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Background

Small-worlds Hierarchies Fractal structures

Graphs in the real world contain variety and important of topologies, and these 

topological properties often reflect physical laws and growth patterns.
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[1] Liu C, Fan W, Liu Y, et al. Generative diffusion models on graphs: Methods and applications[C]. 

IJCAI 2023.

Variational AutoEncoders

Generative Adversarial Networks (GAN)

Diffusion models

Graph Generation

Many deep learning models have been 

developed for graph generation.

Model Training Quality Generalization

VAE Easy Low Good

GAN Hard High Bad

Diffusion Easy High Good



Graph Diffusion Model

[2] Vignac C, et al. DiGress: Discrete Denoising diffusion for graph generation. ICLR 2022.

[3] Xu M, et al. Geometric latent diffusion models for 3d molecule generation. ICML 2023.

Discrete paradigm： Continuous paradigm：

DiGress[2] GeoLDM[3]

𝒒(𝑮𝒕|𝑮𝒕−𝟏) = （𝑿𝒕−𝟏𝑸𝒙
𝒕 , 𝑬𝒕−𝟏𝑸𝑬

𝒕 ) 𝒒(𝒙𝒕|𝒙𝒕−𝟏) = 𝑵(𝒙𝒕; 𝟏 − 𝜶𝒕𝒙
𝒕−𝟏, 𝜶𝒕𝑰)

The diffusion process is performed directly 

on the adjacency/Laplace matrix.

The diffusion process is performed after 

embedding into the continuous latent space. 



Graph Anisotropic Diffusion

[5] Elhag, et al. Graph anisotropic diffusion for molecules. ICLR2022. 

[6] Yang R, et al. Directional diffusion models for graph representation learning. NeurIPS, 2024

Graph Anisotropic Diffusion Model[4]

Directional Graph Diffusion Model[5]



Geometric Prior of Graph

[6] Gosztolai A, Arnaudon A. Unfolding the multiscale structure of networks with dynamical Ollivier-

Ricci curvature[J]. Nature Communications, 2021

In Riemannian geometry, the hyperbolic geometric spaces (with negative curvature) 

can be intuitively understood as a continuous tree and spherical geometry spaces 

(with positive curvature) benefit for modeling cyclical graphs.

Riemannian Manifolds[6] Geometric properties of hyperbolic Spaces



Hyperbolic Geometry

[7] Papadopoulos F, et al. Popularity versus similarity in growing networks. Nature, 2012

[8] Muscoloni A, et al. A nonuniform popularity-similarity optimization. New Journal of Physics, 2018

Hyperbolic geometry unifies angular and radial measures of polar coordinates and 

can provide geometric measures with physical semantics and interpretability. 

PSO model[7] & Geometric Intuition nPSO model[8] & Angular Distribution
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Graph Anisotropic Diffusion 

in Latent Space

Hyperbolic geometry has great potential to address non-Euclidean structural 

anisotropy in graph latent diffusion processes.



Differential Geometry & Diffusion 

Process
The graph can be understood as a discretization of a continuous manifold. In 

differential geometry, tangent planes/spaces are often used for approximate 

computations.

Discretized Manifold Tangent plane/space approximation Logmap & Expmap
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Challenges

Hyperbolic Geometric Latent Diffusion Model for Graph Generation. ICML 2024.

Our goal is to establish a suitable geometrically latent space based on hyperbolic 

geometry to design an efficient diffusion process to the non-Euclidean structure. 

Challenge 1 Challenge 2

The additivity of continuous Gaussian distributions 

is undefined in hyperbolic latent space.

An effective anisotropic diffusion process for non-

Euclidean structures.

The additivity issue in hyperbolic space SNR decreases rapidly with isotropic noise



Hyperbolic Differential 

Approximation for Diffusion

Differential Approximation of Continuous Gaussian Processes

𝑘 = 1 → Klein model

𝑘 = 𝑁𝑚𝑎𝑥 → Hyperboloid model

Upper bound:
Error 

Lower bound:

Hyperbolic Embeddings 

(HGCN Encoder)
Approximate Tangent Plane Selection

(Hyperbolic K-Means Clustering)

Approximate Tangent Space Diffusion

(Continuous Gaussian Processes)

The hyperparameter 𝑘 is allowed to control the 

approximation accuracy:
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Geometrically directional 

constraint

Radial & Angular 

Constraints：
Hyperbolic Latent Diffusion 

Process：

𝛿tanh(
𝑐𝜆0
𝑇0

)𝑥0

Radial constraints preserve 

the geometric prior:

sgn(logmap𝑜
𝑐(ℎ𝜇))𝜀

Angle constraints controls 

the noise direction:
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Our Architecture

Hyperbolic latent diffusion model consists of two main components, the hyperbolic 

differential approximation of the continuous diffusion process and the geometrically 

directional constraint.

HyperDiff Architecture
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➢ Evaluation Settings

◼ Node classification: F1 scores

◼ Graph generation: MMD 

➢ Datasets

◼ Synthetic Datasets: BA, SBM, WS, Grid …

◼ Real-world datasets

➢ Baselines

◼ Euclidean graph representation methods: GraphGAN, ANE

◼ Hyperbolic graph representation learning: 𝒫-VAE, HyperANE

◼ Deep graph generative models: VGAE, GraphRNN

◼ Graph diffusion generative models: GDSS, DiGress, GraphGDP, EDGE

Experiments
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Graph generation MMD score 

Experimental Results

Hyperbolic Geometric Latent Diffusion Model for Graph Generation. ICML 2024.

Node classification F1 score 



Analysis of HypDiff

Hyperbolic Geometric Latent Diffusion Model for Graph Generation. ICML 2024.

(a) Ablation Study (b)Sensitivity Analysis of Geometric Constraints

Hyperbolic geometric prior plays a crucial role in capturing non-Euclidean structures.



Diffusion Efficiency Analysis

Hyperbolic Geometric Latent Diffusion Model for Graph Generation. ICML 2024.

HypDiff comprehensively outperforms other 

baselines in diffusion time and GPU memory cost.



Visualization

Hyperbolic Geometric Latent Diffusion Model for Graph Generation. ICML 2024.

HypDiff exhibits significantly enhanced proficiency in reproducing the original 

graph structure, while consistently achieving a coherent distribution of node colors.



Highlights of HyperDiff

Hyperbolic Geometric Latent Diffusion Model for Graph Generation. ICML 2024.

Graph Anisotropic Diffusion: Anisotropic diffusion provides better and more fine-

grained structure details for graph structure generation.

Efficiency: HyperDiff can directly perform diffusion process in continuous 

hyperbolic space, and has low computational complexity and GPU occupancy.

Geometric Prior: Hyperbolic geometry provides better priors for topological 

properties of graphs with non-Euclidean structure.
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