Graphon Mean Field Games with a Representative Player: Analysis and Learning Algorithm

Fuzhong Zhou, Chenyu Zhang, Xu Chen, Xuan Di

COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

ICML 2024, Vienna Austria

- Graphon
- Graphon games with a representative player
- ◊ Analogous with classic MFGs
- Comparison with the continuum-player formulation

Image: 1 million (1 million)

Graphon

A graphon W is an L_1 integrable function : $[0,1]^2 \to \mathbb{R}_+$.

- Regarded as a graph with infinitely many vertices taking labels in [0,1]
- The edge weight connecting vertex u and v is given by W(u, v)

- Consider a game for a continuum of players, each player has two 'properties': a label (valued in [0,1]) and a state (valued in ℝ^d)
- The label represents the type of the player, and there are a continuum types of players
- The interaction intensities of different types of players is given by a known graphon W
- We abstract all other players but the representative into a label-state joint measure µ_t ∈ P([0,1] × ℝ^d) for t = 0,1,...
- We model the action and dynamic for only the single representative player, as follows

Graphon games with a representative player (II)

- At initial time 0, the rep is assigned uniformly a label U ~ unif[0,1] and a starting position X₀ according to some initial distrubtion
- At the following discrete time steps t = 0, 1, 2, ..., the player adopts a policy π and update her next state

$$a_t \sim \pi_t, \qquad X_{t+1} \sim P_t(X_t, W\mu_t(U), a_t),$$

• $\pi_t \in \mathcal{P}(A)$: a stochastic policy α_t : the random action she takes at time t P_t : the state dynamic transition kernel $W\mu_t(U)$: the population influence on the representative player (explained in next slide)

Graphon Operator

Given any graphon W, the graphon operator W and any population measure $\mu_t \in \mathcal{P}([0,1] \times \mathbb{R}^d)$, let it admits the disintegration $\mu_t(dv, dx) = dv \mu_t(v, dx)$. we define $W\mu_t$ as a operator .mapping [0,1] to a finite Borel measure:

$$\mathsf{W}\mu_t(u) := \int_{[0,1]} \left[W(u,v) \int_{\mathbb{R}^d} \delta_x \mu_t(v,dx) \right] dv,$$

- The inner integral is the state law of the *v*-labeled player
- The outer integral is an average of the state law of players over all labels $v \in [0, 1]$, weighted by the interaction intensity of player v onto player u, which is fixed

Graphon games with a representative player (IV)

The representative aims to optimize her objective function

$$\sup_{\pi} J_W(\mu,\pi)$$

where

$$J_W(\mu,\pi) := \mathbb{E}\bigg[\sum_{t=0}^{T-1} f_t(X_t^{\pi}, W\mu_t(U), a_t^{\pi}) + g(X_T^{\pi}, W\mu_T(U))\bigg].$$

A measure-policy pair (µ̂, π̂) ∈ P_{unif}([0, 1] × ℝ^d) × V_U is a Nash equilibrium if

$$J_W(\widehat{\mu}, \widehat{\pi}) = \sup_{\pi} J_W(\widehat{\mu}, \pi),$$

 $\widehat{\mu} = \mathcal{L}(U, X^{\widehat{\pi}}).$

	Graphon game	MFG
representative player	A random label <i>U</i> her state <i>X</i>	State X
population measure	A label-state joint law $\mu \in \mathcal{P}([0,1] imes \mathbb{R}^d)$	A state law $\mu \in \mathcal{P}(\mathbb{R}^d)$

- Both graphon game and MFG abstract a continuum of players into only a distribution (measure), and considers the state dynamic transition, action, and objective for only one representative player.
- In particular, when the graphon is $W \equiv 1$, our formulation degenerate to the classic MFG

Comparison with the continuum-player formulation (I)

Let us recap the continuum-player formulation in piror works: for any label u, the player with label u has her state X^u , which follows the state transition

$$a_t^u \sim \pi_t^u(X_t^u), \qquad X_{t+1}^u \sim P_t(X_t^u, W\mu_t(u), a_t),$$

and aim to optimize her own objective over her policy π^u

$$J^{u}(\mu,\pi^{u}) := \mathbb{E}\bigg[\sum_{t=0}^{T-1} f_{t}(X_{t}^{u,\pi^{u}}, \mathsf{W}\mu_{t}(u), a_{t}^{u}) + g(X_{T}^{u,\pi^{u}}, \mathsf{W}\mu_{T}(u))\bigg],$$

The equilibrium is defined as a pair $(\hat{\mu}, \hat{\pi}) := (\{\hat{\mu}^u\}_{u \in [0,1]}, \{\hat{\pi}^u\}_{u \in [0,1]})$ such that

$$J^{u}(\widehat{\mu},\widehat{\pi}^{u}) = \sup_{\pi \in \mathcal{A}} J^{u}(\widehat{\mu},\pi),$$
$$\widehat{\mu}^{u} = \mathcal{L}(X^{u,\widehat{\pi}^{u}}),$$

for almost every $u \in [0, 1]$.

Difference:

- Our formulation abstract all other players into only a distribution, and consider the state, action, objective of only one representative player;
- The prior works model the state, action and objective for every player, which is uncountably infinite.
- Difficulty faced by continuum-player formulation:
 - Philosophical inconsistency with classic MFGs
 - The formulation face significant non-measurability issue in proofs as the joint measurability of state dynamics with respect to a continuum of players' labels and randomness under the usual product space *σ*-algebra is not compatible with the independence of their evolution, (Appendix C)

- Present many discussion on various concepts (Appendix A)
- Under mild assumptions, we proved the following analysis properties:
 - Existence of Nash equilibrium
 - Uniqueness of Nash equilibrium
 - The equilibrium of finite player game with heterogenous interactions asymptotically converge to the graphon game equilibrium
- We proposed the first full online, oracle-free algorithm based on fixed point iteration, and showed the sample complexity analysis

Thank you for your attention.

Zhou et al. (Columbia)	GMFG with a representative player	ICML 2024

æ

< ∃ >

→ ∃ →