \setminus \mathbf{X})_{\mathbf{Z}(\mathbf{W})}}$ and $P_x(\mathbf{w}) > 0$

e.g.,

$$
P_x(y) = P_{w,r}(y | x)
$$
if $P_{w,r}(x) > 0$
= $P_{w,r}(y, x)/P_{w,r}(x)$ if $P_{w,r}(x) > 0$
=
$$
\frac{\sum_{w'} P(y, x | r, w') P(w')}{\sum_{w'} P(x | r, w') P(w')}.
$$
if adj(r; W)

∴ $\exists r$ (adj $(r; W) \wedge P(x, r) > 0$ $(r; W) \wedge P(x, r) > 0$ $(r; W) \wedge P(x, r) > 0$)

- 2 [Causal Identification with Strict Positivity](#page-6-0)
- [Post-hoc Analysis](#page-10-0)
- 4 [Causal Identification with Relaxed Positivity: Do-Calculus](#page-12-0)
- 5 [Causal Identification with Relaxed Positivity: Q-Decomposition](#page-14-0)
- 6 [Discussion & Conclusion](#page-19-0)

Causal Identification with Relaxed Positivity: Q-Decomposition

- Given the theoretical underpinnings of the sufficient positivity conditions over do-calculus, we now investigate the feasibility of creating an identification algorithm capable of simultaneously taking a non-strictly positive observational distribution into account.
- The intuition behind the generalization is that the product of fractions often can be shortened by canceling out depending on the topological order.

Relaxed Q-decomposition Motivating Example

- $Q[H] = Q[H_1] \cdot Q[H_2]$ where $H_1 = \{V_1, V_2, V_4, V_6, V_7\}$ and $H_2 = \{V_3, V_5\}.$
- Denoting $Q[\mathbf{H}^{\preceq i}]$ as Q_i for brevity, if $Q[\mathbf{H}] = Q_7 > 0$, then $Q[\mathbf{H}_1] = \frac{Q_7}{Q_6} \cdot \frac{Q_6}{Q_5} \cdot \frac{Q_4}{Q_3}$ $\frac{Q_4}{Q_3} \cdot \frac{Q_2}{Q_1} \cdot \frac{Q_3}{Q_0}$ and $Q[\mathbf{H}_2] = \frac{Q_5}{Q_4} \cdot \frac{Q_3}{Q_2}$ $\frac{Q_3}{Q_2}$ by Tian (2003, Lemma 4). Since Q_6 and Q_1 can be canceled out, we can write $Q[\mathbf{H}_1] = \frac{Q_7}{Q_5} \cdot \frac{Q_4}{Q_3}$ $\frac{Q_4}{Q_3} \cdot \frac{Q_2}{Q_0}$ $\frac{Q_2}{Q_0}$.
- We show that this expression is valid if $Q_5 > 0$, and further show that it is still possible to identify $Q[H_1]$ when some of the denominators are 0, i.e., $Q_5 = 0$ or $Q_3 = 0$, relaxing the strict positivity condition of $Q[H] > 0$ in (Tian, 2003).

We generalize Q-decomposition under relaxed positivity.

Theorem (Positivity Relaxed Q-decomposition)

Let $H' \in \mathsf{cc}(\mathcal{G}[H])$ where $l_{\mathcal{G}[H],\prec}(H') = \{(l_d, r_d)\}_{d=1}^T$. Then, the following holds:

If $Q[\mathsf{H}^{\preceq l_{\mathcal{T}}-1}]>0$, then

$$
Q[\mathbf{H}'] = \prod_{d=1}^T \frac{Q[\mathbf{H}^{\preceq r_d}]}{Q[\mathbf{H}^{\preceq l_d-1}]}.
$$

If $Q[\mathbf{H}^{\preceq r_m}]=0$ and $Q[\mathbf{H}^{\preceq l_m-1}]>0$ for some m, then

 $Q[H'] = 0.$

Relaxed Q-decomposition with Example (Napkin)

$$
Q[W,X,Y] = \frac{Q[W,R,X,Y]}{Q[W,R,X]} \cdot \frac{\overline{Q[W,R,X]}}{Q[W,R]} \cdot \frac{Q[W]}{Q[\emptyset]}
$$

$$
Q[W, X, Y] = \frac{Q[W, R, X, Y]}{Q[W, R]} \cdot \frac{Q[W]}{Q[\emptyset]} \quad \text{if } Q[W, R] > 0
$$

$$
Q[W, X, Y] = 0 \quad \text{if } Q[W] = 0
$$

$$
\implies P_{x}(y) = \frac{\sum_{w} Q[W, X, Y](x, y, w, r)}{\sum_{y', w} Q[W, X, Y](x, y', w, r)}
$$

∴ $\exists r$ (adj(r; W) \land $P(x, r) > 0$)

 \bullet We devise Identify $+$, a sound algorithm that returns an identification formula with sufficient positivity. QQ

Hwang et al. (SNU) [On Positivity Condition for Causal Inference](#page-0-0) ICML 2024 19/23

- 2 [Causal Identification with Strict Positivity](#page-6-0)
- [Post-hoc Analysis](#page-10-0)
- 4 [Causal Identification with Relaxed Positivity: Do-Calculus](#page-12-0)
- 5 [Causal Identification with Relaxed Positivity: Q-Decomposition](#page-14-0)
- 6 [Discussion & Conclusion](#page-19-0)

- We provide positivity conditions for **do-calculus** and **generalized** Q-decomposition, forming a basis for causal effect identification without $P(V) > 0$.
- We devise $Identity+$ algorithm, incorporating a relaxed version of generalized Q-decomposition into an existing identification method.
- Towards a positivity-aware identification algorithm— 3 key factors: topological order, fixing values, and latent projection.
- Since we have established sufficient conditions for both do-calculus and identification of marginal effects, our results indeed generalize to conditional causal effects as well.

 Ω

- 2 [Causal Identification with Strict Positivity](#page-6-0)
- [Post-hoc Analysis](#page-10-0)
- 4 [Causal Identification with Relaxed Positivity: Do-Calculus](#page-12-0)
- 5 [Causal Identification with Relaxed Positivity: Q-Decomposition](#page-14-0)
- **[Discussion & Conclusion](#page-19-0)**

- • Hernán, M. A. and Robins, J. M. Estimating causal effects from epidemiological data. Journal of Epidemiology & Community Health, 60(7):578–586, 2006.
- Pearl, J. Causal diagrams for empirical research. Biometrika, 82(4):669–688, 1995.
- Tian, J. and Pearl, J. On the identification of causal effects. Technical Report R-290-L, Department of Computer Science, University of California, Los Angeles, CA, 2003.