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Densest subgraph problem

Given an undirected graph G, we define the density given a vertex set S to be

_ |Ec(9)]

For a directed graph G, we define the density given two vertex sets S, T to be

VISIIT

The directed densest subgraph are sets S*,T™ that attain the maximum density
p*(@G). Our algorithm finds a (2 + €)-approximation of the densest subgraph.

p(S,T)
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Densest subgraph problem

p(G) =

|E(S, 1) 7
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(a) Undirected graph
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(b) Directed graph
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.
Model definitions

Semi-streaming model: You can store O(n polylogn) edges locally.

AN N — /S o]

Massively Parallel Computation (MPC) model: Each machine holds certain
amount of memory - for § € (0, 1), sub-linear O(n?%), near-linear O(n poly logn),
super-linear O(n!'*?).

Machine 1 Machine 2 Machine 3
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Contributions

Streaming/Semi-streaming:

Algorithm Approx factor Memory Passes
Bahmani et al. (VLDB 2012) (2+¢) O(n) O(log, . n)
Esfandiari et al. (SPAA 2015) | (1+¢) | O (/i) 1
Our (randomized stream) (2+¢) 0 (”1%22("» 1
MPC:
Algorithm Approx factor Memory Rounds
Bahmani et al. (WAW 2014) (I+¢) sub-linear | O(log(n)/€?)
Bahmani et al. (VLDB 2012) (2+¢) sub-linear | O(log(n)/e)
Our (2+¢€) near-linear | O(y/log(n))
Our (2+€) super-linear 0O(1)
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T —
Peeling algorithm

Let ¢ = |S*|/|T*| where S*,T* are vertex sets of a directed densest subgraph.
Q Let S\T,5*,T*+V
@ Sample O(nlogn) edges uniformly at random from E(S,T)

@ If |S|/|T| = ¢, remove vertices from S that are below (1 + €)-average degree
Else, remove vertices from T that are below (1 + ¢)-average degree

@ Update S*, T™ with the densest subgraph S, T seen so far
@ Repeat step 2 if S and T are both nonempty

Average degree is calculated from the subgraph consisting of edges from E(S,T)
each iteration.
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Peeling algorithm

Average degree

Figure: One iteration of peeling on set .S
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One-pass streaming algorithm

Our idea is to take multiple samples of the graph throughout one pass, using each
of them to apply an iteration of peeling.
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Figure: Sampling routine
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T —
Super-linear MPC algorithm

We simulate the streaming algorithm, with the first machine acting as the start of
a randomized stream.

Accumulates n'** random edges from other machines in E(S,T)

Machine 1 Machine 2 Machine 3
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Figure: One round of super-linear MPC algorithm

The algorithm then takes a constant amount of rounds, O(1/d) where each
machine holds n'*? edges.
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Near-linear MPC algorithm

We make two observations to adapt our previous algorithm to the near-linear
memory regime.

@ We only need to take samples of O((|S| + |T'|) logn) edges rather than
O(nlogn) edges.

@ Consecutive iterations of peeling on the same set, either S or T, do not
require a fresh sample of edges. This guarantees that (|.S| 4 |T'|) goes down
by a constant factor each time we take another sample of edges.

Results in a quadratic optimization from previous sub-linear algorithms.
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Experimental results
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Figure: Density and running-time as a function of ¢ for LiveJournal dataset
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Figure: Number of phases as a function of ¢ for various data sets
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Future work

@ We hope to explore the trade-off between the number of passes and the
memory requirement of streaming algorithms for this problem.

Q s there a way to attain a o(logn) MPC round algorithm for the sub-linear

memory regime? How about improving our near-linear MPC algorithm to a
(1 4 €)-approximation?
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