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Background

Identifying and estimating a causal effect is a fundamental task when
inferring a causal effect using observational study without experiments.

Just assuming the strict positivity (P(V) > 0) of the given
distribution under the unconfounded assumption has been a long
convention.

We examine the graphical counterpart of the conventional positivity
condition to license the use of identification formula without strict
positivity.
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Motivating Example 1

Backdoor formula:

X

Z

Y

Px(y) =
∑
z

P(y | x , z)P(z)

⇒ ∀z(P(z) = 0 ∨ P(x | z) > 0) ≡ adj(x;Z)

Under the strict positivity, we can identify the causal effect—i.e., we
can get the intervened distribution of y (Px(y)) from the observed
distribution P(V).

To estimate average treatment effect for each value of the covariate in
the population, there are some subjects that received the
treatment—i.e., P(X | z) > 0 for all z with P(z) ̸= 0 (Hernán &
Robins, 2006).
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Motivating Example 2

Multiplicity of identification formulae and conditions:

One may estimate the causal effect with a formula but not with the
other, which was not the case under strict positivity.

X

Z1 Z2

Y

∑
z1

P(y | x , z1)P(z1) or
∑
z2

P(y | x , z2)P(z2)

X Z Y

W Px(y) =
∑

w P(y | x ,w)P(w) Backdoor

Px(y) =
∑

z P(z)
∑

x ′ P(y | x ′, z)P(x ′) Front-door

Px(y) =
∑

z P(z | x)P(y | z ,w) IDENTIFY
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Causal Identification with Strict Positivity

The causal effect Px(y) is identifiable if it can be uniquely computed
from P(V) in any causal model which induces G.

How to identify Px(y)?
1 Do-calculus (Pearl, 1995)
2 Q-decomposition (Tian, 2003)

⇒ These well-known methods of identification heavily rely on
P(V) > 0.
⇒ Their validity and mathematical correctness are unclear under
relaxed positivity.

e.g., Napkin

X Y

W

R Px(y) =

∑
w P(y , x | r ,w)P(w)∑
w P(x | r ,w)P(w)
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Do-calculus with Strict Positivity

This calculus (Pearl, 1995) facilitates the identification of causal effects
in non-parametric models.

The following transformation are valid for any positive do-distribution
induced by a model:

Definition (do-calculus)

Rule 1 (addition/deletion of observation):
Px(y | z,w) = Px(y | w) if (Y ⊥⊥ Z | X,W)GX

Rule 2 (exchange of action and observation):
Px,z(y | w) = Px(y | z,w) if (Y ⊥⊥ Z | X,W)GXZ

Rule 3 (addition/deletion of action):
Px,z(y | w) = Px(y | w) if (Y ⊥⊥ Z | X,W)GX,Z(W)

,

where Z(W) = Z \ An(W)GX
.
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Q-decomposition with Strict Positivity

c-factors derived from the given observational distribution P(V) are
used to answer the c-factors derived from the query Px(y) (Tian,
2003).

Theorem (Q-decomposition)

Given H ⊆ V, let H1, . . . ,Hk be the c-components of G[H]. Let ≺ be a
topological order over the variables in H according to G[H] such that
V (1) ≺ V (2) · · · ≺ V (|H|). Let H⪯i be the variables in H that come before
V (i) including V (i). Let H≻i be the variables in H that come after V (i).
Given Q[H] > 0,

Q[Hj ] =
∏

V (i)∈Hj

Q[H⪯i ]

Q[H⪯i−1]
,

where Q[H⪯i ] =
∑

h≻i Q[H].

e.g .,Q[W ,X ,Y ] =
Q[W ,R,X ,Y ]

Q[W ,R,X ]
· Q[W ,R,X ]

Q[W ,R]
· Q[W ]

Q[∅]
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Post-hoc Analysis (Appendix)

We can examine a positivity condition under which the identification
formula is well-defined.

e.g., Napkin

∃r
∑

w P(y , x | r ,w)P(w)∑
w P(x | r ,w)P(w)

≥ 0 ⇐ ∃r(① ≥ 0 ∧ ② > 0)

① ≥ 0 ⇐ adj(r ;W )

② > 0 ⇐ adj(r ;W ) ∧ P(x , r) > 0

∴ ∃r(adj(r ;W ) ∧ P(x , r) > 0)

While it is true that the positivity condition derived directly from a
formula ensures that the formula is well-defined, yet its validity is
unclear for now since the formula is derived under strict positivity.

Post-hoc analysis yields a sufficient positivity condition for the
identification formula derived through Identify+.
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Causal Identification with Relaxed Positivity: Do-Calculus

We develop a general and principled approach for deriving a positivity
condition by examining the conditions for do-calculus (Pearl, 1995).

Definition (Positivity Relaxed do-calculus)

Let G be the directed acyclic graph (DAG) associated with a causal model,
and let P(·) be the probability distribution induced by the model. Then,

(R1) Px(y | z,w) = Px(y | w) if (Y ⊥⊥ Z | W)(G\X) and Px(z,w) > 0
(R2) Px,z(y | w) = Px(y | z,w) if (Y ⊥⊥ Z | W)(G\X)Z and Px(z,w) > 0
(R3) Px,z(y | w) = Px(y | w) if (Y ⊥⊥ Z | W)(G\X)

Z(W)
and Px(w) > 0

e.g.,
Px(y) = Pw ,r (y | x) if Pw ,r (x) > 0

= Pw ,r (y , x)/Pw ,r (x) if Pw ,r (x) > 0

=
∑

w′ P(y ,x |r ,w ′)P(w ′)∑
w′ P(x |r ,w ′)P(w ′) . if adj(r ;W )

∴ ∃r(adj(r ;W ) ∧ P(x , r) > 0)
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Causal Identification with Relaxed Positivity:
Q-Decomposition

Given the theoretical underpinnings of the sufficient positivity
conditions over do-calculus, we now investigate the feasibility of
creating an identification algorithm capable of simultaneously taking a
non-strictly positive observational distribution into account.

The intuition behind the generalization is that the product of fractions
often can be shortened by canceling out depending on the topological
order.
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Relaxed Q-decomposition Motivating Example

V1

V2

V3

V4

V5

V6

V7

Q[H] = Q[H1] · Q[H2] where H1 = {V1,V2,V4,V6,V7} and
H2 = {V3,V5}.
Denoting Q[H⪯i ] as Qi for brevity, if Q[H] = Q7 > 0, then

Q[H1] =
Q7

ZZQ6
· ZZQ6
Q5

· Q4
Q3

· Q2

ZZQ1
· ZZQ1
Q0

and Q[H2] =
Q5
Q4

· Q3
Q2

by Tian (2003,

Lemma 4). Since Q6 and Q1 can be canceled out, we can write
Q[H1] =

Q7
Q5

· Q4
Q3

· Q2
Q0

.

We show that this expression is valid if Q5 > 0, and further show that
it is still possible to identify Q[H1] when some of the denominators are
0, i.e., Q5 = 0 or Q3 = 0, relaxing the strict positivity condition of
Q[H] > 0 in (Tian, 2003).
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Relaxed Q-decomposition

We generalize Q-decomposition under relaxed positivity.

Theorem (Positivity Relaxed Q-decomposition)

Let H′ ∈ cc(G[H]) where IG[H],≺(H
′) = {(ld , rd)}Td=1. Then, the following

holds:

If Q[H⪯lT−1] > 0, then

Q[H′] =
∏T

d=1
Q[H⪯rd ]

Q[H⪯ld−1]
.

If Q[H⪯rm ] = 0 and Q[H⪯lm−1] > 0 for some m, then

Q[H′] = 0.
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Relaxed Q-decomposition with Example (Napkin)

Q[W ,X ,Y ] =
Q[W ,R,X ,Y ]
XXXXXXQ[W ,R,X ]

·
XXXXXXQ[W ,R,X ]

Q[W ,R]
· Q[W ]

Q[∅]

Q[W ,X ,Y ] =
Q[W ,R,X ,Y ]

Q[W ,R]
· Q[W ]

Q[∅]
if Q[W ,R] > 0

Q[W ,X ,Y ] = 0 if Q[W ] = 0

=⇒ Px(y) =

∑
w Q[W ,X ,Y ](x , y ,w , r)∑

y ′,w Q[W ,X ,Y ](x , y ′,w , r)

∴ ∃r(adj(r ;W ) ∧ P(x , r) > 0)

We devise Identify+, a sound algorithm that returns an identification
formula with sufficient positivity.
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Discussion & Conclusion

We provide positivity conditions for do-calculus and generalized
Q-decomposition, forming a basis for causal effect identification
without P(V) > 0.

We devise Identify+ algorithm, incorporating a relaxed version of
generalized Q-decomposition into an existing identification method.

Towards a positivity-aware identification algorithm— 3 key factors:
topological order, fixing values, and latent projection.

Since we have established sufficient conditions for both do-calculus and
identification of marginal effects, our results indeed generalize to
conditional causal effects as well.
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