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Background =

Graphs in the real world contain variety and important of topologies, and these
topological properties often reflect physical laws and growth patterns.
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Graph Generation

Many deep learning models have been

developed for graph generation.
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Diffusion models
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Graph Diffusion Model -

Discrete paradigm: Continuous paradigm:

q(xt|x*™1) = N(x%; v1-— ax1, a,l)

The diffusion process is performed after
embedding into the continuous latent space.

q(G'|6"Y) = (X*1QL E'1Qp)

The diffusion process is performed directly
on the adjacency/Laplace matrix.
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[3] Xu M, et al. Geometric latent diffusion models for 3d molecule generation. ICML 2023.



Graph Anisotropic Diffusion
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In Riemannian geometry, the hyperbolic geometric spaces (with negative curvature)
can be intuitively understood as a continuous tree and spherical geometry spaces
(with positive curvature) benefit for modeling cyclical graphs.
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Hyperbolic geometry unifies angular and radial measures of polar coordinates and
can provide geometric measures with physical semantics and interpretability.

Angular Mixture Gaussian Distributions
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Graph Anisotropic Diffusion
In Latent Space
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Hyperbolic geometry has great potential to address non-Euclidean structural
anisotropy in graph latent diffusion processes.
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(a) Original structure.

Hyperbolic Geometric Latent Diffusion Model for Graph Generation. ICML 2024.

AT TR
AN e
ok

e

(b) Euclidean latent space.

o) IETIELHEARE

BEIHANG UNIVERSITY

- <
w GUANGXI NORMAL UNIVERSITY



Differential Geometry & Diffusion = ICML
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The graph can be understood as a discretization of a continuous manifold. In
differential geometry, tangent planes/spaces are often used for approximate
computations.
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Discretized Manifold Tangent plane/space approximation Logmap & Expmap
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Our goal is to establish a suitable geometrically latent space based on hyperbolic
geometry to design an efficient diffusion process to the non-Euclidean structure.

Challenge 1 Challenge 2
The additivity of continuous Gaussian distributions An effective anisotropic diffusion process for non-
Is undefined in hyperbolic latent space. Euclidean structures.
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The additivity issue in hyperbolic space SNR decreases rapidly with isotropic noise
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Hyperbolic Differential
Approximation for Diffusion

Differential Approximation of Continuous Gaussian Processes
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Hyperbolic Embeddings Approximate Tangent Plane Selection Approximate Tangent Space Diffusion
(HGCN Encoder) (Hyperbolic K-Means Clustering) (Continuous Gaussian Processes)
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The hyperparameter k is allowed to control the
approximation accuracy:

Upper bound: k=1 — Klein model
Error

- e ———

Lower bound:  k = N,,,, — Hyperboloid model
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Geometrically directional =
constraint

Radial & Angular Hyperbolic Latent Diffusion
Constraints:; Process:

Angular Mixture Gaussian Distributions
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Angle constraints controls Radial constraints preserve

the noise direction: the geometric prior:
sgn(logmapé (h,))e 5tanh(‘/a°)x
5 5 Polltu \ TO 0 Hyperbolic Latent Diffusion Process with Geometric Constraints
Ty = \Vogro + V1 — @EI—Fld tanh[v/eASt /Tyl
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Hyperbolic latent diffusion model consists of two main components, the hyperbolic

differential approximation of the continuous diffusion process and the geometrically
directional constraint.
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Experiments o

» Evaluation Settings

B Node classification: F1 scores .

U L 3, o
B Graph generation: MMD

> D atasets Dataset | #Nodes #Edges #Features #Avg. Degree #Class

& Cora 2,708 5,429 1,433 3.90 7

. . £ Citeseer 3,312 4,732 3,703 2.79 6

L] : 2 2 ?

B Synthetic Datasets: BA, SBM, WS, Grid ... = Polblogs 1490 19,025 500 25.54 3
Dataset | #Graphs #Avg. Node #Avg. Edge #Max Num Node #Class

B Real-world datasets ¢ MUTAG 188 17.9 39.6 28 2

< IMDB-B 1,000 19.8 193.1 136 2

: & PROTEINS 1,113 39.1 145.6 620 2

> Basellnes {3 COLLAB 5,000 74.5 49144 492 3

B Euclidean graph representation methods: GraphGAN, ANE

B Hyperbolic graph representation learning: P-VAE, HyperANE

B Deep graph generative models: VGAE, GraphRNN

B Graph diffusion generative models: GDSS, DiGress, GraphGDP, EDGE

Hyperbolic Geometric Latent Diffusion Model for Graph Generation. ICML 2024. {fonkc v O Fon * P XA R EL S
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Node classification F1 score
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Synthetic Datasets Real-world Datasets
Method SBM BA Cora Citeseer Polblogs Avg. R.
Mi-F1 Ma-F1 | Mi-F1 Ma-F1 Mi-F1 Ma-F1 | Mi-F1 Ma-F1 | Mi-F1 Ma-F1
VGAE 205421 154411 | 374417 159423 | 79.7+04 78.1+0.2 | 63.8+1.4 555413 | 79.4+0.8 79.4+0.8 4.6
ANE 399£1.1  33.9£1.8 | 46.0£3.0 193£27 | 69.3+£0.1 66.4+0.1 | 50.2£0.1 49.520.6 | 80.8£0.1 80.7x0.1 4.3
GraphGAN | 38.6£0.5 38.9+0.3 | 43.6£0.6 24.6£0.5 | 71.7£0.1 69.8+0.1 | 49.8£1.0 45.7+0.1 | 77.5£0.6 76.9+04 4.8
P-VAE 57.9+1.3 53.0+1.5 | 384+1.4 20.0£03 | 79.6£2.2 775425 | 67.9£1.7 60.2+1.9 | 794+0.1 79.4+0.1 3.2
Hype-ANE | 18.8+0.3 11.9+0.1 | 56.9+2.4 31.6+1.2 | 80.7£0.1 79.2+0.3 | 64.4+0.3 58.7+0.0 | 83.6+0.4 83.6+0.4 3.0
HypDiff | 70.5£0.1 69.4+0.1 | 58.3+0.1 40.0+0.1 | 82.420.1 81.2+0.1 | 67.820.2 60.4+0.3 | 85.7£0.1 854+0.1 | 1.1
Graph generation MMD score
Synthetic Datasets Real-world Datasets
Method Community BA-G MUTAG PROTRINS
Degree Cluster Spectre | Degree Cluster Spectre | Degree Cluster Spectre ‘ Degree Cluster Spectre
VGAE 0.365 0.025 0.507 0.775 1.214 0.398 0.255 2.000 0.744 0.705 0.979 0.700
GraphRNN [ 0.002 0.027 0.004 0.122 0.262 0.007 0.537 0.013 0.476 0.009 0.071 0.017
GDSS 0.094  0.031 0.052 0.978 0.468 0.917 0.074 0.021 0.003 1.463 0.168 0.013
DiGress 0.226  0.158 0.194 0.654 1.171 0.268 0.100 0.351 0.082 0.108 0.062 0.079
GraphGDP | 0.046  0.016 0.042 0.698 0.188 0.053 0.127 0.057 0.050 0.103 0.240 0.088
EDGE 0.021 0.013 0.040 0.282 0.010  0.090 0.024 0.597 0.468 0.033 0.523 0.024
HypDiff | 0.002 0.010 0.028 | 0.216  0.021 0.004 ‘ 0.048 0.001 0.040 ‘ 0.133 0.004 0.012

IEFIRL I ERY

BEIHANG UNIVERSITY

) & o 0 dn

GUANGXI NORMAL UNIVERSITY

Hyperbolic Geometric Latent Diffusion Model for Graph Generation. ICML 2024.




Analysis of HypDiff 3 ICML

International Conference
On Machine Learning

100 100 100
93.7 BE& HypDiff 93 20 93 1
89.7 . 2 e PV Q1 R( I, 11
o Frpbitt (wio 1) $9,70 89,80 8980 8980 89,80 8980 89 7 90,10 —" — 8 —4
Feess HypDiff (w/o S) 901 A - "y Nt O — 90%7.60 —= o v— e
oL 810 3 Y = e #0779 ok i — iy ACLS0 o Qg
80 1 peasl 7/ HypDiff (w/o PS) ’; /.40 8702 §7.16 3%, 2 2650 ’; P /A0S o ) i
o 73.0!’9:-:1:1: /:1'1—' O\ Q\ RI D () o\ C
5 70 - Foiky /::::. S 80 Cora ;/ R0 o )/ s, ora
o watety! Adetel 2 L -~ ]
v %;, %, 532 & —o— SBM = —o—  CiteSeer
- kA d A
Z 60 / = R 7 —+— Fractal | & 70 —+— PolBlogs
: .'t'!'l? / "'t'.' m 0 —_ raCta m 7 o = 0 Ogs
% ':n:-:; / ;:t:':':ﬁ 51.4 L: E 0d.cv
50 1 /'O.Q.'.» /:t.n".p' 7 17.3 6132 O |.76 1. 80 f\_"_'__j(,}./
/Qlti /nou /l‘i‘rﬂ C Xy T L O 00).( 4 (O am—— SO 4()
it / A / AAAA 60 57 41 0. Al o 60 ~
LA o /aaaq‘ | " CA LD iy~ \L
B E B B L 424
‘ ietahet ':a.:o b‘a el
l“) %/A'".".‘. % b‘"".’l ""'.'.' 50 - - r v - - SO T \2 ol
: Cora PolBlogs CiteSeer | 5 10 100 200 500 1000 0.2 0.4 06 08 | O

k %)
(b)Sensitivity Analysis of Geometric Constraints

O
>
o
o
=,
o
S
%)
—
c
Q
<

Hyperbolic geometric prior plays a crucial role in capturing non-Euclidean structures.
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60001 Fime-11-8 s A
E VWV DiGress GraphGDP
. G_PL' : 5%001\-{8 ( '_ill-‘l']: 5}’_)02_\-1']3 . -
g. 2000 Time: 12.1 s lime: 13.6 s Hprlff Comprehen8|ve|y OutperfOFmS Other
z apss baselines in diffusion time and GPU memory cost.
. + J'imc.: ;3 s-
Time: 11.2 s

T T
11 12 13 14

Average Time of 1000 Timesteps (s)

Synthetic Datasets | Real-world Datasets
Method Community BA-G Ego MUTAG PROTEINS IMDB-B
Time(s) GPUMB) Time(s) GPUMB) Time(s) GPU(MB) | Time(s) GPUMB) Time(s) GPUMB) Time(s) GPU(MB)

GDSS 10.14 3475 11.80 7750 9.71 3883 10.79 3907 12.04 6305 12.5 3501
DiGress 9.62 3936 11.42 9012 12.28 4174 9.84 4125 11.74 6975 12.1 5800
GraphGDP | 12.58 3802 14.36 13164 12.47 3848 12.85 3956 12.18 44708 13.6 5902
EDGE 9.87 2825 11.83 25236 10.24 2657 9.73 27603 10.95 26188 11.8 6205
HypDiff | 10.03 2246 12.04 5697 10.15 2570 | 9.92 2720 10.72 4735 11.20 2519
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Original GDSS HypDiff (ours) Original GDSS HypDiff (ours)
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HypDiff exhibits significantly enhanced proficiency in reproducing the original

graph structure, while consistently achieving a coherent distribution of node colors.
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Geometric Prior: Hyperbolic geometry provides better priors for topological
properties of graphs with non-Euclidean structure.

Graph Anisotropic Diffusion: Anisotropic diffusion provides better and more fine-
grained structure details for graph structure generation.

Efficiency: HyperDiff can directly perform diffusion process in continuous
hyperbolic space, and has low computational complexity and GPU occupancy.
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