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What Is All About
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What Is All About

We give a novel reduction from total variation distance estimation
(for Bayes nets) to probabilistic inference (for Bayes nets).
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Bayes Nets
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Bayes Nets

Bayes nets (Pearl, 1989) offer a succinct way of representing
high-dimensional distributions.

They are defined by a DAG and a collection of conditional
probability distributions, one for each DAG node.
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Figure: A Bayes net G.
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Bayes Nets

x1 x2 x3 x4

x5

Figure: A Boolean Bayes net G.

The distribution represented by G can be described by a
look-up table consisting of 25 − 1 = 31 numbers,

while
the description of G uses only 10 numbers (that is, 1 num-
ber for each of the distributions of x1 and x5, 2 numbers
for each of the conditional probability distributions of x2
and x4, and 4 numbers for that of x3).
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Total Variation (TV) Distance

There are many notions of distance between distributions, such as
f -divergences (Hellinger, KL, χ2, etc.) or integral probability
metrics (Wasserstein, TV, etc.).

We focus on TV distance.
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Total Variation (TV) Distance

Definition
For distributions P,Q over a common domain D, the TV distance
between P and Q is

dTV(P,Q) := sup
A⊆D

|P(A)−Q(A)| .
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Total Variation (TV) Distance

TV distance is important, because

1. it is natural: dTV(P,Q) is equal to the maximum gap between
the probabilities assigned by P and Q to a single event;

2. it has many desirable properties: It is a metric, it is bounded
in [0, 1], and is invariant with respect to bijections.
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11 / 33



Probabilistic Inference

The following notion is a fundamental computational task with a
wide range of applications.

Definition
Given random variables X1, . . . ,Xn and sets S1, . . . ,Sn, such that
for all 1 ≤ i ≤ n the set Si is a subset of the range of Xi , compute

Pr[X1 ∈ S1, . . . ,Xn ∈ Sn] .
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Some Related Work
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Some Related Work

▶ Goldreich, Sahai, and Vadhan (CRYPTO 1999, JACM 2003)
showed that TV distance is hard to additively estimate for
distributions samplable by Boolean circuits.
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Some Related Work

▶ On an algorithmic note, Bhattacharyya, Gayen, Meel, and
Vinodchandran (NeurIPS 2022) designed efficient algorithms
to additively estimate the TV distance between distributions
efficiently samplable and efficiently computable.
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Some Related Work

▶ Bhattacharyya, Gayen, Meel, Myrisiotis, Pavan, and
Vinodchandran (IJCAI 2023) proved that exact computation
of TV distance between product distributions is #P-hard.

They also gave an FPTAS for estimating dTV(P,Q) for the
case where Q has a bounded number of distinct marginals (for
example, when Q is the uniform distribution).
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Some Related Work

▶ Feng, Guo, Jerrum, and Wang (TheoretiCS 2023) designed an
FPRAS for multiplicatively estimating the TV distance
between any two product distributions, and Feng, Liu, and Liu
(SODA 2024) gave an FPTAS for the same task.
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Our Results
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Our Results: Enter Probabilistic Inference

Theorem
For any class C of Bayes nets for which there is an efficient
probabilistic inference algorithm, there is an FPRAS for estimating
the TV distance between any two Bayes nets from C defined over
the same DAG.
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Our Results: Enter Probabilistic Inference

We immediately get the following, by the (folklore) fact that
probabilistic inference is efficient for Bayes nets of small treewidth
(using the Variable Elimination algorithm).

Corollary

There is an FPRAS for estimating the TV distance between any
two Bayes nets of treewidth O(log n) defined over the same DAG
of n nodes.
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Techniques:
Power From Couplings
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Techniques: Power From Couplings

Definition
A coupling C between distributions P,Q is a joint distribution
(X ,Y ) such that X ∼ P and Y ∼ Q. We say that a coupling O is
optimal if O is a coupling and

Pr
O
[X = Y = w ] = min(P(w) ,Q(w))

for all w .
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Techniques: Power From Couplings

Couplings and TV distance

A straightforward way of estimating TV distance is to make use of
its characterization that uses optimal couplings.

That is, for X ∼ P, Y ∼ Q, and optimal coupling O, we have

dTV(P,Q) = Pr
O
[X ̸= Y ] .
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Techniques: Power From Couplings

Problem
What is O? It is not clear how to find it!

Solution
Circumvent this issue by using partial couplings!

24 / 33



Techniques: Power From Couplings

Definition
A partial coupling L between distributions P,Q is a joint
distribution (X ,Y ) such that X ∼ P and

Pr
L
[X = Y = w ] = min(P(w) ,Q(w))

for all w .

That is, it is not required that Y ∼ Q.
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Techniques: Power From Couplings

Solution (cont.)

It would suffice to define an efficiently computable estimator
function f (bounded in [0, 1]) and efficiently samplable distribution
π such that

E
w∼π

[f (w)] =
PrO [X ̸= Y1]

PrL[X ̸= Y2]
=

dTV(P,Q)

Z
,

for X ∼ P, Y1 ∼ Q, and some sufficiently small and easy to
compute Z := PrL[X ̸= Y2].
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Techniques: Power From Couplings

Solution (cont.)

Then we can estimate Ew∼π[f (w)] by a Monte Carlo approach
and therefore get an estimate of

Z · E
w∼π

[f (w)] = dTV(P,Q) .
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Techniques: Power From Couplings

Where is the probabilistic inference algorithm used?

The probabilistic inference algorithm is used

(a) in the computation of Z and

(b) to sample from π.
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Open Problems

29 / 33



Open Problems

We outline these questions:

1. For what other classes of probabilistic models do there exist
TV distance approximation schemes?

2. What can we say about other notions of distance or similarity
between probabilistic models?
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Our Work on arXiv
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Thank You!
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