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Summary of OurWork

Existing hypergradient-based methods for the lower-level constrained bilevel optimization

problem are based on restrictive assumptions, i.e., optimality conditions satisfy the

differentiability and invertibility conditions and lack a solid analysis of the convergence rate.

In our paper, leveraging the theory of nonsmooth implicit function theorems, we propose a

new method to calculate the hypergradient of LCBO without using restrictive assumptions.

We also propose a new method to approximate the hypergradient based on randomized

smoothing and the Neumann series.

Using our hypergradient approximation, we propose a single-loop single-timescale algorithm

for the lower-level constrained BO problems. We prove our methods can return a

(δ, ε)-stationary point with Õ(d2
2ε

−4) iterations.

Table 1. Several representative hypergradient approximation methods for the lower-level constrained BO

problem. (The last column shows iteration numbers to find a stationary point. The gray color is used to highlight

the main limitations of the listed algorithms)

Method F (x) Loop Timescale LL. Constraint Restrictive Conditions Iterations

AiPOD Smooth Double × Affine sets Not need Õ(ε−2)
IG-AL Nonsmooth Double × Half space Not need ×
RMD-PCD Nonsmooth Double × Norm set y∗(x) is differentiable ×
JaxOpt Nonsmooth Double × Convex set y∗(x) is differentiable ×
DMLCBO (Ours) Nonsmooth Single Single Convex set Not need Õ(d2

2ε
−4)

Hypergrdient of Lower-level Constrained Bilevel Optimization Problem

In this paper, we consider the following problem-setting

min
x∈Rd1

F (x) = f (x, y∗(x)) (1)

s.t. y∗(x) = arg min
y∈Y⊆Rd2

g(x, y).

where Y is a convex subset of Rd2, g is strongly convex.

Under strongly convex assumptions, we have the optimal solution to the lower-level problem

is Lipschitz continuous with constant Lg/µg.

Using the definition of generalized gradient, generalized Jacobian [1], and the Lipschitz

continuousness of y ∗ (x), we have

∂F (x) = ∇xf (x, y∗(x)) + (∂y∗(x))>∇yf (x, y∗(x)) (2)

where ∂F (x) is the generalized gradient and ∂y∗(x) is generalized Jacobian.
Using the Jacobian Chain Rule [1] on the optimal condition of the lower-level problem,

y∗(x) = PY(y∗(x) − η∇yg(x, y∗(x))), (3)

where η > 0 and PY(·) is the projection operator, we can obtain the following hypergradient

∂F (x) ={h|h = ∇xf (x, y∗(x)) − η∇2
xyg(x, y∗(x))H> ·

[
Id2 − (Id2 − η∇2

yyg(x, y∗(x))) · H>
]−1

· ∇yf (x, y∗(x)), H ∈ ∂PY(z∗)}. (4)

Stationary Point

Our next step is to design an algorithm to find the point x satisfying the condition

min{‖h‖ : h ∈ ∂F (x)} ≤ ε. (5)

However, finding an ε stationary point in nonsmooth nonconvex optimization can not be

achieved by any finite-time algorithm given a fixed tolerance ε ∈ [0, 1).
Define the δ-approximation generalized Jacobian: ∂δPY(z) := co

(⋃
z′∈Bδ(z) ∂PY(z′)

)
. We can

obtain the following approximation,

∂̄δF (x) ={h|h = ∇xf (x, y∗(x)) − η∇2
xyg(x, y∗(x))H>

·
[
Id2 − (Id2 − η∇2

yyg(x, y∗(x))) · H>
]−1

· ∇yf (x, y∗(x)), H ∈ ∂δPY(z∗)} (6)

Equipping with this approximation, one could find a point that is close to an ε-stationary point,
i.e., (δ, ε)-stationary point:

min
{

‖h‖ : h ∈ ∂̄δF (x)
}

≤ ε (7)

If we can find a point x′ at most distance δ away from x such that x′ is ε-stationary, then we
know x is (δ, ε)-stationary. However, the contrary is not true.

Randomized Smooth

Given a non-expansive projection operator PY(z) and uniform distribution P on a unit ball in

`2-norm, we define the smoothing function as PYδ(z) = Eu∼P[PY(z + δu)].
Using this randomized smoothing function to replace the approximation generalized Jacobian

in Eqn (6), we can approximate the hypergradient as follows,

∇Fδ(x) =∇xf (x, y∗(x)) − η∇2
xyg(x, y∗(x))∇PYδ(z∗)>

·
[
Id2 − (Id2 − η∇2

yyg(x, y∗(x)))∇PYδ(z∗)>
]−1

∇yf (x, y∗(x)).

Under Assumptions on f and g, we have ∇Fδ(x) is Lipschitz continuous w.r.t x.

We have ∇PYδ(z) ∈ ∂δPY(z) for any z ∈ Rd2. Once we find a point satisfying the condition

‖∇Fδ(x)‖ ≤ ε, then it is a (δ, ε)-stationary point.

Approximation of Hypergradient

Since obtaining the optimal solution y∗(x) is usually time-consuming, one proper method is to

replace y∗(x) with y.

We can use the following unbiased estimator of the gradient ∇PYδ(z) as a replacement,

H̄(z; u) =
d2∑

i=1

1
2δ

(
PY(z + δui) − PY(z − δui)

)
u>

i (8)

We can use the Neumann series to approximate the matrix inverse and obtain the following

hypergradient approximation

∇̄fδ(x, y; ξ̄) = ∇xf (x, y) − ηQ∇2
xyg(x, y)H̄(z; u0)>

c(Q)∏
i=1

(
(Id2 − η∇2

yyg(x, y))H̄(z; ui)>
)

∇yf (x, y)

(9)

where ξ̄ := {u0, · · · , uc(Q)}, and c(Q) ∼ U {0, · · · , Q − 1}.

Double-MomentumMethod for Lower-level Constrained Bilevel
Optimization

Lower-level variable update rules:

ŷk+1 =PY(yk − τ

P[1/cu,1/cl](
√

m1,k + G0)
vk),

yk+1 =(1 − ηk)yk + ηkŷk+1,
vk+1 =(1 − β)vk + β∇yg(xk, yk),

where ηk > 0, τ > 0 and v1 = ∇yg(x1, y1).
Upper-level variable update rules:

xk+1 =xk − ηkγ

P[1/cu,1/cl](
√

m2,k + G0)
wk,

wk+1 =(1 − α)wk + α∇̄fδ(xk, yk; ξ̄k),

where w1 = ∇̄fδ(x1, y1; ξ̄1).

Algorithm

Theorem

Under Assumptions, with 1
µg

(1 − 1
4(2π)1/4√d2Lp

) ≤ η < 1
µg

, Q = 1
µgη ln CgxyCfyK

µg
, 0 ≤ a ≤ 2, α = c1ηk,

β = c2ηk, L0 = max(L1(d2
δ ), L2(d2

δ )) > 1, Φ1 = E[Fδ(x1)+
10La

0cl
τµgcu

‖y1−y∗(x1)‖2+cl(‖w1−∇̄fδ(x1, y1)−
R1‖2 + ‖∇yg(x1, y1) − v1‖2)], and ηk = t

(m+k)1/2 , t > 0, we have

min{‖h‖ : h ∈ ∂̄δF (xr)} ≤ 4m1/4√G√
Kt

+ 4
√

G

(Kt)1/4.

where G = Φ1−Φ∗
γcl

+ 17t
4K2(m + K)1/2 + 4

3tK2(m + K)3/2 + (mσf (d2))t2 ln(m + K); the range of c1,c2
γ, τ and m are given in the appendix.
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