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Densest subgraph problem

Given an undirected graph G, we define the density given a vertex set S to be

ρ(S) =
|EG(S)|
|S|

.

For a directed graph G, we define the density given two vertex sets S, T to be

ρ(S, T ) =
|EG(S, T )|√
|S||T |

.

The directed densest subgraph are sets S∗, T ∗ that attain the maximum density
ρ∗(G). Our algorithm finds a (2 + ϵ)-approximation of the densest subgraph.
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Densest subgraph problem

(a) Undirected graph (b) Directed graph
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Model definitions

Semi-streaming model: You can store O(n poly logn) edges locally.

Massively Parallel Computation (MPC) model: Each machine holds certain
amount of memory - for δ ∈ (0, 1), sub-linear O(nδ), near-linear O(n poly logn),
super-linear O(n1+δ).
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Contributions

Streaming/Semi-streaming:

Algorithm Approx factor Memory Passes
Bahmani et al. (VLDB 2012) (2 + ϵ) O(n) O(log1+ϵ n)

Esfandiari et al. (SPAA 2015) (1 + ϵ) O
(

n
√
n log2(n)
ϵ2

)
1

Our (randomized stream) (2 + ϵ) O
(

n log2(n)
ϵ2

)
1

MPC:
Algorithm Approx factor Memory Rounds

Bahmani et al. (WAW 2014) (1 + ϵ) sub-linear O(log(n)/ϵ2)
Bahmani et al. (VLDB 2012) (2 + ϵ) sub-linear O(log(n)/ϵ)

Our (2 + ϵ) near-linear O(
√

log(n))
Our (2 + ϵ) super-linear O(1)
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Peeling algorithm

Let c = |S∗|/|T ∗| where S∗, T ∗ are vertex sets of a directed densest subgraph.
1 Let S, T, S∗, T ∗ ← V

2 Sample O(n logn) edges uniformly at random from E(S, T )

3 If |S|/|T | ≥ c, remove vertices from S that are below (1 + ϵ)·average degree
Else, remove vertices from T that are below (1 + ϵ)·average degree

4 Update S∗, T ∗ with the densest subgraph S, T seen so far
5 Repeat step 2 if S and T are both nonempty

Average degree is calculated from the subgraph consisting of edges from E(S, T )
each iteration.
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Peeling algorithm

Figure: One iteration of peeling on set S
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One-pass streaming algorithm
Our idea is to take multiple samples of the graph throughout one pass, using each
of them to apply an iteration of peeling.

Figure: Sampling routine
thjpan@ucdavis.edu University of California, Davis July 2024 8 / 12
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Super-linear MPC algorithm

We simulate the streaming algorithm, with the first machine acting as the start of
a randomized stream.

Figure: One round of super-linear MPC algorithm

The algorithm then takes a constant amount of rounds, O(1/δ) where each
machine holds n1+δ edges.
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Near-linear MPC algorithm

We make two observations to adapt our previous algorithm to the near-linear
memory regime.

1 We only need to take samples of O((|S|+ |T |) logn) edges rather than
O(n logn) edges.

2 Consecutive iterations of peeling on the same set, either S or T , do not
require a fresh sample of edges. This guarantees that (|S|+ |T |) goes down
by a constant factor each time we take another sample of edges.

Results in a quadratic optimization from previous sub-linear algorithms.
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Experimental results
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Figure: Density and running-time as a function of c for LiveJournal dataset
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Figure: Number of phases as a function of c for various data sets
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Future work

1 We hope to explore the trade-off between the number of passes and the
memory requirement of streaming algorithms for this problem.

2 Is there a way to attain a o(logn) MPC round algorithm for the sub-linear
memory regime? How about improving our near-linear MPC algorithm to a
(1 + ϵ)-approximation?
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