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Reinforcement Learning

Objective: Find the optimal policy that maximizes the expected discounted
cumulative rewards

State s € §

Reward r New state s’
A S,NP(S,‘S,CZ)
\/ rowardr

r ~ R(s, a)

- Actiona € A

Best policy maximizes the total expected return: V_ = [t ﬂz y'r,
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Constrained Reinforcement Learning (CRL)

Objective: Find the optimal policy that maximizes the expected discounted
cumulative rewards subject to constraints

State s € 5 New state s’
Cost ¢, Vi , ,
s’ ~ P(s’| s, a)
Reward r
/\ Reward r
r ~ R(s,a)
v Cost
- Actiona € A ¢; ~ Cils, a)Vi
Best policy maximizes the total expected return: V_ = [ ﬂz y'r,

such that —ﬂ[z vicds,,a)] < p.Vi
[
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Inverse Constrained Reinforcement Learning

Objective: Given a dataset of expert demonstrations and (optionally) a reward
function, find constraints (and optional rewards) such that when CRL is performed,
we obtain a constrained optimal policy that represents the behaviour in the dataset

State s € S

Expert Data D
Reward r

Actiona € A
Constraint Inference ¢; € C; Vi

Agent performs constraint inference using expert data and learns a
constrained policy model using the estimated constraints at the same time
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Confidence Aware Inverse Constrained RL

* Intuitively more expert trajectories adhering to a constraint implies higher
confidence

 CA-ICRL maintains a confidence estimate along with learning constraints

 [WO use cases:
* |Inferring constraints based on confidence level

 Determining sufficiency of expert trajectories based on desired confidence and
performance



ICRL vs CA-ICRL

ICRL CA-ICRL

Constraint

Pii1

Forward Step:
Policy Update

Forward Step:
Policy Update

Mi = Mit1 T — Ti+1

.? amp:ing _ Constraint Sampling _
rajectory: Function: Trajectory Constraint
D Gii1 D, selection based
i1 t+1

I Tterations on confidence )\

nverse Step:
Constraint
Distribution

Adjustment Constraint
Distribution

P;1(9)

Inverse Step:
onstraint Update

Pi — Pit1

Expert Trajectory: D,
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Case 1: Inferring a constraint conditioned on a confidence level

Objective: Inferring constraints with the provided (desired) confidence
e A beta distribution is used to model the constraint function

» Distribution is represented by a neural network having multiple encoder
blocks with shared weights

) ned Policy Optimizatio
(g PPOLg nge, PPO-pen Ity)

Constraint
Function

¢

Select ¢(7) with high confidence
(e.g. X = 90% )
¢(1) = quantilepeta(gla)(1 — A)

,7.6
T A . (expert trajectories)
A(confidence level) ( W,- 1 Encoder Encoder Encoder
po |cy)v
weights W weights W weights W

Constra dd tbt dj tm nt
(gb) by ap ximate Bay

(constraint | P(#) = be ta (¢la) =~ P(¢|{T} 7T)

distribution)

Confidence Aware Constraint Inference Network Architecture for Constraints with Confidence



Case 2: Determining sufficiency of expert trajectories

* Objective: Determining if more expert trajectories are required based on the
desired performance

e | ess expert trajectories — more constraining learned constraints — less
performance by learned policies

Optimize policy 7v* subject Value V'*(s() of Yes
to constraint ¢ by PPO-  re———p policy 77* above —=———3p Terminate
Legrange or PPO-penalty threshold §

| |

Infer constraint ¢
conditioned on Collect more expert

confidence )\ M— trajectories
{Te} — {Te} U {Tffew}



Experiments

* Variety of experiments covering multiple domains
* 5 robotics domains as modifications of well-known MudoCo environments

* [wo real world domains where data comes from realistic HighD dataset

* Extensive comparisons to several state of the art baselines: BC2L, GACL,
ICRL, VICRL

 Performance measures: Constraint violation rate and reward obtained (need
lower constraint violation rate and higher rewards)



Results: Case 1 (1 = 0.7)
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Blocked Walker (100 trajectories)
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Results: Case 2 (1 = 0.8)
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Conclusion

e |Introduced a notion of confidence in ICRL

 [WO use cases:
* Inferring constraints with desired confidence

 Determining sufficiency of expert trajectories with desired confidence and
performance

* Extensive experimental results on robotics and driving domains
e Better performances than baselines

* | earned constraints at-least as constraining as ground truth constraints with
desired confidence
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Thank you

Full paper - https://arxiv.org/pdf/2406.16782

Source Code - https://github.com/Sriram94/ConfidenceAwarelCRL

Questions or Comments?

Please send an email to Sriram Ganapathi Subramanian: sriram.subramanian@vectorinstitute.ai

Personal Website: https://sriramsubramanian.com/

UNIVERSITY OF

S'A HUAWEI WATLoo
o 2

VECTOR
INSTITUTE

v/ s
“ V.



