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Summary of Our Work

= Existing hypergradient-based methods for the lower-level constrained bilevel optimization
problem are based on restrictive assumptions, I.e., optimality conditions satisfy the
differentiability and invertibility conditions and lack a solid analysis of the convergence rate.

= |n our paper, leveraging the theory of nonsmooth implicit function theorems, we propose a
new method to calculate the hypergradient of LCBO without using restrictive assumptions.
We also propose a new method to approximate the hypergradient based on randomized
smoothing and the Neumann series.

= Using our hypergradient approximation, we propose a single-loop single-timescale algorithm
for the lower-level constrained BO problems. We prove our methods can return a
(8, €)-stationary point with O(d3e¢~*) iterations.

Table 1. Several representative hypergradient approximation methods for the lower-level constrained BO
problem. (The last column shows iteration numbers to find a stationary point. The gray color is used to highlight
the main limitations of the listed algorithms)

Method F(z) Loop Timescale LL. Constraint Restrictive Conditions Iterations
AiPOD Smooth Double  x Affine sets Not need O(e?)
|G-AL Nonsmooth Double X Half space Not need X
RMD-PCD Nonsmooth Double X Norm set  y*(z) is differentiable X
JaxOpt Nonsmooth Double X Convex set  y*(x) is differentiable X
DMLCBO (Ours) Nonsmooth Single  Single  Convex set Not need @(d%e“‘)

Hypergrdient of Lower-level Constrained Bilevel Optimization Problem

In this paper, we consider the following problem-setting

min_ F(x) = f(z,y"() i}
reR]
st. y*(xr)= argmin g(x,y).
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where Y is a convex subset of R%, ¢ is strongly convex.

= Under strongly convex assumptions, we have the optimal solution to the lower-level problem
is Lipschitz continuous with constant L/ 4.

= Using the definition of generalized gradient, generalized Jacobian [1], and the Lipschitz
continuousness of y * (x), we have

OF (z) = Vaf(z,y*(x) + 0y*(2)) ' Vy f(z, y*(2)) (2)
where 0F (z) is the generalized gradient and 0y™*(x) is generalized Jacobian.
= Using the Jacobian Chain Rule [1] on the optimal condition of the lower-level problem,

v (z) = Py(y"(x) — nVyg(z,y"(2))), (3)
where n > 0 and Py(-) is the projection operator, we can obtain the following hypergradient

OF (2) ={hlh = Vo f(,y" () — 1929wy @) H - I, — (Lg, — 1V yglay @) - HT|
- Vyf(z,y*(x), H € 0Py(z)}. %)
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Stationary Point

Our next step is to design an algorithm to find the point z satisfying the condition
min{ ||h|| : h € OF (x)} <e. (5)

However, finding an e stationary point in nonsmooth nonconvex optimization can not be
achieved by any finite-time algorithm given a fixed tolerance e € [0, 1).

Define the d-approximation generalized Jacobian: dsPy(z) := co ( 2/€Bg (2) 8733;(2’)). We can
obtain the following approximation,

05 F(x) ={hlh = Vaof (x,y"(x)) = nVi,g(x,y* (@) H "

14y~ gy~ V3l @)) - HT| - Vyfay* (@), H € Py} (6)

Equipping with this approximation, one could find a point that is close to an e-stationary point,
.e., (0, €)-stationary point:

min {||h|| : h € OsF(x)} < e (/)

If we can find a point 2’ at most distance § away from zx such that 2’ is e-stationary, then we
know x is (9, €)-stationary. However, the contrary is not true.

Randomized Smooth

Given a non-expansive projection operator Py(z) and uniform distribution P on a unit ball in
l9-norm, we define the smoothing function as Pys(z) = E,wp|Py(z + ou)|.

Using this randomized smoothing function to replace the approximation generalized Jacobian
in Egn (6), we can approximate the hypergradient as follows,

VEs(z) =V f(z,y%(2)) — nVa,g(z, y* () VPys(z*) | 1
NIy, — (Ig, = 1V 5,9(2, y*(2)VPys(2") 1| Vyf(z,y% ().

Under Assumptions on f and g, we have V Fs(x) is Lipschitz continuous w.r.t x.

We have VPys(z) € 05Py(z) forany z € R%. Once we find a point satisfying the condition
IVF5(2)|| <€ thenitis a (4, €)-stationary point.

Approximation of Hypergradient

Since obtaining the optimal solution y*(x) is usually time-consuming, one proper method is to
replace y*(x) with y.
We can use the following unbiased estimator of the gradient V'Pys(2) as a replacement,

do |

H(zu) = 2; o5 (Pylz + 6ui) = Py(z — ou;)) u} (8)

1=
We can use the Neumann series to approximate the matrix inverse and obtain the following
hypergradient approximation

c(Q) |
i=1
(9)
where € .= {u!, .-+, w9} and ¢(Q) ~U {0, ,Q — 1}.
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= Lower-level variable update rules:

Jr+1 =Pyyg — )Uk>>

-
Pt jeu1/e)(V/Mk + Go
Y1 =1 = 0 )Yk + Mg,
U1 =(1 = B)og + BVyg(@g, yr),
where n;, > 0, 7 > 0 and v; = Vyg(x1, y1).

= Upper-level variable update rules:
Nk

P jewt o)k + Go
wiy1 =(1 — )wy + aV fs(@, yi; &),

where wy = V fs(z1, y1; £1).

L+l =Lk — )wk>

Algorithm

Algorithm 1 DMLCBO

Input: Initialize zy € A,y € Y, vy

7.
1 for k

Vyg(zi,y1), wr = Vfs(z1,9;61) e, 7,79, B, @, Q and

L, ooy 3 D

2: Update z 1 = @, ';’w..,:,.,e..,ﬁ:fs—,n-_:,;. FClo) Wk
3:  Update yxr1 = (1 — ) yr + 0Py (yk '*”w--.;.w--el; =Ty Uk)
4:  Calculate the hyper-gradient V fs(@p41, Yk+1; Ex4-1) according to Eqn. (9).
5: Update w41 = (1 — a@)wg + aV fs(Trt1, Ye+1; Ek+1)-
6: Update vpy1 = (1 — B)vk + BV 9(Tr+1, Yo+1)-
7: end for
Output: x, where r € {1, -+, K} is uniformly sampled.

Theorem

1

| L1 K
Under Assumptions, with <n< o @, BT TP 0<a<2 a=cmn,

B 1
”9<1 4(277)1/4\/72%)
B = oy, Lo = max(L1 (), Lo(F)) > 1 1 = BlFs ()= o llyi—y™ (2) [ e (lun =V fs(z1, y1) =
Ri|)? + |Vyg(z1, y1) — v1]|?)], and my, = —L t >0, we have

(m+k)1/2’
1/4
o 4m \/GJr I G

min{||h|| : kb € O5F (z,)}

T VKt (Kt)1/4
where G = _<I>1W—CZ<I>* + i—[@(m + K)1/2 —StZIL(Q(m + K)3/2 4 (777,(7f(d2))t2 In(m + K); the range of c1,c2
v, T and m are given In the appendix.
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