Synergistic Integration of Coordinate Network and Tensorial Feature for Improving Neural Radiance Fields from Sparse Inputs

Presented @ ICML2024

NeRFs under Sparse Inputs

- The object-centric NeRFs datasets assumes a training set with 100 views. However, this concept doesn't align closely with practical usage.
- In real-world scenarios, assuming 100 views is quite ambitious.
- If we train NeRFs with only 8 views, learning both low/high-frequencies is challenging

¹⁾ Yang, Jiawei, Marco Pavone, and Yue Wang. "Freenerf: Improving few-shot neural rendering with free frequency regularization." CVPR2023

²⁾ Chen, Anpei, et al. "Tensorf: Tensorial radiance fields." *European Conference on Computer Vision*. Cham: Springer Nature Switzerland, 2022.

Literature Survey

- Summarize prior research on sparse inputs by manipulating feature fields.
 - 1. Simplified NeRF/HALO/FreeNeRF: Manipulating frequencies in sinusoidal encoding
 - 2. **DietNeRF**/VisionNeRF : Fulfill features with pre-trained networks (CLIP or ViT)
 - 3. **DVGO/VSOS**: Voxel-grid based NeRF and its emphasize on low resolution feature fields

4. TensoRF/K-Planes/HexPlane: Multi-plane feature grid and its TV regularization

³⁾ Jain, Ajay, Matthew Tancik, and Pieter Abbeel. "Putting nerf on a diet: Semantically consistent few-shot view synthesis." ICCV2021

⁴⁾ Song, Liangchen, et al. "Harnessing low-frequency neural fields for few-shot view synthesis." Arxiv2023

⁵⁾ Lin, Kai-En, et al. "Vision transformer for nerf-based view synthesis from a single input image." WACV2023

⁷⁾ Sun, Cheng, Min Sun, and Hwann-Tzong Chen. "Direct voxel grid optimization: Super-fast convergence for radiance fields reconstruction." CVPR2023

⁸⁾ Sun, Jiakai, et al. "VGOS: Voxel grid optimization for view synthesis from sparse inputs." IJCAI2023

⁹⁾ Fridovich-Keil, Sara, et al. "K-planes: Explicit radiance fields in space, time, and appearance." CVPR2023

¹⁰⁾ Cao, Ang, and Justin Johnson. "Hexplane: A fast representation for dynamic scenes." CVPR2023

Key Observation: Free-NeRF (1)

- FreeNeRF, equipped with progressive sinusoidal encoding, is prone to under-fitting issues
 - While it allows robust training and quality, the synthesized images appear blurry.
- It struggles to learning high-frequency details and longer training times
 - Low-frequency sinusoidal encodings learn quickly, whereas high-frequency sinusoidal features struggle to learn as rapidly, requiring at least 5 hours.

Progressive sinusoidal encoding

$$\gamma_L(\mathbf{x}) = \left[\sin(\mathbf{x}), \cos(\mathbf{x}), ..., \sin(2^{L-1}\mathbf{x}), \cos(2^{L-1}\mathbf{x})\right]$$

$$\gamma'_{L}(t, T; \mathbf{x}) = \gamma_{L}(\mathbf{x}) \odot \boldsymbol{\alpha}(t, T, L),$$

$$\boldsymbol{\alpha}_{i}(t, T, L) = \begin{cases} 1 & \text{if } i \leq \frac{t \cdot L}{T} + 3\\ \frac{t \cdot L}{T} - \lfloor \frac{t \cdot L}{T} \rfloor & \text{if } \frac{t \cdot L}{T} + 3 < i \leq \frac{t \cdot L}{T} + 6\\ 0 & \text{if } i > \frac{t \cdot L}{T} + 6 \end{cases}$$

Key Observation: K-Planes (2)

- K-Planes equipped with TV denoising loss is effective to remove floating artifacts.
- Due to the explicit method, this achieves to take 30min. and rendering speed is fast.
- However, it exhibits color distortion that appears authentic but is not present in the training dataset when TV penalty is .
 - Explicit Representation struggles to learn low-frequency details due to their locality

$$\mathcal{L}_{TV}(\mathbf{P}) = \frac{1}{|C|n^2} \sum_{c,i,j} (\|\mathbf{P}_c^{i,j} - \mathbf{P}_c^{i-1,j}\|_2^2 + \|\mathbf{P}_c^{i,j} - \mathbf{P}_c^{i,j-1}\|_2^2),$$

Intuition

- The image regression task proves that multi-resolutional tensorial features do not play a role to capture low-frequency details in intended manner.
 - Low-resolution features also tends to learn high-frequency details.
 - iNGP exhibits the widest spectrum among baselines, the image with low resolution features does not adequately capture global reasoning.

Proposed Method (1)

- Residual networks seamlessly incorporates coordinate network and multi-plane features.
- We introduce progressive training strategy:
 - The coordinate network is trained first, and followed by multiple-plane encoding.
 - · Coordinate networks: low-frequency details
 - Multi-plane features: high-frequency details.

Proposed Method (2)

• The loss function consists of photometric loss, TV regularization and L1 on multi-planes

$$\mathcal{L}(\Theta, M) = \sum_{r} \|\hat{\mathbf{c}}(\mathbf{r}; \Theta, M) - \mathbf{c}\|^2 + \lambda_1 \sum_{c} \sum_{hw} \left(\left\| M_{h+1,w}^c - M_{h,w}^c \right\|_2^2 + \left\| M_{h,w+1}^c - M_{h,w}^c \right\|_2^2 \right) + \lambda_2 \left(\left\| M \right\|_1 \right)$$

- Contributions:
 - Previous band-limited coordinate networks supposed to have homogenous features.
 - However, the proposed method allows to incorporate heterogenous different features.

- 12) Lindell, David B., et al. "Bacon: Band-limited coordinate networks for multiscale scene representation." CVPR2022
- 13) Shekarforoush, Shayan, et al. "Residual multiplicative filter networks for multiscale reconstruction." NeurIPS2022

Quantitative Result (1)

- Dataset: NeRF Synthetic (Training data: 8 Views / Test data: 200 views)
 - Explicit encoding approaches shows competitive performance (Lego, Hotdog, Mic),
 - However, these methods struggle to depict accurately in (Drums, Ship)
 - Nevertheless, `ours` addresses these challenges by incorporating coordinate networks and multi-plane encoding, resulting in improved performance.

Models	PSNR ↑						Avg.	Avg.	Avg.		
	chair	drums	ficus	hotdog	lego	materials	mic	ship	PSNR S	SSIM	LPIPS +
Simplified_NeRF	20.35	14.19	21.63	22.57	12.45	18.98	24.95	18.65	19.22	0.827	0.265
DietNeRF	21.32	14.16	13.08	11.64	16.12	12.20	24.70	19.34	16.57	0.746	0.333
HALO	24.77	18.67	21.42	10.22	22.41	21.00	24.94	21.67	20.64	0.844	0.200
FreeNeRF	26.08	<u>19.99</u>	18.43	<u>28.91</u>	24.12	<u>21.74</u>	24.89	<u>23.01</u>	23.40	0.877	0.121
DVGO	22.35	16.54	19.03	24.73	20.85	18.50	24.37	18.17	20.57	0.829	0.145
VGOS	22.10	18.57	19.08	24.74	20.90	18.42	24.18	18.16	20.77	0.838	0.143
iNGP	24.76	14.56	20.68	24.11	22.22	15.16	26.19	17.29	20.62	0.828	0.184
TensoRF	26.23	15.94	21.37	28.47	26.28	20.22	26.39	20.29	23.15	0.864	0.129
K-Planes	<u>27.30</u>	20.43	23.82	27.58	<u>26.52</u>	19.66	27.30	21.34	<u>24.24</u>	0.897	0.085
Ours	28.02	19.55	20.30	29.25	26.73	21.93	26.42	24.27	24.56	0.896	0.092

Results on static NeRF Synthetic

Qualitative Results

• The proposed method provides qualitatively robust performance across all scenes.

Ours

• When only the coordinate network is engaged, global reasoning is well constructed. Then, tensorial features compliments finest details.

Quantitative Result (2): Stability

- We define stability as the minimal performance discrepancy between test viewpoints adjacent to and not adjacent to the training views.
 - Variance of PSNR across all test viewpoints in the static NeRF dataset.
- FreeNeRF, which uses MLP and sinusoidal encoding, records the lowest variance among baselines. While K-Planes reduces instability than these methods, its variances still do not reach the level of ours. Quantitatively, ours achieves comparable results to FreeNeRF.

	chair	lego	ship	Total
FreeNeRF	5.07	6.42	6.48	17.31
iNGP	8.43	7.78	6.03	23.95
TensoRF	10.88	10.27	5.71	23.22
K-Planes	10.74	10.76	11.48	19.61
Ours	3.82	8.72	6.01	18.23

Ablation Study (1)

- We provide visualizations of multi-plane features to understand how scenarios with sparse inputs influence the learning of these features.
- Under full viewpoints, 'HexPlane' does not exhibit artifacts. However, it suffers from unintended floating artifacts adjacent to human shapes, and a few channels fail to learn standing human features appropriately in the sparse-view.
- 'Ours' preserves similar pattern regardless of full and sparse views.

Ablation Study (2)

- Furthermore, this method is more stable against varying denoising regularization, if this parameter varies, this method less influence compared of TensoRF and K-Planes
 - When excessive denoising weights, the images simply appear faded or less vibrant.

Ground Truth

TensoRF with $\lambda_1 = 1.0$

K-Planes with $\lambda_1 = 1.0$

TensorRefine $\lambda_1 = 1.0$

Quantitative Result (3): Efficiency

- The proposed method preserves performance even when the number of parameters is reduced to 1M because the coordinate network supports low-frequency details.
- This efficiency stems from replacing the low-resolutional spatial parameters with the coordinate network.

Model Name	# Params [M]	Avg. PSNR
iNGP (T=19)	11.7M	19.26
iNGP (T=18)	6.4M	19.99
K-Planes (3*16)	17 M	23.95
K-Planes (2*16)	4.4M	23.16
TensoRF (64)	17.3M	25.23
TensoRF (20)	6.1M	-
Ours (48)	6.0M	24.36
Ours (24)	3.0M	23.74

Model Name	# Params [M]	Avg. PSNR
K-Planes (3*32)	18.6M	23.85
K-Planes (3*4)	1.9 M	23.41
HexPlane (72)	9.7M	24.00
HexPlane (6)	0.8M	22.08
Ours (48)	3.4M	25.17
Ours (12)	1.0M	25.10

Dynamic NeRF dataset

Summary and Limitation

• We have identified that tensorial features are effective for Neural Radiance Fields (NeRFs), but they are quite susceptible to overfitting to training views.

• Integrating the coordinate network with tensorial features significantly improves performance under sparse-input conditions without the need for additional regularization techniques.

• However, due to the per-scene optimization, this approach does not generalize well to novel tasks. The next chapter will explore a strong prior model that, by training on various objects within the same categories, can generalize effectively even in extremely sparse situations.

Q&A

